def test_add_method(): model = Sequential() model.add(Dense(n_nodes=32, n_inputs=45)) model.build() with pytest.raises(Exception): model.add(Dense(n_nodes=32, n_inputs=45))
from neuralpy.models import Sequential from neuralpy.layers.convolutional import Conv2D from neuralpy.layers.linear import Dense from neuralpy.layers.other import Flatten from neuralpy.layers.activation_functions import ReLU, Softmax from neuralpy.loss_functions import CrossEntropyLoss from neuralpy.optimizer import SGD import torch import torchvision from torchvision import datasets, transforms # Create a Sequential model Instance model = Sequential() #Build your network model.add(Conv2D(input_shape=(1, 28, 28), filters=128, kernel_size=3)) model.add(ReLU()) model.add(Conv2D(filters=64, kernel_size=3)) model.add(ReLU()) model.add(Conv2D(filters=32, kernel_size=3)) model.add(ReLU()) model.add(Flatten()) model.add(Dense(n_nodes=10)) model.build() model.compile(optimizer=SGD(), loss_function=CrossEntropyLoss(), metrics=["accuracy"]) print(model.summary()) #Get the MNIST dataset
# Random seed for numpy np.random.seed(1969) # Generating the data X_train = np.random.rand(100, 1) * 10 y_train = X_train + 5 *np.random.rand(100, 1) X_validation = np.random.rand(100, 1) * 10 y_validation = X_validation + 5 * np.random.rand(100, 1) X_test = np.random.rand(10, 1) * 10 y_test = X_test + 5 * np.random.rand(10, 1) # Making the model model = Sequential() model.add(Dense(n_nodes=1, n_inputs=1)) # Building the model model.build() # Compiling the model model.compile(optimizer=Adam(), loss_function=MSELoss()) # Printing model summary model.summary() # Training the model history = model.fit(train_data=(X_train, y_train), validation_data=(X_validation, y_validation), epochs=300, batch_size=4) # Predicting some values
# Dependencies from neuralpy.models import Sequential from neuralpy.layers import Dense from neuralpy.regularizers import Dropout from neuralpy.activation_functions import ReLU from neuralpy.loss_functions import CrossEntropyLoss from neuralpy.optimizer import Adam import pandas as pd import numpy as np # Model model = Sequential() model.add(Dense(n_nodes=64, n_inputs=784)) model.add(ReLU()) model.add(Dropout()) model.add(Dense(n_nodes=10)) model.build() model.compile(optimizer=Adam(learning_rate=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.0, amsgrad=False), loss_function=CrossEntropyLoss(), metrics=["accuracy"])
import pytest import numpy as np np.random.seed(1969) X_train = np.random.rand(100, 1) * 10 y_train = X_train + 5 * np.random.rand(100, 1) X_validation = np.random.rand(100, 1) * 10 y_validation = X_validation + 5 * np.random.rand(100, 1) X_test = np.random.rand(10, 1) * 10 y_test = X_test + 5 * np.random.rand(10, 1) model = Sequential() model.add(Dense(n_nodes=1, n_inputs=1)) model.build() pytorch_model = model.get_model() def train_generator(): for i in range(40): X_train = np.random.rand(40, 1) * 10 y_train = X_train + 5 * np.random.rand(40, 1) yield X_train, y_train
from neuralpy.models import Sequential from neuralpy.layers.linear import Dense from neuralpy.layers.convolutional import Conv2D from neuralpy.layers.activation_functions import ReLU,Softmax from neuralpy.layers.pooling import MaxPool2D from neuralpy.layers.other import Flatten from neuralpy.loss_functions import CrossEntropyLoss from neuralpy.optimizer import SGD,Adam import torch import torchvision.datasets as datasets import torchvision.transforms as transforms # Create a Sequential model Instance model = Sequential() model.add(Conv2D(input_shape=(1,224,224), filters=96, kernel_size=11, stride=4)) model.add(ReLU()) model.add(MaxPool2D(kernel_size=3, stride=2)) model.add(ReLU()) model.add(Conv2D(filters=256, kernel_size=5, stride=1, padding=2)) model.add(ReLU()) model.add(MaxPool2D(kernel_size=3, stride=2)) model.add(ReLU()) model.add(Conv2D(filters=384, kernel_size=3, stride=1, padding=1)) model.add(ReLU()) model.add(Conv2D(filters=384, kernel_size=3, stride=1, padding=1)) model.add(ReLU()) model.add(Conv2D(filters=256, kernel_size=3, stride=1, padding=1)) model.add(ReLU()) model.add(MaxPool2D(kernel_size=3, stride=2))
# Dependencies from neuralpy.models import Sequential from neuralpy.layers.linear import Dense from neuralpy.layers.regularizers import Dropout from neuralpy.layers.activation_functions import ReLU from neuralpy.loss_functions import CrossEntropyLoss from neuralpy.optimizer import Adam import pandas as pd import numpy as np # Model model = Sequential() model.add(Dense(n_nodes=264, n_inputs=784)) model.add(ReLU()) model.add(Dropout()) model.add(Dense(n_nodes=10)) model.build() model.compile(optimizer=Adam(), loss_function=CrossEntropyLoss(), metrics=["accuracy"]) print(model.summary()) # Reading data train_data = pd.read_csv("./data/mnist_train.csv", header=None)
from neuralpy.models import Sequential from neuralpy.layers.linear import Dense from neuralpy.layers.activation_functions import ReLU from neuralpy.loss_functions import MSELoss from neuralpy.optimizer import Adam import numpy as np # Creating Model ''' This example will create an ann(Artifical Neural Network) for a 3 input XOR logic ''' model = Sequential() model.add(Dense(n_nodes=1, n_inputs=3)) model.add(ReLU()) model.add(Dense(n_nodes=2)) model.add(ReLU()) model.add(Dense(n_nodes=1)) model.add(ReLU()) # Building the Model model.build() # Compiling model.compile(optimizer=Adam(), loss_function=MSELoss(), metrics=["accuracy"]) print(model.summary()) # Data for XOR