示例#1
0
def listen_to(candidate,
              stimulus_set,
              reset_column='story',
              average_sentence=True):
    """
    Pass a `stimulus_set` through a model `candidate`.
    Operates on a sentence-based `stimulus_set`.
    """
    activations = []
    for story in ordered_set(stimulus_set[reset_column].values):
        story_stimuli = stimulus_set[stimulus_set[reset_column] == story]
        story_stimuli.name = f"{stimulus_set.name}-{story}"
        story_activations = candidate(stimuli=story_stimuli,
                                      average_sentence=average_sentence)
        activations.append(story_activations)
    model_activations = merge_data_arrays(activations)
    # merging does not maintain stimulus order. the following orders again
    idx = [
        model_activations['stimulus_id'].values.tolist().index(stimulus_id)
        for stimulus_id in itertools.chain.from_iterable(
            s['stimulus_id'].values for s in activations)
    ]
    assert len(
        set(idx)) == len(idx), "Found duplicate indices to order activations"
    model_activations = model_activations[{'presentation': idx}]
    return model_activations
示例#2
0
def read_words(candidate, stimulus_set, reset_column='sentence_id', copy_columns=(), average_sentence=False):
    """
    Pass a `stimulus_set` through a model `candidate`.
    In contrast to the `listen_to` function, this function operates on a word-based `stimulus_set`.
    """
    # Input: stimulus_set = pandas df, col 1 with sentence ID and 2nd col as word.
    activations = []
    for i, reset_id in enumerate(ordered_set(stimulus_set[reset_column].values)):
        part_stimuli = stimulus_set[stimulus_set[reset_column] == reset_id]
        # stimulus_ids = part_stimuli['stimulus_id']
        sentence_stimuli = StimulusSet({'sentence': ' '.join(part_stimuli['word']),
                                        reset_column: list(set(part_stimuli[reset_column]))})
        sentence_stimuli.name = f"{stimulus_set.name}-{reset_id}"
        sentence_activations = candidate(stimuli=sentence_stimuli, average_sentence=average_sentence)
        for column in copy_columns:
            sentence_activations[column] = ('presentation', part_stimuli[column])
        activations.append(sentence_activations)
    model_activations = merge_data_arrays(activations)
    # merging does not maintain stimulus order. the following orders again
    idx = [model_activations['stimulus_id'].values.tolist().index(stimulus_id) for stimulus_id in
           itertools.chain.from_iterable(s['stimulus_id'].values for s in activations)]
    assert len(set(idx)) == len(idx), "Found duplicate indices to order activations"
    model_activations = model_activations[{'presentation': idx}]

    return model_activations
示例#3
0
def read_words(candidate, stimulus_set): # This is a new version of the listen_to_stories function
    # Input: stimulus_set = pandas df, col 1 with sentence ID and 2nd col as word.
    activations = []
    for i, sentence_id in enumerate(ordered_set(stimulus_set['sentence_id'].values)):
        sentence_stimuli = stimulus_set[stimulus_set['sentence_id'] == sentence_id]
        sentence_stimuli = StimulusSet({'sentence': ' '.join(sentence_stimuli['word']),
                                        'sentence_id': list(set(sentence_stimuli['sentence_id']))})
        sentence_stimuli.name = f"{stimulus_set.name}-{sentence_id}"
        sentence_activations = candidate(stimuli=sentence_stimuli)
        sentence_activations['stimulus_id'] = ('presentation', 8 * i + np.arange(0, 8))
        sentence_activations['sentence_id'] = ('presentation', [sentence_id] * 8)
        activations.append(sentence_activations)
    model_activations = merge_data_arrays(activations)
    # merging does not maintain stimulus order. the following orders again
    idx = [model_activations['stimulus_id'].values.tolist().index(stimulus_id) for stimulus_id in
           itertools.chain.from_iterable(s['stimulus_id'].values for s in activations)]
    assert len(set(idx)) == len(idx), "Found duplicate indices to order activations"
    model_activations = model_activations[{'presentation': idx}]
    
    return model_activations
示例#4
0
def _align_stimuli_recordings(stimulus_set, assembly):
    aligned_stimulus_set = []
    partial_sentences = assembly['stimulus_sentence'].values
    partial_sentences = [
        compare_ignore(sentence) for sentence in partial_sentences
    ]
    assembly_stimset = {}
    stimulus_set_index = 0

    stories = ordered_set(assembly['story'].values.tolist())
    for story in tqdm(sorted(stories),
                      desc='align stimuli',
                      total=len(stories)):
        story_partial_sentences = [
            (sentence, i) for i, (sentence, sentence_story) in enumerate(
                zip(partial_sentences, assembly['story'].values))
            if sentence_story == story
        ]

        story_stimuli = stimulus_set[stimulus_set['story'] == story]
        stimuli_story = ' '.join(story_stimuli['sentence'])
        stimuli_story_sentence_starts = [0] + [
            len(sentence) + 1 for sentence in story_stimuli['sentence']
        ]
        stimuli_story_sentence_starts = np.cumsum(
            stimuli_story_sentence_starts)
        assert ' '.join(s
                        for s, i in story_partial_sentences) == compare_ignore(
                            stimuli_story)
        stimulus_index = 0
        Stimulus = namedtuple(
            'Stimulus', ['story', 'sentence', 'sentence_num', 'sentence_part'])
        sentence_parts = defaultdict(lambda: 0)
        for partial_sentence, assembly_index in story_partial_sentences:
            full_partial_sentence = ''
            partial_sentence_index = 0
            while partial_sentence_index < len(partial_sentence) \
                    or stimulus_index < len(stimuli_story) \
                    and stimuli_story[stimulus_index] in compare_characters + [' ']:
                if partial_sentence_index < len(partial_sentence) \
                        and partial_sentence[partial_sentence_index].lower() \
                        == stimuli_story[stimulus_index].lower():
                    full_partial_sentence += stimuli_story[stimulus_index]
                    stimulus_index += 1
                    partial_sentence_index += 1
                elif stimuli_story[stimulus_index] in compare_characters + [
                        ' '
                ]:
                    # this case leads to a potential issue: Beginning quotations ' are always appended to
                    # the current instead of the next sentence. For now, I'm hoping this won't lead to issues.
                    full_partial_sentence += stimuli_story[stimulus_index]
                    stimulus_index += 1
                elif stimuli_story[stimulus_index] == '-':
                    full_partial_sentence += '-'
                    stimulus_index += 1
                    if partial_sentence[partial_sentence_index] == ' ':
                        partial_sentence_index += 1
                else:
                    raise NotImplementedError()
            sentence_num = next(
                index
                for index, start in enumerate(stimuli_story_sentence_starts)
                if start >= stimulus_index) - 1
            sentence_part = sentence_parts[sentence_num]
            sentence_parts[sentence_num] += 1
            row = Stimulus(sentence=full_partial_sentence,
                           story=story,
                           sentence_num=sentence_num,
                           sentence_part=sentence_part)
            aligned_stimulus_set.append(row)
            assembly_stimset[assembly_index] = stimulus_set_index
            stimulus_set_index += 1
        # check
        aligned_story = "".join(row.sentence for row in aligned_stimulus_set
                                if row.story == story)
        assert aligned_story == stimuli_story
    # build StimulusSet
    aligned_stimulus_set = StimulusSet(aligned_stimulus_set)
    aligned_stimulus_set['stimulus_id'] = [
        ".".join([str(value) for value in values]) for values in zip(*[
            aligned_stimulus_set[coord].values
            for coord in ['story', 'sentence_num', 'sentence_part']
        ])
    ]
    aligned_stimulus_set.name = f"{stimulus_set.name}-aligned"

    # align assembly
    alignment = [
        stimset_idx
        for assembly_idx, stimset_idx in sorted(assembly_stimset.items(),
                                                key=operator.itemgetter(0))
    ]
    assembly_coords = {
        **{
            coord: (dims, values)
            for coord, dims, values in walk_coords(assembly)
        },
        **{
            'stimulus_id': ('presentation', aligned_stimulus_set['stimulus_id'].values[alignment]),
            'meta_sentence': ('presentation', assembly['stimulus_sentence'].values),
            'stimulus_sentence': ('presentation', aligned_stimulus_set['sentence'].values[alignment])
        }
    }
    assembly = type(assembly)(assembly.values,
                              coords=assembly_coords,
                              dims=assembly.dims)

    return aligned_stimulus_set, assembly
示例#5
0
def _merge_voxel_meta(data, meta, bold_shift_seconds):
    data_missing = set(meta['story'].values) - set(data['story'].values)
    if data_missing:
        warnings.warn(f"Stories missing from the data: {data_missing}")
    meta_missing = set(data['story'].values) - set(meta['story'].values)
    if meta_missing:
        warnings.warn(f"Stories missing from the meta: {meta_missing}")

    ignored_words = [None, '', '<s>', '</s>', '<s']
    annotated_data = []
    for story in tqdm(ordered_set(data['story'].values), desc='merge meta'):
        if story not in meta['story'].values:
            continue
        story_meta = meta.sel(story=story)
        story_meta = story_meta.sortby('time_end')

        story_data = data.sel(story=story).stack(timepoint=['timepoint_value'])
        story_data = story_data.sortby('timepoint_value')
        timepoints = story_data['timepoint_value'].values.tolist()
        assert is_sorted(timepoints)
        timepoints = [
            timepoint - bold_shift_seconds for timepoint in timepoints
        ]
        sentences = []
        last_timepoint = -np.inf
        for timepoint in timepoints:
            if last_timepoint >= max(story_meta['time_end'].values):
                break
            if timepoint <= 0:
                sentences.append(None)
                continue  # ignore fixation period
            timebin_meta = [
                last_timepoint < end <= timepoint
                for end in story_meta['time_end'].values
            ]
            timebin_meta = story_meta[{'time_bin': timebin_meta}]
            sentence = ' '.join(word.strip() for word in timebin_meta.values
                                if word not in ignored_words)
            sentence = sentence.lower().strip()
            # quick-fixes
            if story == 'Boar' and sentence == 'interactions the the':  # Boar duplicate
                sentence = 'interactions the'
            if story == 'KingOfBirds' and sentence == 'the fact that the larger':  # missing word in TextGrid
                sentence = 'earth ' + sentence
            if story == 'MrSticky' and sentence == 'worry don\'t worry i went extra slowly since it\'s':
                sentence = 'don\'t worry i went extra slowly since it\'s'
            sentences.append(sentence)
            last_timepoint = timebin_meta['time_end'].values[-1]
        sentence_index = [
            i for i, sentence in enumerate(sentences) if sentence
        ]
        sentences = np.array(sentences)[sentence_index]
        if story not in ['Boar', 'KingOfBirds',
                         'MrSticky']:  # ignore quick-fixes
            annotated_sentence = ' '.join(sentences)
            meta_sentence = ' '.join(word.strip() for word in story_meta.values if word not in ignored_words) \
                .lower().strip()
            assert annotated_sentence == meta_sentence
        # re-interpret timepoints as stimuli
        coords = {}
        for coord_name, dims, coord_value in walk_coords(story_data):
            dims = [
                dim if not dim.startswith('timepoint') else 'presentation'
                for dim in dims
            ]
            # discard the timepoints for which the stimulus did not change (empty word)
            coord_value = coord_value if not array_is_element(
                dims, 'presentation') else coord_value[sentence_index]
            coords[coord_name] = dims, coord_value
        coords = {
            **coords,
            **{
                'stimulus_sentence': ('presentation', sentences)
            }
        }
        story_data = story_data[{
            dim: slice(None) if dim != 'timepoint' else sentence_index
            for dim in story_data.dims
        }]
        dims = [
            dim if not dim.startswith('timepoint') else 'presentation'
            for dim in story_data.dims
        ]
        story_data = xr.DataArray(story_data.values, coords=coords, dims=dims)
        story_data['story'] = 'presentation', [story] * len(
            story_data['presentation'])
        gather_indexes(story_data)
        annotated_data.append(story_data)
    annotated_data = merge_data_arrays(annotated_data)
    return annotated_data
示例#6
0
def num_features_vs_score(benchmark='Pereira2018-encoding',
                          per_layer=True,
                          include_untrained=True):
    if include_untrained:
        all_models = [(model, f"{model}-untrained") for model in models]
        all_models = [
            model for model_tuple in all_models for model in model_tuple
        ]
    else:
        all_models = models
    scores = collect_scores(benchmark=benchmark, models=all_models)
    scores = average_adjacent(scores)
    scores = scores.dropna()
    if not per_layer:
        scores = choose_best_scores(scores)
    # count number of features
    store_file = Path(__file__).parent / "num_features.csv"
    if store_file.is_file():
        num_features = pd.read_csv(store_file)
    else:
        num_features = []
        for model in tqdm(ordered_set(scores['model'].values), desc='models'):
            # mock-run stimuli that are already stored
            mock_extractor = ActivationsExtractorHelper(get_activations=None,
                                                        reset=None)
            features = mock_extractor._from_sentences_stored(
                layers=model_layers[model.replace('-untrained', '')],
                sentences=None,
                identifier=model.replace('-untrained', ''),
                stimuli_identifier='Pereira2018-243sentences.astronaut')
            if per_layer:
                for layer in scores['layer'].values[scores['model'] == model]:
                    num_features.append({
                        'model':
                        model,
                        'layer':
                        layer,
                        'score':
                        len(features.sel(layer=layer)['neuroid'])
                    })
            else:
                num_features.append({
                    'model': model,
                    'score': len(features['neuroid'])
                })
        num_features = pd.DataFrame(num_features)
        num_features['error'] = np.nan
        num_features.to_csv(store_file, index=False)
    if per_layer:
        assert (scores['layer'].values == num_features['layer'].values).all()
    # plot
    colors = [
        model_colors[model.replace('-untrained', '')]
        for model in scores['model'].values
    ]
    fig, ax = _plot_scores1_2(num_features,
                              scores,
                              color=colors,
                              xlabel="number of features",
                              ylabel=benchmark)
    savefig(fig,
            savename=Path(__file__).parent / f"num_features-{benchmark}" +
            ("-layerwise" if per_layer else ""))