def train(): model = resnet18(classes_num=1, in_channels=3, pretrained=True) train_config = TrainConfig([train_stage, val_stage], torch.nn.BCEWithLogitsLoss(), torch.optim.Adam(model.parameters(), lr=1e-4)) file_struct_manager = FileStructManager(base_dir='data', is_continue=False) trainer = Trainer(model, train_config, file_struct_manager, torch.device('cuda:0')).set_epoch_num(2) tensorboard = TensorboardMonitor(file_struct_manager, is_continue=False, network_name='PortraitSegmentation') log = LogMonitor(file_struct_manager).write_final_metrics() trainer.monitor_hub.add_monitor(tensorboard).add_monitor(log) trainer.enable_best_states_saving( lambda: np.mean(train_stage.get_losses())) trainer.enable_lr_decaying( coeff=0.5, patience=10, target_val_clbk=lambda: np.mean(train_stage.get_losses())) trainer.add_on_epoch_end_callback( lambda: tensorboard.update_scalar('params/lr', trainer.data_processor().get_lr())) trainer.train()
def test_lr_decaying(self): fsm = FileStructManager(base_dir=self.base_dir, is_continue=False) model = SimpleModel() metrics_processor = MetricsProcessor() stages = [ TrainStage( TestDataProducer([[{ 'data': torch.rand(1, 3), 'target': torch.rand(1) } for _ in list(range(20))]]), metrics_processor), ValidationStage( TestDataProducer([[{ 'data': torch.rand(1, 3), 'target': torch.rand(1) } for _ in list(range(20))]]), metrics_processor) ] trainer = Trainer( model, TrainConfig(stages, SimpleLoss(), torch.optim.SGD(model.parameters(), lr=0.1)), fsm).set_epoch_num(10) def target_value_clbk() -> float: return 1 trainer.enable_lr_decaying(0.5, 3, target_value_clbk) trainer.train() self.assertAlmostEqual(trainer.data_processor().get_lr(), 0.1 * (0.5**3), delta=1e-6)
def train(config_type: type(BaseSegmentationTrainConfig)): fsm = FileStructManager(base_dir=config_type.experiment_dir, is_continue=False) config = config_type({'train': ['train_seg.npy'], 'val': 'val_seg.npy'}) trainer = Trainer(config, fsm, device=torch.device('cuda')) tensorboard = TensorboardMonitor(fsm, is_continue=False) trainer.monitor_hub.add_monitor(tensorboard) trainer.set_epoch_num(300) trainer.enable_lr_decaying(coeff=0.5, patience=10, target_val_clbk=lambda: np.mean(config.val_stage.get_losses())) trainer.add_on_epoch_end_callback(lambda: tensorboard.update_scalar('params/lr', trainer.data_processor().get_lr())) trainer.enable_best_states_saving(lambda: np.mean(config.val_stage.get_losses())) trainer.add_stop_rule(lambda: trainer.data_processor().get_lr() < 1e-6) trainer.train()
def train(): train_config = PoseNetTrainConfig() file_struct_manager = FileStructManager( base_dir=PoseNetTrainConfig.experiment_dir, is_continue=False) trainer = Trainer(train_config, file_struct_manager, torch.device('cuda')) trainer.set_epoch_num(EPOCH_NUM) tensorboard = TensorboardMonitor(file_struct_manager, is_continue=False) log = LogMonitor(file_struct_manager).write_final_metrics() trainer.monitor_hub.add_monitor(tensorboard).add_monitor(log) trainer.enable_best_states_saving( lambda: np.mean(train_config.val_stage.get_losses())) trainer.enable_lr_decaying( coeff=0.5, patience=10, target_val_clbk=lambda: np.mean(train_config.val_stage.get_losses())) trainer.add_on_epoch_end_callback( lambda: tensorboard.update_scalar('params/lr', trainer.data_processor().get_lr())) trainer.train()