# a beta cycle with a sharp trough. # # One thing to explore is how these results change by changing the random seed. # # Using more data and increasing the number of iterations helps the robustness of the algorithm. # ################################################################################################### # Define window length & minimum window spacing, both in seconds win_len = .055 win_spacing = .2 # Apply the sliding window matching algorithm to the time series avg_window, window_starts, J = sliding_window_matching(sig, fs, win_len, win_spacing, max_iterations=500) ################################################################################################### # Plot the discovered pattern plot_swm_pattern(avg_window) ################################################################################################### # # Sphinx settings: # sphinx_gallery_thumbnail_number = 2 #
# For our purposes, we will define the window length to be about 1 cycle of a beta oscillation, # which should help the algorithm to find the waveform shape of the neural oscillation. # ################################################################################################### # Define window length & minimum window spacing, both in seconds win_len = .055 win_spacing = .055 ################################################################################################### # Apply the sliding window matching algorithm to the time series windows, window_starts = sliding_window_matching(sig, fs, win_len, win_spacing, var_thresh=.5) ################################################################################################### # Examine the Results # ~~~~~~~~~~~~~~~~~~~ # # What we got back from the SWM function are the calculate average window, the list # of indices in the data of the windows, and the calculated costs for each iteration of # the algorithm run. # # In order to visualize the resulting pattern, we can use # :func:`~.plot_swm_pattern`. #