示例#1
0
    def dense_residual_block(self, model_layer, name):
        with tf.name_scope('dense_residual_block') as scope:
            last_layer = self.last_layer

            if 'function' in model_layer:
                activation = model_layer['function']
            else:
                activation = 'relu'

            # original residual unit
            shape = self.network[last_layer].get_output_shape()
            num_units = shape[-1].value

            self.network[name + '_1resid'] = layers.DenseLayer(
                self.network[last_layer],
                num_units=num_units,
                b=None,
                **self.seed)
            self.network[name + '_1resid_norm'] = layers.BatchNormLayer(
                self.network[name + '_1resid'],
                self.placeholders['is_training'])
            self.network[name + '_1resid_active'] = layers.ActivationLayer(
                self.network[name + '_1resid_norm'], function=activation)

            if 'dropout_block' in model_layer:
                placeholder_name = 'keep_prob_' + str(self.num_dropout)
                self.placeholders[placeholder_name] = tf.placeholder(
                    tf.float32, name=placeholder_name)
                self.feed_dict[
                    placeholder_name] = 1 - model_layer['dropout_block']
                self.num_dropout += 1
                self.network[name + '_dropout1'] = layers.DropoutLayer(
                    self.network[name + '_1resid_active'],
                    keep_prob=self.placeholders[placeholder_name])
                lastname = name + '_dropout1'
            else:
                lastname = name + '_1resid_active'

            self.network[name + '_2resid'] = layers.DenseLayer(
                self.network[lastname],
                num_units=num_units,
                b=None,
                **self.seed)
            self.network[name + '_2resid_norm'] = layers.BatchNormLayer(
                self.network[name + '_2resid'],
                self.placeholders['is_training'])
            self.network[name + '_resid_sum'] = layers.ElementwiseSumLayer([
                self.network[last_layer], self.network[name + '_2resid_norm']
            ])
            self.network[name + '_resid'] = layers.ActivationLayer(
                self.network[name + '_resid_sum'], function=activation)
            self.last_layer = name + '_resid'
示例#2
0
	def conv2d_residual_block(self, model_layer, name):

		last_layer = self.last_layer
		filter_size = model_layer['filter_size']
		if 'function' in model_layer:
			activation = model_layer['function']
		else:
			activation = 'relu'

		# original residual unit
		shape = self.network[last_layer].get_output_shape()
		num_filters = shape[-1].value

		if not isinstance(filter_size, (list, tuple)):
			filter_size = (filter_size, filter_size)

		if 'W' not in model_layer.keys():
			W = init.HeUniform(**self.seed)
		else:
			W = model_layer['W']

		self.network[name+'_1resid'] = layers.Conv2DLayer(self.network[last_layer], num_filters=num_filters,
											  filter_size=filter_size,
											  W=W,
											  padding='SAME')
		self.network[name+'_1resid_norm'] = layers.BatchNormLayer(self.network[name+'_1resid'], self.placeholders['is_training'])
		self.network[name+'_1resid_active'] = layers.ActivationLayer(self.network[name+'_1resid_norm'], function=activation)


		if 'dropout_block' in model_layer:
			placeholder_name = 'keep_prob_'+str(self.num_dropout)
			self.placeholders[placeholder_name] = tf.placeholder(tf.float32, name=placeholder_name)
			self.feed_dict[placeholder_name] = 1-model_layer['dropout_block']
			self.num_dropout += 1
			self.network[name+'_dropout1'] = layers.DropoutLayer(self.network[name+'_1resid_active'], keep_prob=self.placeholders[placeholder_name])
			lastname = name+'_dropout1'
		else:
			lastname = name+'_1resid_active'

		self.network[name+'_2resid'] = layers.Conv2DLayer(self.network[lastname], num_filters=num_filters,
												  filter_size=filter_size,
												  W=W,
												  padding='SAME')
		self.network[name+'_2resid_norm'] = layers.BatchNormLayer(self.network[name+'_2resid'], self.placeholders['is_training'])
		self.network[name+'_resid_sum'] = layers.ElementwiseSumLayer([self.network[last_layer], self.network[name+'_2resid_norm']])
		self.network[name+'_resid'] = layers.ActivationLayer(self.network[name+'_resid_sum'], function=activation)
		self.last_layer = name+'_resid'