def test_fan_in_conv(self, same_inputs, axis, n_branches, get, branch_in, readout, fan_in_mode): test_utils.skip_test(self) if fan_in_mode in ['FanInSum', 'FanInProd']: if axis != 0: raise absltest.SkipTest( '`FanInSum` and `FanInProd()` are skipped when ' 'axis != 0.') axis = None if (fan_in_mode == 'FanInSum' or axis in [0, 1, 2]) and branch_in == 'dense_after_branch_in': raise absltest.SkipTest('`FanInSum` and `FanInConcat(0/1/2)` ' 'require `is_gaussian`.') if ((axis == 3 or fan_in_mode == 'FanInProd') and branch_in == 'dense_before_branch_in'): raise absltest.SkipTest( '`FanInConcat` or `FanInProd` on feature axis ' 'requires a dense layer after concatenation ' 'or Hadamard product.') if fan_in_mode == 'FanInSum': fan_in_layer = stax.FanInSum() elif fan_in_mode == 'FanInProd': fan_in_layer = stax.FanInProd() else: fan_in_layer = stax.FanInConcat(axis) key = random.PRNGKey(1) X0_1 = random.normal(key, (2, 5, 6, 3)) X0_2 = None if same_inputs else random.normal(key, (3, 5, 6, 3)) if default_backend() == 'tpu': width = 2048 n_samples = 1024 tol = 0.02 else: width = 1024 n_samples = 512 tol = 0.01 conv = stax.Conv(out_chan=width, filter_shape=(3, 3), padding='SAME', W_std=1.25, b_std=0.1) input_layers = [conv, stax.FanOut(n_branches)] branches = [] for b in range(n_branches): branch_layers = [FanInTest._get_phi(b)] for i in range(b): multiplier = 1 if axis not in (3, -1) else (1 + 0.25 * i) branch_layers += [ stax.Conv(out_chan=int(width * multiplier), filter_shape=(i + 1, 4 - i), padding='SAME', W_std=1.25 + i, b_std=0.1 + i), FanInTest._get_phi(i) ] if branch_in == 'dense_before_branch_in': branch_layers += [conv] branches += [stax.serial(*branch_layers)] output_layers = [ fan_in_layer, stax.Relu(), stax.GlobalAvgPool() if readout == 'pool' else stax.Flatten() ] if branch_in == 'dense_after_branch_in': output_layers.insert(1, conv) nn = stax.serial(*(input_layers + [stax.parallel(*branches)] + output_layers)) init_fn, apply_fn, kernel_fn = stax.serial( nn, stax.Dense(1 if get == 'ntk' else width, 1.25, 0.5)) kernel_fn_mc = nt.monte_carlo_kernel_fn( init_fn, apply_fn, key, n_samples, device_count=0 if axis in (0, -4) else -1, implementation=_DEFAULT_TESTING_NTK_IMPLEMENTATION, vmap_axes=None if axis in (0, -4) else 0, ) exact = kernel_fn(X0_1, X0_2, get=get) empirical = kernel_fn_mc(X0_1, X0_2, get=get) test_utils.assert_close_matrices(self, empirical, exact, tol)
def test_fan_in_fc(self, same_inputs, axis, n_branches, get, branch_in, fan_in_mode): if fan_in_mode in ['FanInSum', 'FanInProd']: if axis != 0: raise absltest.SkipTest( '`FanInSum` and `FanInProd` are skipped when ' 'axis != 0.') axis = None if (fan_in_mode == 'FanInSum' or axis == 0) and branch_in == 'dense_after_branch_in': raise absltest.SkipTest('`FanInSum` and `FanInConcat(0)` ' 'require `is_gaussian`.') if ((axis == 1 or fan_in_mode == 'FanInProd') and branch_in == 'dense_before_branch_in'): raise absltest.SkipTest( '`FanInConcat` or `FanInProd` on feature axis requires a dense layer ' 'after concatenation or Hadamard product.') if fan_in_mode == 'FanInSum': fan_in_layer = stax.FanInSum() elif fan_in_mode == 'FanInProd': fan_in_layer = stax.FanInProd() else: fan_in_layer = stax.FanInConcat(axis) if n_branches != 2: test_utils.skip_test(self) key = random.PRNGKey(1) X0_1 = np.cos(random.normal(key, (4, 3))) X0_2 = None if same_inputs else random.normal(key, (8, 3)) width = 1024 n_samples = 256 * 2 if default_backend() == 'tpu': tol = 0.07 else: tol = 0.02 dense = stax.Dense(width, 1.25, 0.1) input_layers = [dense, stax.FanOut(n_branches)] branches = [] for b in range(n_branches): branch_layers = [FanInTest._get_phi(b)] for i in range(b): multiplier = 1 if axis not in (1, -1) else (1 + 0.25 * i) branch_layers += [ stax.Dense(int(width * multiplier), 1. + 2 * i, 0.5 + i), FanInTest._get_phi(i) ] if branch_in == 'dense_before_branch_in': branch_layers += [dense] branches += [stax.serial(*branch_layers)] output_layers = [fan_in_layer, stax.Relu()] if branch_in == 'dense_after_branch_in': output_layers.insert(1, dense) nn = stax.serial(*(input_layers + [stax.parallel(*branches)] + output_layers)) if get == 'nngp': init_fn, apply_fn, kernel_fn = nn elif get == 'ntk': init_fn, apply_fn, kernel_fn = stax.serial( nn, stax.Dense(1, 1.25, 0.5)) else: raise ValueError(get) kernel_fn_mc = nt.monte_carlo_kernel_fn( init_fn, apply_fn, key, n_samples, device_count=0 if axis in (0, -2) else -1, implementation=_DEFAULT_TESTING_NTK_IMPLEMENTATION, vmap_axes=None if axis in (0, -2) else 0, ) exact = kernel_fn(X0_1, X0_2, get=get) empirical = kernel_fn_mc(X0_1, X0_2, get=get) test_utils.assert_close_matrices(self, empirical, exact, tol)
def test_mask_conv(self, same_inputs, get, mask_axis, mask_constant, concat, proj, p, n, transpose): if isinstance(concat, int) and concat > n: raise absltest.SkipTest('Concatenation axis out of bounds.') test_utils.skip_test(self) if default_backend() == 'gpu' and n > 3: raise absltest.SkipTest('>=4D-CNN is not supported on GPUs.') width = 256 n_samples = 256 tol = 0.03 key = random.PRNGKey(1) spatial_shape = ((1, 2, 3, 2, 1) if transpose else (15, 8, 9))[:n] filter_shape = ((2, 3, 1, 2, 1) if transpose else (7, 2, 3))[:n] strides = (2, 1, 3, 2, 3)[:n] spatial_spec = 'HWDZX'[:n] dimension_numbers = ('N' + spatial_spec + 'C', 'OI' + spatial_spec, 'N' + spatial_spec + 'C') x1 = np.cos(random.normal(key, (2, ) + spatial_shape + (2, ))) x1 = test_utils.mask(x1, mask_constant, mask_axis, key, p) if same_inputs: x2 = None else: x2 = np.cos(random.normal(key, (4, ) + spatial_shape + (2, ))) x2 = test_utils.mask(x2, mask_constant, mask_axis, key, p) def get_attn(): return stax.GlobalSelfAttention( n_chan_out=width, n_chan_key=width, n_chan_val=int(np.round(float(width) / int(np.sqrt(width)))), n_heads=int(np.sqrt(width)), ) if proj == 'avg' else stax.Identity() conv = stax.ConvTranspose if transpose else stax.Conv nn = stax.serial( stax.FanOut(3), stax.parallel( stax.serial( conv(dimension_numbers=dimension_numbers, out_chan=width, strides=strides, filter_shape=filter_shape, padding='CIRCULAR', W_std=1.5, b_std=0.2), stax.LayerNorm(axis=(1, -1)), stax.Abs(), stax.DotGeneral(rhs=0.9), conv(dimension_numbers=dimension_numbers, out_chan=width, strides=strides, filter_shape=filter_shape, padding='VALID', W_std=1.2, b_std=0.1), ), stax.serial( conv(dimension_numbers=dimension_numbers, out_chan=width, strides=strides, filter_shape=filter_shape, padding='SAME', W_std=0.1, b_std=0.3), stax.Relu(), stax.Dropout(0.7), conv(dimension_numbers=dimension_numbers, out_chan=width, strides=strides, filter_shape=filter_shape, padding='VALID', W_std=0.9, b_std=1.), ), stax.serial( get_attn(), conv(dimension_numbers=dimension_numbers, out_chan=width, strides=strides, filter_shape=filter_shape, padding='CIRCULAR', W_std=1., b_std=0.1), stax.Erf(), stax.Dropout(0.2), stax.DotGeneral(rhs=0.7), conv(dimension_numbers=dimension_numbers, out_chan=width, strides=strides, filter_shape=filter_shape, padding='VALID', W_std=1., b_std=0.1), )), (stax.FanInSum() if concat is None else stax.FanInConcat(concat)), get_attn(), { 'avg': stax.GlobalAvgPool(), 'sum': stax.GlobalSumPool(), 'flatten': stax.Flatten(), }[proj], ) if get == 'nngp': init_fn, apply_fn, kernel_fn = stax.serial( nn, stax.Dense(width, 1., 0.)) elif get == 'ntk': init_fn, apply_fn, kernel_fn = stax.serial(nn, stax.Dense(1, 1., 0.)) else: raise ValueError(get) kernel_fn_mc = nt.monte_carlo_kernel_fn( init_fn, apply_fn, key, n_samples, device_count=0 if concat in (0, -n) else -1, implementation=_DEFAULT_TESTING_NTK_IMPLEMENTATION, vmap_axes=None if concat in (0, -n) else 0, ) kernel_fn = jit(kernel_fn, static_argnames='get') exact = kernel_fn(x1, x2, get, mask_constant=mask_constant) empirical = kernel_fn_mc(x1, x2, get=get, mask_constant=mask_constant) test_utils.assert_close_matrices(self, empirical, exact, tol)
def test_mask_fc(self, same_inputs, get, concat, p, mask_axis, mask_constant): width = 512 n_samples = 128 tol = 0.04 key = random.PRNGKey(1) x1 = random.normal(key, (4, 6, 5, 7)) x1 = test_utils.mask(x1, mask_constant, mask_axis, key, p) if same_inputs: x2 = None else: x2 = random.normal(key, (2, 6, 5, 7)) x2 = test_utils.mask(x2, mask_constant, mask_axis, key, p) nn = stax.serial( stax.Flatten(), stax.FanOut(3), stax.parallel( stax.serial( stax.Dense(width, 1., 0.1), stax.Abs(), stax.DotGeneral(lhs=-0.2), stax.Dense(width, 1.5, 0.01), ), stax.serial( stax.Dense(width, 1.1, 0.1), stax.DotGeneral(rhs=0.7), stax.Erf(), stax.Dense(width if concat != 1 else 512, 1.5, 0.1), ), stax.serial( stax.DotGeneral(rhs=0.5), stax.Dense(width, 1.2), stax.ABRelu(-0.2, 0.4), stax.Dense(width if concat != 1 else 1024, 1.3, 0.2), )), (stax.FanInSum() if concat is None else stax.FanInConcat(concat)), stax.Dense(width, 2., 0.01), stax.Relu()) if get == 'nngp': init_fn, apply_fn, kernel_fn = stax.serial( nn, stax.Dense(width, 1., 0.1)) elif get == 'ntk': init_fn, apply_fn, kernel_fn = stax.serial(nn, stax.Dense(1, 1., 0.1)) else: raise ValueError(get) kernel_fn_mc = nt.monte_carlo_kernel_fn( init_fn, apply_fn, key, n_samples, device_count=0 if concat in (0, -2) else -1, implementation=_DEFAULT_TESTING_NTK_IMPLEMENTATION, vmap_axes=None if concat in (0, -2) else 0, ) kernel_fn = jit(kernel_fn, static_argnames='get') exact = kernel_fn(x1, x2, get, mask_constant=mask_constant) empirical = kernel_fn_mc(x1, x2, get=get, mask_constant=mask_constant) test_utils.assert_close_matrices(self, empirical, exact, tol)
def bann_model( W_std, b_std, first_layer_width, second_layer_width, subNN_num, keep_rate, activation, parameterization ): """Construct fully connected NN model and infinite width NTK & NNGP kernel function. Args: W_std (float): Weight standard deviation. b_std (float): Bias standard deviation. first_layer_width (int): First Hidden layer width. second_layer_width (int): Second Hidden layer width. subNN_num (int) : Number of sub neural networks in the architecture keep_rate (float): 1 - Dropout rate. activation (string): Activation function string, 'erf' or 'relu'. parameterization (string): Parameterization string, 'ntk' or 'standard'. Returns: `(init_fn, apply_fn, kernel_fn)` """ act = activation_fn(activation) # multi-task learning # Computational Skeleton Block CSB = stax.serial( stax.FanOut(subNN_num), stax.parallel( stax.serial( Dense(first_layer_width, W_std, b_std, parameterization=parameterization), act(), Dense(second_layer_width, W_std, b_std, parameterization=parameterization), act(), stax.Dropout(keep_rate) ), stax.serial( Dense(first_layer_width, W_std, b_std, parameterization=parameterization), act(), Dense(2 * second_layer_width, W_std, b_std, parameterization=parameterization), act(), stax.Dropout(keep_rate) ), stax.serial( Dense(first_layer_width, W_std, b_std, parameterization=parameterization), act(), Dense(3 * second_layer_width, W_std, b_std, parameterization=parameterization), act(), stax.Dropout(keep_rate) ), stax.serial( Dense(first_layer_width, W_std, b_std, parameterization=parameterization), act(), Dense(4 * second_layer_width, W_std, b_std, parameterization=parameterization), act(), stax.Dropout(keep_rate) ), stax.serial( Dense(first_layer_width, W_std, b_std, parameterization=parameterization), act(), Dense(5 * second_layer_width, W_std, b_std, parameterization=parameterization), act(), stax.Dropout(keep_rate) ), stax.serial( Dense(first_layer_width, W_std, b_std, parameterization=parameterization), act(), Dense(6 * second_layer_width, W_std, b_std, parameterization=parameterization), act(), stax.Dropout(keep_rate) ), stax.serial( Dense(first_layer_width, W_std, b_std, parameterization=parameterization), act(), Dense(7 * second_layer_width, W_std, b_std, parameterization=parameterization), act(), stax.Dropout(keep_rate) ), stax.serial( Dense(first_layer_width, W_std, b_std, parameterization=parameterization), act(), Dense(8 * second_layer_width, W_std, b_std, parameterization=parameterization), act(), stax.Dropout(keep_rate) ), stax.serial( Dense(first_layer_width, W_std, b_std, parameterization=parameterization), act(), Dense(9 * second_layer_width, W_std, b_std, parameterization=parameterization), act(), stax.Dropout(keep_rate) ), stax.serial( Dense(first_layer_width, W_std, b_std, parameterization=parameterization), act(), Dense(10 * second_layer_width, W_std, b_std, parameterization=parameterization), act(), stax.Dropout(keep_rate) ) ), stax.FanInConcat() ) Additive = stax.serial( stax.FanOut(2), stax.parallel( stax.serial( CSB, stax.Dropout(keep_rate) ), stax.serial( CSB, stax.Dropout(keep_rate) ) ), stax.FanInConcat() ) init_fn, apply_fn, kernel_fn = stax.serial( Additive, Dense(1, W_std, b_std, parameterization=parameterization) ) apply_fn = jit(apply_fn) return init_fn, apply_fn, kernel_fn
def test_fan_in_conv(self, same_inputs, axis, n_branches, get, branch_in, readout): if xla_bridge.get_backend().platform == 'cpu': raise jtu.SkipTest('Not running CNNs on CPU to save time.') if axis in (None, 0, 1, 2) and branch_in == 'dense_after_branch_in': raise jtu.SkipTest('`FanInSum` and `FanInConcat(0/1/2)` ' 'require `is_gaussian`.') if axis == 3 and branch_in == 'dense_before_branch_in': raise jtu.SkipTest('`FanInConcat` on feature axis requires a dense layer ' 'after concatenation.') key = random.PRNGKey(1) X0_1 = random.normal(key, (2, 5, 6, 3)) X0_2 = None if same_inputs else random.normal(key, (3, 5, 6, 3)) if xla_bridge.get_backend().platform == 'tpu': width = 2048 n_samples = 1024 tol = 0.02 else: width = 1024 n_samples = 512 tol = 0.01 conv = stax.Conv(out_chan=width, filter_shape=(3, 3), padding='SAME', W_std=1.25, b_std=0.1) input_layers = [conv, stax.FanOut(n_branches)] branches = [] for b in range(n_branches): branch_layers = [FanInTest._get_phi(b)] for i in range(b): branch_layers += [ stax.Conv( out_chan=width, filter_shape=(i + 1, 4 - i), padding='SAME', W_std=1.25 + i, b_std=0.1 + i), FanInTest._get_phi(i)] if branch_in == 'dense_before_branch_in': branch_layers += [conv] branches += [stax.serial(*branch_layers)] output_layers = [ stax.FanInSum() if axis is None else stax.FanInConcat(axis), stax.Relu(), stax.GlobalAvgPool() if readout == 'pool' else stax.Flatten() ] if branch_in == 'dense_after_branch_in': output_layers.insert(1, conv) nn = stax.serial(*(input_layers + [stax.parallel(*branches)] + output_layers)) init_fn, apply_fn, kernel_fn = stax.serial( nn, stax.Dense(1 if get == 'ntk' else width, 1.25, 0.5)) kernel_fn_mc = monte_carlo.monte_carlo_kernel_fn( init_fn, apply_fn, key, n_samples, device_count=0 if axis in (0, -4) else -1) exact = kernel_fn(X0_1, X0_2, get=get) empirical = kernel_fn_mc(X0_1, X0_2, get=get) empirical = empirical.reshape(exact.shape) utils.assert_close_matrices(self, empirical, exact, tol)
def test_fan_in_fc(self, same_inputs, axis, n_branches, get, branch_in): if axis in (None, 0) and branch_in == 'dense_after_branch_in': raise jtu.SkipTest('`FanInSum` and `FanInConcat(0)` ' 'require `is_gaussian`.') if axis == 1 and branch_in == 'dense_before_branch_in': raise jtu.SkipTest('`FanInConcat` on feature axis requires a dense layer' 'after concatenation.') key = random.PRNGKey(1) X0_1 = random.normal(key, (10, 20)) X0_2 = None if same_inputs else random.normal(key, (8, 20)) if xla_bridge.get_backend().platform == 'tpu': width = 2048 n_samples = 1024 tol = 0.02 else: width = 1024 n_samples = 256 tol = 0.01 dense = stax.Dense(width, 1.25, 0.1) input_layers = [dense, stax.FanOut(n_branches)] branches = [] for b in range(n_branches): branch_layers = [FanInTest._get_phi(b)] for i in range(b): branch_layers += [ stax.Dense(width, 1. + 2 * i, 0.5 + i), FanInTest._get_phi(i)] if branch_in == 'dense_before_branch_in': branch_layers += [dense] branches += [stax.serial(*branch_layers)] output_layers = [ stax.FanInSum() if axis is None else stax.FanInConcat(axis), stax.Relu() ] if branch_in == 'dense_after_branch_in': output_layers.insert(1, dense) nn = stax.serial(*(input_layers + [stax.parallel(*branches)] + output_layers)) if get == 'nngp': init_fn, apply_fn, kernel_fn = nn elif get == 'ntk': init_fn, apply_fn, kernel_fn = stax.serial(nn, stax.Dense(1, 1.25, 0.5)) else: raise ValueError(get) kernel_fn_mc = monte_carlo.monte_carlo_kernel_fn( init_fn, apply_fn, key, n_samples, device_count=0) exact = kernel_fn(X0_1, X0_2, get=get) empirical = kernel_fn_mc(X0_1, X0_2, get=get) empirical = empirical.reshape(exact.shape) utils.assert_close_matrices(self, empirical, exact, tol)