import numpy as np cycles = 5000 # try cycles=10 for testing and cycles=5000 for real applications sims = 10 exercise = 'part4' # change this for each exercise # define the experiment EXP = experiment( TR=2, duration=300, P=[1.0 / 5.0, 1.0 / 5.0, 1.0 / 5.0, 1.0 / 5.0, 1.0 / 5.0], C=[[1.0, -1.0, 0, 0, 0], [0, 0, 1.0, -1.0, 0], [1.0, 1.0, -1.0, -1.0, 0]], n_stimuli=5, rho=0.3, resolution=0.1, stim_duration=1, ITImodel='exponential', ITImin=1, ITImean=2, ITImax=5, confoundorder=3, # this cannot be 0 hardprob=True, ) # optimize the design for detection efficiency only using GA POP_GA = optimisation(experiment=EXP, weights=[0, 0.5, 0.5, 0], preruncycles=2, cycles=cycles, seed=1, outdes=5,
import numpy as np cycles = 5000 # try cycles=10 for testing and cycles=5000 for real applications sims = 10 exercise = 'part1' # change this for each exercise # define the experiment EXP = experiment( TR=2, duration=300, P = [.5, .5], C = [[1.0, -1.0]], n_stimuli = 2, rho = 0.3, resolution=0.1, stim_duration=1, ITImodel = 'exponential', ITImin = 1, ITImean = 4, ITImax=30, confoundorder=1, # this cannot be 0 hardprob=True, ) # optimize the design for detection efficiency only using GA POP_GA = optimisation( experiment=EXP, weights=[0,1,0,0], preruncycles = 2, cycles = cycles, seed=1,
import neurodesign EXP = neurodesign.experiment(TR=1.2, n_trials=20, P=[0.3, 0.3, 0.4], C=[[1, -1, 0], [0, 1, -1]], n_stimuli=3, rho=0.3, stim_duration=1, ITImodel="uniform", ITImin=2, ITImax=4) DES1 = neurodesign.design( order=[0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1], ITI=[2] * 20, experiment=EXP) DES1.designmatrix() DES1.FCalc(weights=[0.25, 0.25, 0.25, 0.25]) import matplotlib.pyplot as plt plt.plot(DES1.Xconv) plt.savefig("output/example_figure_1.pdf", format="pdf") DES2 = neurodesign.design( order=[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], ITI=[2] * 20, experiment=EXP)
# ## Optimise designs # First we define the experiment. We will optimise an experiment with a TR of 2 seconds and 250 trials of 0.5 seconds each. There are 4 stimulus types, and we are interested in the shared effect of the first and second stimulus versus baseline, as well as the difference between the first and the fourth stimulus. We assume an autoregressive temporal autocorrelation of 0.3. # # We sample ITI's from a truncated exponential distribution with minimum 0.3 seconds and maximum 4 seconds, and the mean is 1 second. # In[2]: # define the experiment EXP = experiment(TR=2, n_trials=450, P=[0.25, 0.25, 0.25], C=[[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, -1]], n_stimuli=3, rho=0.3, resolution=0.1, stim_duration=1, ITImodel="exponential", ITImin=0.3, ITImean=1, ITImax=4) # In[3]: POP_Max = optimisation(experiment=EXP, weights=[0, 0.5, 0.25, 0.25], preruncycles=cycles, cycles=2, optimisation='GA') POP_Max.optimise()
import neurodesign from neurodesign import generate import numpy as np # define experimental setup EXP = neurodesign.experiment(TR=2, n_trials=20, P=[0.3, 0.3, 0.4], C=[[1, -1, 0], [0, 1, -1]], n_stimuli=3, rho=0.3, stim_duration=1, t_pre=0.5, t_post=2, ITImodel="exponential", ITImin=2, ITImax=4, ITImean=2.1) # define first design with a fixed ITI DES = neurodesign.design( order=[0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1], ITI=[2] * 20, experiment=EXP) # expand to design matrix DES.designmatrix() DES.FCalc(weights=[0, 0.5, 0.25, 0.25])
from neurodesign import experiment, optimisation, generate,msequence,report EXP = experiment( TR=2, n_trials=100, P = [0.33,0.33,0.33], C = [[1,0,0],[0,1,0],[0,0,1],[1,-1,0],[0,1,-1]], n_stimuli = 3, rho = 0.3, resolution=0.1, stim_duration=1, t_pre = 0, t_post = 2, restnum=0, restdur=0, ITImodel = "exponential", ITImin = 1, ITImean = 2, ITImax=4 ) POP = optimisation( experiment=EXP, weights=[0,0.5,0.25,0.25], preruncycles = 10, cycles = 10, seed=1, outdes=5, folder='/Users/Joke/' )