def runKKFeaturesFromFiles(name, files, nProbes, featuresPerProbe, featuresTim, featuresMask ):
	"""run (as a simple script) all the steps necessary to prepare for running KK"""
	fetFeatures = []
	maskFeatures = {}
	fM = featuresMask.keys()
	for c in range(1, nProbes+1):
		for f in featuresPerProbe:
			fetFeatures.append(f + str(c))
		for f in fM:
			maskFeatures[f + str(c)] = featuresMask[f]
	fetFeatures.append('Time in File (1/10000 s)')
	fetFeatures = tuple(fetFeatures)
	print fetFeatures	
	featuresToCompute = []
	featuresToCompute.extend(fetFeatures)
	featuresToCompute.extend(featuresTim)
	
	

	#TODO add mean waveforms
	
	# create data file handler objects 
	spikeFiles = []
	if files[-3:] == 'smr':
		fileType = 'son'
	else:
		fileType = 'nlynx'
	
	if fileType == 'son':
		for fname in files:
			spikeFiles.append(sonIO.SONfile(fname))
	elif fileType == 'nlynx':
		for fname in files:
			spikeFiles.append(neuralynx_io.TTFile(fname))
	
	if fileType == 'son':
		adcMarkChans = spikeFiles[0].channelsOfKind('ADCMarkerChannel')
	elif fileType == 'nlynx':
		adcMarkChans = (0,)
		
	for chan in adcMarkChans:
		fname = name + ".peak.1" #principal components file name needed
		# by klusters
		spkname = name + ".spk.1" # spike waveform file, needed by
		# klusters
		parname = name + ".xml"
		timname = name + ".tim.1"
		if fileType == 'son':
			ttFiles = []
			for sp in spikeFiles:
				ttFiles.append(sonIO.TTFile(sp))
		else:
			ttFiles = spikeFiles
		computer = computeSpikeFeatures.FeatureComputer(ttFiles, spkname, params=None, interleave=120)
		computer.setMaskFromFeatures(maskFeatures)
		computer.computeFeatures(featuresToCompute)
		features = computer.computedFeatures
		computeSpikeFeatures.writeFetFile(fname, features, fetFeatures)
		computeSpikeFeatures.writeTimFile(timname, features)
		computeSpikeFeatures.makeXMLParFile(spikeFiles, parname, len(featuresPerProbe))
def getAvWaveform(files, clufile, clusterIdx, nProbes, features):
    """run (as a simple script) all the steps necessary to prepare for running KK"""

    featuresToCompute = []
    for c in range(1, nProbes + 1):
        for f in features:
            featuresToCompute.append(f + str(c))

    # create data file handler objects
    spikeFiles = []
    if files[0][-3:] == 'smr':
        fileType = 'son'
    elif files[0][-5:-2] == 'spk':
        fileType = 'klusters'
    else:
        fileType = 'nlynx'

    if fileType == 'son':
        for fname in files:
            spikeFiles.append(sonIO.SONfile(fname))
    elif fileType == 'nlynx':
        for fname in files:
            spikeFiles.append(neuralynx_io.TTFile(fname))
    elif fileType == 'klusters':
        print('klusters_io')
        for fname in files:
            spikeFiles.append(klusters_io.TTFile(fname))
    if fileType == 'son':
        adcMarkChans = spikeFiles[0].channelsOfKind('ADCMarkerChannel')
    elif fileType == 'nlynx':
        adcMarkChans = (0, )

    name = files[0][:-4]
    name = name + "_c_" + clusterIdx + 'wv.mat'
    print name
    outfh = pymatfile.pymatfile(name, 'w')
    if fileType == 'son':
        ttFiles = []
        for sp in spikeFiles:
            ttFiles.append(sonIO.TTFile(sp))
    else:
        ttFiles = spikeFiles
    print(ttFiles)
    computer = computeSpikeFeatures.FeatureComputer(ttFiles,
                                                    spkname=None,
                                                    params=None,
                                                    interleave=120)
    computer.setMaskFromCluFile(clufile, clusterIdx)
    computer.computeFeatures(featuresToCompute)
    features = computer.computedFeatures
    a = array([])
    for f in featuresToCompute:
        fg = reshape(features[f], (1, len(features[f])))
        if len(a):
            a = concatenate([a, fg], 0)
        else:
            a = fg
    outfh.writeItem(a, 'waveformstd')
    outfh.close()
示例#3
0
def runKKFeaturesFromFiles(name,
                           files,
                           nProbes,
                           featuresPerProbe,
                           featuresTim,
                           featuresMask,
                           featuresMat=None,
                           output='KK',
                           extFeatures=None,
                           realignPeaks=False,
                           shiftTimes=None,
                           startTime=None,
                           stopTime=None):
    """run (as a simple script) all the steps necessary to prepare for running KK"""
    fetFeatures = []
    maskFeatures = {}
    if featuresMask is not None:
        fM = featuresMask.keys()
    else:
        fM = []

    for c in range(1, nProbes + 1):
        for f in featuresPerProbe:
            fetFeatures.append(f + str(c))

    for f in fM:
        if f[-2:] == ': ':
            for c in range(1, nProbes + 1):
                maskFeatures[f + str(c)] = featuresMask[f]
        else:
            maskFeatures[f] = featuresMask[f]

    if output == 'KK':
        fetFeatures.append('Time (Klusters Units)')
    fetFeatures = tuple(fetFeatures)
    #	print fetFeatures
    featuresToCompute = []
    featuresToCompute.extend(fetFeatures)
    if output == 'KK':
        featuresToCompute.extend(featuresTim)

    #TODO add mean waveforms

    # create data file handler objects
    spikeFiles = []
    fileType = None
    if files[0][-3:] == 'smr':
        fileType = 'son'
    elif files[0][-3:] == 'ntt':
        fileType = 'nlynx'
    elif files[0][-3:] == 'spk':
        fileType = 'KK'
    if not fileType:
        raise ValueError('unrecognized file name ' + files)
    if fileType == 'son':
        for fname in files:
            spikeFiles.append(sonIO.SONfile(fname))
    elif fileType == 'nlynx':
        for fname in files:
            spikeFiles.append(neuralynx_io.TTFile(fname))
    elif fileType == 'KK':
        for fname in files:
            spikeFiles.append(klusters_io.TTfile(fname))

    if fileType == 'son':
        adcMarkChans = spikeFiles[0].channelsOfKind('ADCMarkerChannel')
    elif fileType == 'nlynx' or fileType == 'KK':
        adcMarkChans = (0, )

    for chan in adcMarkChans:
        spkname = None
        if output == 'KK':
            fname = name + ".fet.1"  #principal components file name needed
            # by klusters
            spkname = name + ".spk.1"  # spike waveform file, needed by
            # klusters
            parname = name + ".xml"
            timname = name + ".tim.1"
        elif output == 'mat':
            import pymatfile
            matFname = name + '_features.mat'
            matf = pymatfile.pymatfile(matFname, 'w')
        if fileType == 'son':
            ttFiles = []
            for sp in spikeFiles:
                ttFiles.append(sonIO.TTFile(sp))
        else:
            ttFiles = spikeFiles
        computer = computeSpikeFeatures.FeatureComputer(ttFiles,
                                                        spkname,
                                                        params=None,
                                                        interleave=120,
                                                        shiftTimes=shiftTimes,
                                                        startTime=startTime,
                                                        stopTime=stopTime)
        computer.setMaskFromFeatures(maskFeatures)
        computer.computeFeatures(featuresToCompute, realignPeaks)
        features = computer.computedFeatures
        if output == 'KK':
            computeSpikeFeatures.writeFetFile(fname, features, fetFeatures)
            computeSpikeFeatures.writeTimFile(timname, features)
            computeSpikeFeatures.makeXMLParFile(spikeFiles, parname,
                                                len(featuresPerProbe),
                                                extFeatures)
        elif output == 'mat':
            for key in fetFeatures:
                value = features[key]
                #				print shape(value)
                matVarname = re.sub(': ', '_', key)
                matVarname = re.sub(' ', '', matVarname)
                #				print matVarname
                matf.writeItem(value.astype(float64), matVarname)

            matf.close()