示例#1
0
def create_test_case_invalid_step_choosen():
    a_callback = TapeCallbackFunction()
    b_callback = TapeCallbackFunction()

    return NeuraxleTestCase(pipeline=Pipeline([
        ChooseOneOrManyStepsOf([
            ('a',
             TransformCallbackStep(a_callback,
                                   transform_function=lambda di: di * 2)),
            ('b',
             TransformCallbackStep(b_callback,
                                   transform_function=lambda di: di * 2))
        ]),
    ]),
                            callbacks=[a_callback, b_callback],
                            expected_callbacks_data=[DATA_INPUTS, DATA_INPUTS],
                            hyperparams={
                                'ChooseOneOrManyStepsOf__c__enabled': True,
                                'ChooseOneOrManyStepsOf__b__enabled': False
                            },
                            hyperparams_space={
                                'ChooseOneOrManyStepsOf__a__enabled':
                                Boolean(),
                                'ChooseOneOrManyStepsOf__b__enabled':
                                Boolean()
                            },
                            expected_processed_outputs=np.array(
                                [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]))
示例#2
0
def create_test_case_fit_multiple_steps_choosen():
    a_callback = TapeCallbackFunction()
    b_callback = TapeCallbackFunction()
    c_callback = TapeCallbackFunction()
    d_callback = TapeCallbackFunction()

    return NeuraxleTestCase(
        pipeline=Pipeline([
            ChooseOneOrManyStepsOf([
                ('a', FitTransformCallbackStep(a_callback, c_callback, transform_function=lambda di: di * 2)),
                ('b', FitTransformCallbackStep(b_callback, d_callback, transform_function=lambda di: di * 2))
            ]),
        ]),
        callbacks=[a_callback, c_callback, b_callback, d_callback],
        expected_callbacks_data=[
            [],
            (DATA_INPUTS, EXPECTED_OUTPUTS),
            [],
            (DATA_INPUTS, EXPECTED_OUTPUTS)
        ],
        hyperparams={
            'ChooseOneOrManyStepsOf__a__enabled': True,
            'ChooseOneOrManyStepsOf__b__enabled': True
        },
        hyperparams_space={
            'ChooseOneOrManyStepsOf__a__enabled': Boolean(),
            'ChooseOneOrManyStepsOf__b__enabled': Boolean()
        },
        expected_processed_outputs=np.array([0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18])
    )
示例#3
0
def test_model_stacking_fit_transform():
    model_stacking = Pipeline([
        ModelStacking(
            [
                SKLearnWrapper(
                    GradientBoostingRegressor(),
                    HyperparameterSpace({
                        "n_estimators": RandInt(50, 600),
                        "max_depth": RandInt(1, 10),
                        "learning_rate": LogUniform(0.07, 0.7)
                    })),
                SKLearnWrapper(
                    KMeans(),
                    HyperparameterSpace({"n_clusters": RandInt(5, 10)})),
            ],
            joiner=NumpyTranspose(),
            judge=SKLearnWrapper(
                Ridge(),
                HyperparameterSpace({
                    "alpha": LogUniform(0.7, 1.4),
                    "fit_intercept": Boolean()
                })),
        )
    ])
    expected_outputs_shape = (379, 1)
    data_inputs_shape = (379, 13)
    data_inputs = _create_data(data_inputs_shape)
    expected_outputs = _create_data(expected_outputs_shape)

    model_stacking, outputs = model_stacking.fit_transform(
        data_inputs, expected_outputs)

    assert outputs.shape == expected_outputs_shape
示例#4
0
 def __init__(self, brothers):
     super().__init__(brothers,
                      SKLearnWrapper(
                          Ridge(),
                          HyperparameterSpace({
                              "alpha": LogUniform(0.1, 10.0),
                              "fit_intercept": Boolean()
                          })),
                      joiner=NumpyTranspose())
示例#5
0
    def __init__(self, wrapped: BaseTransformer, enabled: bool = True, nullified_return_value=None,
                 cache_folder_when_no_handle=None, use_hyperparameter_space=True, nullify_hyperparams=True):
        hyperparameter_space = HyperparameterSpace({
            OPTIONAL_ENABLED_HYPERPARAM: Boolean()
        }) if use_hyperparameter_space else {}

        MetaStep.__init__(
            self,
            hyperparams=HyperparameterSamples({
                OPTIONAL_ENABLED_HYPERPARAM: enabled
            }),
            hyperparams_space=hyperparameter_space,
            wrapped=wrapped
        )
        ForceHandleOnlyMixin.__init__(self, cache_folder_when_no_handle)

        if nullified_return_value is None:
            nullified_return_value = []
        self.nullified_return_value = nullified_return_value
        self.nullify_hyperparams = nullify_hyperparams
from neuraxle.base import MetaStepMixin, BaseStep, NonFittableMixin, NonTransformableMixin
from neuraxle.hyperparams.distributions import RandInt, Boolean
from neuraxle.hyperparams.space import HyperparameterSpace, HyperparameterSamples
from neuraxle.steps.loop import StepClonerForEachDataInput
from testing.test_pipeline import SomeStep

SOME_STEP_HP_KEY = 'somestep_hyperparam'
RAND_INT_SOME_STEP = RandInt(-10, 0)
RAND_INT_STEP_CLONER = RandInt(0, 10)

META_STEP_HP = 'metastep_hyperparam'
SOME_STEP_HP = "SomeStep__somestep_hyperparam"
META_STEP_HP_VALUE = 1
SOME_STEP_HP_VALUE = 2

HYPE_SPACE = HyperparameterSpace({"a__test": Boolean()})

HYPE_SAMPLE = HyperparameterSamples({"a__test": True})


class SomeMetaStepMixin(NonTransformableMixin, NonFittableMixin, MetaStepMixin,
                        BaseStep):
    pass


class SomeStepInverseTransform(SomeStep):
    def fit_transform(self, data_inputs, expected_outputs=None):
        return self, 'fit_transform'

    def inverse_transform(self, processed_outputs):
        return 'inverse_transform'
            SKLearnWrapper(
                GradientBoostingRegressor(),
                HyperparameterSpace({
                    "n_estimators": RandInt(50, 600),
                    "max_depth": RandInt(1, 10),
                    "learning_rate": LogUniform(0.07, 0.7)
                })),
            SKLearnWrapper(
                KMeans(), HyperparameterSpace({"n_clusters": RandInt(5, 10)})),
        ],
        joiner=NumpyTranspose(),
        judge=SKLearnWrapper(
            Ridge(),
            HyperparameterSpace({
                "alpha": LogUniform(0.7, 1.4),
                "fit_intercept": Boolean()
            })),
    )
])

print("Meta-fitting on train:")
p = p.meta_fit(X_train,
               y_train,
               metastep=RandomSearch(n_iter=10,
                                     higher_score_is_better=True,
                                     validation_technique=KFoldCrossValidation(
                                         scoring_function=r2_score,
                                         k_fold=10)))
# Here is an alternative way to do it, more "pipeliney":
# p = RandomSearch(
#     n_iter=15,
示例#8
0
def main():
    boston = load_boston()
    X, y = shuffle(boston.data, boston.target, random_state=13)
    X = X.astype(np.float32)
    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=0.25,
                                                        shuffle=False)

    # Note that the hyperparameter spaces are defined here during the pipeline definition, but it could be already set
    # within the classes ar their definition if using custom classes, or also it could be defined after declaring the
    # pipeline using a flat dict or a nested dict.

    p = Pipeline([
        AddFeatures([
            SKLearnWrapper(
                PCA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})),
            SKLearnWrapper(
                FastICA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})),
        ]),
        ModelStacking(
            [
                SKLearnWrapper(
                    GradientBoostingRegressor(),
                    HyperparameterSpace({
                        "n_estimators": RandInt(50, 600),
                        "max_depth": RandInt(1, 10),
                        "learning_rate": LogUniform(0.07, 0.7)
                    })),
                SKLearnWrapper(
                    KMeans(),
                    HyperparameterSpace({"n_clusters": RandInt(5, 10)})),
            ],
            joiner=NumpyTranspose(),
            judge=SKLearnWrapper(
                Ridge(),
                HyperparameterSpace({
                    "alpha": LogUniform(0.7, 1.4),
                    "fit_intercept": Boolean()
                })),
        )
    ])
    print("Meta-fitting on train:")
    p = p.meta_fit(X_train,
                   y_train,
                   metastep=RandomSearch(
                       n_iter=10,
                       higher_score_is_better=True,
                       validation_technique=KFoldCrossValidationWrapper(
                           scoring_function=r2_score, k_fold=10)))
    # Here is an alternative way to do it, more "pipeliney":
    # p = RandomSearch(
    #     p,
    #     n_iter=15,
    #     higher_score_is_better=True,
    #     validation_technique=KFoldCrossValidation(scoring_function=r2_score, k_fold=3)
    # ).fit(X_train, y_train)

    print("")

    print("Transforming train and test:")
    y_train_predicted = p.predict(X_train)
    y_test_predicted = p.predict(X_test)

    print("")

    print("Evaluating transformed train:")
    score_transform = r2_score(y_train_predicted, y_train)
    print('R2 regression score:', score_transform)

    print("")

    print("Evaluating transformed test:")
    score_test = r2_score(y_test_predicted, y_test)
    print('R2 regression score:', score_test)
示例#9
0
def main():
    # Define classification models, and hyperparams.
    # See also HyperparameterSpace documentation : https://www.neuraxle.org/stable/api/neuraxle.hyperparams.space.html#neuraxle.hyperparams.space.HyperparameterSpace

    decision_tree_classifier = SKLearnWrapper(
        DecisionTreeClassifier(),
        HyperparameterSpace({
            'criterion': Choice(['gini', 'entropy']),
            'splitter': Choice(['best', 'random']),
            'min_samples_leaf': RandInt(2, 5),
            'min_samples_split': RandInt(2, 4)
        }))

    extra_tree_classifier = SKLearnWrapper(
        ExtraTreeClassifier(),
        HyperparameterSpace({
            'criterion': Choice(['gini', 'entropy']),
            'splitter': Choice(['best', 'random']),
            'min_samples_leaf': RandInt(2, 5),
            'min_samples_split': RandInt(2, 4)
        }))

    ridge_classifier = Pipeline([
        OutputTransformerWrapper(NumpyRavel()),
        SKLearnWrapper(
            RidgeClassifier(),
            HyperparameterSpace({
                'alpha': Choice([0.0, 1.0, 10.0, 100.0]),
                'fit_intercept': Boolean(),
                'normalize': Boolean()
            }))
    ]).set_name('RidgeClassifier')

    logistic_regression = Pipeline([
        OutputTransformerWrapper(NumpyRavel()),
        SKLearnWrapper(
            LogisticRegression(),
            HyperparameterSpace({
                'C': LogUniform(0.01, 10.0),
                'fit_intercept': Boolean(),
                'penalty': Choice(['none', 'l2']),
                'max_iter': RandInt(20, 200)
            }))
    ]).set_name('LogisticRegression')

    random_forest_classifier = Pipeline([
        OutputTransformerWrapper(NumpyRavel()),
        SKLearnWrapper(
            RandomForestClassifier(),
            HyperparameterSpace({
                'n_estimators': RandInt(50, 600),
                'criterion': Choice(['gini', 'entropy']),
                'min_samples_leaf': RandInt(2, 5),
                'min_samples_split': RandInt(2, 4),
                'bootstrap': Boolean()
            }))
    ]).set_name('RandomForestClassifier')

    # Define a classification pipeline that lets the AutoML loop choose one of the classifier.
    # See also ChooseOneStepOf documentation : https://www.neuraxle.org/stable/api/neuraxle.steps.flow.html#neuraxle.steps.flow.ChooseOneStepOf

    pipeline = Pipeline([
        ChooseOneStepOf([
            decision_tree_classifier, extra_tree_classifier, ridge_classifier,
            logistic_regression, random_forest_classifier
        ])
    ])

    # Create the AutoML loop object.
    # See also AutoML documentation : https://www.neuraxle.org/stable/api/neuraxle.metaopt.auto_ml.html#neuraxle.metaopt.auto_ml.AutoML

    auto_ml = AutoML(
        pipeline=pipeline,
        hyperparams_optimizer=RandomSearchHyperparameterSelectionStrategy(),
        validation_splitter=ValidationSplitter(test_size=0.20),
        scoring_callback=ScoringCallback(accuracy_score,
                                         higher_score_is_better=True),
        n_trials=7,
        epochs=1,
        hyperparams_repository=HyperparamsJSONRepository(cache_folder='cache'),
        refit_trial=True,
        continue_loop_on_error=False)

    # Load data, and launch AutoML loop !

    X_train, y_train, X_test, y_test = generate_classification_data()
    auto_ml = auto_ml.fit(X_train, y_train)

    # Get the model from the best trial, and make predictions using predict.
    # See also predict documentation : https://www.neuraxle.org/stable/api/neuraxle.base.html#neuraxle.base.BaseStep.predict

    best_pipeline = auto_ml.get_best_model()
    y_pred = best_pipeline.predict(X_test)

    accuracy = accuracy_score(y_true=y_test, y_pred=y_pred)
    print("Test accuracy score:", accuracy)

    shutil.rmtree('cache')
示例#10
0
HYPERPARAMETERS_SPACE = HyperparameterSpace({
    'learning_rate':
    LogUniform(0.0001, 0.1),
    'l2_weight_reg':
    LogUniform(0.0001, 0.1),
    'momentum':
    LogUniform(0.01, 1.0),
    'hidden_size':
    Quantized(LogUniform(16, 512)),
    'num_layers':
    RandInt(1, 4),
    'num_lstm_layers':
    RandInt(1, 2),
    'use_xavier_init':
    Boolean(),
    'use_max_pool_else_avg_pool':
    Boolean(),
    'dropout_drop_proba':
    LogUniform(0.3, 0.7)
})

HYPERPARAMETERS = HyperparameterSamples({
    'learning_rate': 0.1,
    'l2_weight_reg': 0.001,
    'hidden_size': 32,
    'num_layers': 3,
    'num_lstm_layers': 1,
    'use_xavier_init': True,
    'use_max_pool_else_avg_pool': True,
    'dropout_drop_proba': 0.5,
示例#11
0
from neuraxle.hyperparams.distributions import RandInt, Boolean
from neuraxle.hyperparams.space import HyperparameterSpace, HyperparameterSamples
from neuraxle.steps.loop import StepClonerForEachDataInput
from testing.test_pipeline import SomeStep

SOME_STEP_HP_KEY = 'somestep_hyperparam'
RAND_INT_SOME_STEP = RandInt(-10, 0)
RAND_INT_STEP_CLONER = RandInt(0, 10)

META_STEP_HP = 'metastep_hyperparam'
SOME_STEP_HP = "SomeStep__somestep_hyperparam"
META_STEP_HP_VALUE = 1
SOME_STEP_HP_VALUE = 2

HYPE_SPACE = HyperparameterSpace({
    "a__test": Boolean()
})

HYPE_SAMPLE = HyperparameterSamples({
    "a__test": True
})


class SomeMetaStepMixin(NonTransformableMixin, NonFittableMixin, MetaStepMixin, BaseStep):
    pass


class SomeStepInverseTransform(SomeStep):
    def fit_transform(self, data_inputs, expected_outputs=None):
        return self, 'fit_transform'
示例#12
0
def main(tmpdir):
    boston = load_boston()
    X, y = shuffle(boston.data, boston.target, random_state=13)
    X = X.astype(np.float32)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, shuffle=False)

    # Note that the hyperparameter spaces are defined here during the pipeline definition, but it could be already set
    # within the classes ar their definition if using custom classes, or also it could be defined after declaring the
    # pipeline using a flat dict or a nested dict.

    p = Pipeline([
        AddFeatures([
            SKLearnWrapper(
                PCA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})
            ),
            SKLearnWrapper(
                FastICA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})
            ),
        ]),
        ModelStacking([
            SKLearnWrapper(
                GradientBoostingRegressor(),
                HyperparameterSpace({
                    "n_estimators": RandInt(50, 300), "max_depth": RandInt(1, 4),
                    "learning_rate": LogUniform(0.07, 0.7)
                })
            ),
            SKLearnWrapper(
                KMeans(),
                HyperparameterSpace({"n_clusters": RandInt(5, 10)})
            ),
        ],
            joiner=NumpyTranspose(),
            judge=SKLearnWrapper(
                Ridge(),
                HyperparameterSpace({"alpha": LogUniform(0.7, 1.4), "fit_intercept": Boolean()})
            ),
        )
    ])

    print("Meta-fitting on train:")
    auto_ml = AutoML(
        p,
        validation_splitter=ValidationSplitter(0.20),
        refit_trial=True,
        n_trials=10,
        epochs=1,  # 1 epoc here due to using sklearn models that just fit once.
        cache_folder_when_no_handle=str(tmpdir),
        scoring_callback=ScoringCallback(mean_squared_error, higher_score_is_better=False),
        callbacks=[MetricCallback('mse', metric_function=mean_squared_error, higher_score_is_better=False)],
        hyperparams_repository=InMemoryHyperparamsRepository(cache_folder=str(tmpdir))
    )

    random_search = auto_ml.fit(X_train, y_train)
    p = random_search.get_best_model()
    print("")

    print("Transforming train and test:")
    y_train_predicted = p.predict(X_train)
    y_test_predicted = p.predict(X_test)

    print("")

    print("Evaluating transformed train:")
    score_transform = r2_score(y_train_predicted, y_train)
    print('R2 regression score:', score_transform)

    print("")

    print("Evaluating transformed test:")
    score_test = r2_score(y_test_predicted, y_test)
    print('R2 regression score:', score_test)
示例#13
0
def test_deep_learning_pipeline():
    # Given
    boston = load_boston()
    data_inputs, expected_outputs = shuffle(boston.data,
                                            boston.target,
                                            random_state=13)
    expected_outputs = expected_outputs.astype(np.float32)
    data_inputs = data_inputs.astype(np.float32)

    pipeline = Pipeline([
        AddFeatures([
            SKLearnWrapper(
                PCA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})),
            SKLearnWrapper(
                FastICA(n_components=2),
                HyperparameterSpace({"n_components": RandInt(1, 3)})),
        ]),
        ModelStacking(
            [
                SKLearnWrapper(
                    GradientBoostingRegressor(),
                    HyperparameterSpace({
                        "n_estimators": RandInt(50, 600),
                        "max_depth": RandInt(1, 10),
                        "learning_rate": LogUniform(0.07, 0.7)
                    })),
                SKLearnWrapper(
                    KMeans(n_clusters=7),
                    HyperparameterSpace({"n_clusters": RandInt(5, 10)})),
            ],
            joiner=NumpyTranspose(),
            judge=SKLearnWrapper(
                Ridge(),
                HyperparameterSpace({
                    "alpha": LogUniform(0.7, 1.4),
                    "fit_intercept": Boolean()
                })),
        )
    ])

    p = DeepLearningPipeline(
        pipeline,
        validation_size=VALIDATION_SIZE,
        batch_size=BATCH_SIZE,
        batch_metrics={'mse': to_numpy_metric_wrapper(mean_squared_error)},
        shuffle_in_each_epoch_at_train=True,
        n_epochs=N_EPOCHS,
        epochs_metrics={'mse': to_numpy_metric_wrapper(mean_squared_error)},
        scoring_function=to_numpy_metric_wrapper(mean_squared_error),
    )

    # When
    p, outputs = p.fit_transform(data_inputs, expected_outputs)

    # Then
    batch_mse_train = p.get_batch_metric_train('mse')
    epoch_mse_train = p.get_epoch_metric_train('mse')

    batch_mse_validation = p.get_batch_metric_validation('mse')
    epoch_mse_validation = p.get_epoch_metric_validation('mse')

    assert len(epoch_mse_train) == N_EPOCHS
    assert len(epoch_mse_validation) == N_EPOCHS

    expected_len_batch_mse_train = math.ceil(
        (len(data_inputs) / BATCH_SIZE) * (1 - VALIDATION_SIZE)) * N_EPOCHS
    expected_len_batch_mse_validation = math.ceil(
        (len(data_inputs) / BATCH_SIZE) * VALIDATION_SIZE) * N_EPOCHS

    assert len(batch_mse_train) == expected_len_batch_mse_train
    assert len(batch_mse_validation) == expected_len_batch_mse_validation

    last_batch_mse_validation = batch_mse_validation[-1]
    last_batch_mse_train = batch_mse_train[-1]

    last_epoch_mse_train = epoch_mse_train[-1]
    last_epoch_mse_validation = epoch_mse_validation[-1]

    assert last_batch_mse_train < last_batch_mse_validation
    assert last_epoch_mse_train < last_epoch_mse_validation
    assert last_batch_mse_train < 1
    assert last_epoch_mse_train < 1