示例#1
0
文件: main.py 项目: 7dev7/mlp
def choose_action(num: int, network: NNetwork):
    print(num, ": ")
    data = None

    if num == 0:
        data = ds.BAD_ZERO
    elif num == 1:
        data = ds.BAD_ONE
    elif num == 2:
        data = ds.BAD_TWO
    elif num == 3:
        data = ds.BAD_THREE
    elif num == 4:
        data = ds.BAD_FOUR
    elif num == 5:
        data = ds.BAD_FIVE
    elif num == 6:
        data = ds.BAD_SIX
    elif num == 7:
        data = ds.BAD_SEVEN
    elif num == 8:
        data = ds.BAD_EIGHT
    else:
        data = ds.BAD_NINE

    print("-----------------------------------")
    network.recognize(data)
示例#2
0
 def eliminate(self, bot, replace=False):
     self.time_since_last_death = 0.0
     self.bots.remove(bot)
     if replace:
         random_rgb = (np.random.randint(30,
                                         256), np.random.randint(30, 256),
                       np.random.randint(30, 256))
         self.bots.append(
             Bot(NNetwork((1, 2, 4), (sigmoid, softmax)), random_rgb, self))
示例#3
0
文件: main.py 项目: 7dev7/mlp
def main():
    network = NNetwork()

    while True:
        print("Input number [0-9] of [exit]: ")
        try:
            s = input()
            if s == 'exit':
                break
            num = int(s)
            if 0 <= num <= 9:
                choose_action(num, network)
        except ValueError:
            print("Incorrect value")
示例#4
0
    def __init__(self, size, mutation_rate):
        assert (size >= 5)
        assert (0 < mutation_rate < 1)
        self.SIZE = size
        self.mutation_rate = mutation_rate
        self.bots = []
        self.food = []
        self.time_since_last_death = 0.0

        # The neural network will have 1 neuron in the input layer, 1 hidden
        # layer with 2 neurons, and 4 neurons in the output layer. The sigmoid
        # activation function will be used on the hidden layer, and a softmax
        # activation function will be used on the output layer. Input consists
        # of the bot's direction and if there is or isn't food in the bots field
        # of vision. Output consists of whether or not to move foward, turn
        # left, turn right, or do nothing.
        for i in range(size):
            random_rgb = (np.random.randint(30,
                                            256), np.random.randint(30, 256),
                          np.random.randint(30, 256))
            self.bots.append(
                Bot(NNetwork((1, 2, 4), (sigmoid, softmax)), random_rgb, self))
        self.food.append(Food(self))
示例#5
0
def gameLoop(game_time):
    # generate <MINE_NUM> mines with random positions
    mines = [Mine() for _ in range(MINE_NUM)]

    # generate <TANK_NUM> tanks with random positions
    agents = [Agent(NNetwork(N_INS, N_OUTS, N_HLS, N_HLNS))
            for _ in range(AGENT_NUM)]

    # game loop
    print "\033[?47h"
    for i in range(game_time):
        # move all the tanks
        for a in agents:
            a.update(mines)
            # check collision with a mine
            if a.checkCollision(mines, 2) != -1:
                mines[a.ClosestMine].reset()
                a.Fitness += 1
        # update the terminal screen given the delay frequency
        if i % DELAY == 0:
            updateTerminal(mines, agents)
    # return the tanks' fitness scores
    return [a.Fitness for a in agents]
示例#6
0
 def create_neural_network(self, act_fun_lay, act_fun_pos):
     """
     Creates 2 hidden fully connected neural network with chosen last activation function
     :param act_fun_lay: layer, activation function as layer
     :param act_fun_pos: activation function position
     :return: NNetwork, neural network created
     """
     nn = NNetwork()
     curt_lay = layer.FCLayer(self.data.shape[1] + self.targets.shape[1], constants.FC_1_NEURONS,
                              constants.EDGE_GRADIENT, True)
     nn.add_layer(curt_lay, constants.FC_1_POS)
     nn.add_layer(layer.ReLULayer(), constants.RELU_1_POS)
     curt_lay = layer.FCLayer(constants.FC_1_NEURONS, constants.FC_2_NEURONS, constants.EDGE_GRADIENT, True)
     nn.add_layer(curt_lay, constants.FC_2_POS)
     nn.add_layer(layer.ReLULayer(), constants.RELU_2_POS)
     curt_lay = layer.FCLayer(constants.FC_2_NEURONS, constants.FC_OUTPUT_NEURONS, constants.EDGE_GRADIENT, True)
     nn.add_layer(curt_lay, constants.FC_OUTPUT_POS)
     nn.add_layer(act_fun_lay, act_fun_pos)
     return nn