def sim_powerlaw(n_seconds, fs, exponent=-2.0, f_range=None, **filter_kwargs): """Simulate a power law time series, with a specified exponent. Parameters ---------- n_seconds : float Simulation time, in seconds. fs : float Sampling rate of simulated signal, in Hz. exponent : float, optional, default: -2 Desired power-law exponent, of the form P(f)=f^exponent. f_range : list of [float, float] or None, optional Frequency range to filter simulated data, as [f_lo, f_hi], in Hz. **filter_kwargs : kwargs, optional Keyword arguments to pass to `filter_signal`. Returns ------- sig: 1d array Time-series with the desired power law exponent. """ # Get the number of samples to simulate for the signal # If filter is to be filtered, with FIR, add extra to compensate for edges if f_range and filter_kwargs.get('filter_type', None) != 'iir': pass_type = infer_passtype(f_range) filt_len = compute_filter_length(fs, pass_type, *check_filter_definition(pass_type, f_range), n_seconds=filter_kwargs.get('n_seconds', None), n_cycles=filter_kwargs.get('n_cycles', 3)) n_samples = int(n_seconds * fs) + filt_len + 1 else: n_samples = int(n_seconds * fs) sig = _create_powerlaw(n_samples, fs, exponent) if f_range is not None: sig = filter_signal(sig, fs, infer_passtype(f_range), f_range, remove_edges=True, **filter_kwargs) # Drop the edges, that were compensated for, if not using IIR (using FIR) if not filter_kwargs.get('filter_type', None) == 'iir': sig, _ = remove_nans(sig) return sig
def filter_signal_iir(sig, fs, pass_type, f_range, butterworth_order, print_transitions=False, plot_properties=False, return_filter=False): """Apply an IIR filter to a signal. Parameters ---------- sig : array Time series to be filtered. fs : float Sampling rate, in Hz. pass_type : {'bandpass', 'bandstop', 'lowpass', 'highpass'} Which kind of filter to apply: * 'bandpass': apply a bandpass filter * 'bandstop': apply a bandstop (notch) filter * 'lowpass': apply a lowpass filter * 'highpass' : apply a highpass filter f_range : tuple of (float, float) or float Cutoff frequency(ies) used for filter, specified as f_lo & f_hi. For 'bandpass' & 'bandstop', must be a tuple. For 'lowpass' or 'highpass', can be a float that specifies pass frequency, or can be a tuple and is assumed to be (None, f_hi) for 'lowpass', and (f_lo, None) for 'highpass'. butterworth_order : int Order of the butterworth filter, if using an IIR filter. See input 'N' in scipy.signal.butter. print_transitions : bool, optional, default: False If True, print out the transition and pass bandwidths. plot_properties : bool, optional, default: False If True, plot the properties of the filter, including frequency response and/or kernel. return_filter : bool, optional, default: False If True, return the filter coefficients of the IIR filter. Returns ------- sig_filt : 1d array Filtered time series. filter_coefs : tuple of (1d array, 1d array) Filter coefficients of the IIR filter, as (b_vals, a_vals). Only returned if `return_filter` is True. """ # Design filter b_vals, a_vals = design_iir_filter(fs, pass_type, f_range, butterworth_order) # Check filter properties: compute transition bandwidth & run checks check_filter_properties(b_vals, a_vals, fs, pass_type, f_range, verbose=print_transitions) # Remove any NaN on the edges of 'sig' sig, sig_nans = remove_nans(sig) # Apply filter sig_filt = apply_iir_filter(sig, b_vals, a_vals) # Add NaN back on the edges of 'sig', if there were any at the beginning sig_filt = restore_nans(sig_filt, sig_nans) # Plot frequency response, if desired if plot_properties: f_db, db = compute_frequency_response(b_vals, a_vals, fs) plot_frequency_response(f_db, db) if return_filter: return sig_filt, (b_vals, a_vals) else: return sig_filt
def filter_signal_iir(sig, fs, pass_type, f_range, butterworth_order, print_transitions=False, plot_properties=False, return_filter=False): """Apply an IIR filter to a signal. Parameters ---------- sig : array Time series to be filtered. fs : float Sampling rate, in Hz. pass_type : {'bandpass', 'bandstop', 'lowpass', 'highpass'} Which kind of filter to apply: * 'bandpass': apply a bandpass filter * 'bandstop': apply a bandstop (notch) filter * 'lowpass': apply a lowpass filter * 'highpass' : apply a highpass filter f_range : tuple of (float, float) or float Cutoff frequency(ies) used for filter, specified as f_lo & f_hi. For 'bandpass' & 'bandstop', must be a tuple. For 'lowpass' or 'highpass', can be a float that specifies pass frequency, or can be a tuple and is assumed to be (None, f_hi) for 'lowpass', and (f_lo, None) for 'highpass'. butterworth_order : int Order of the butterworth filter, if using an IIR filter. See input 'N' in scipy.signal.butter. print_transitions : bool, optional, default: False If True, print out the transition and pass bandwidths. plot_properties : bool, optional, default: False If True, plot the properties of the filter, including frequency response and/or kernel. return_filter : bool, optional, default: False If True, return the second order series coefficients of the IIR filter. Returns ------- sig_filt : 1d array Filtered time series. sos : 2d array Second order series coefficients of the IIR filter. Has shape of (n_sections, 6). Only returned if `return_filter` is True. Examples -------- Apply a bandstop IIR filter to a simulated signal: >>> from neurodsp.sim import sim_combined >>> sig = sim_combined(n_seconds=10, fs=500, ... components={'sim_powerlaw': {}, 'sim_oscillation' : {'freq': 10}}) >>> filt_sig = filter_signal_iir(sig, fs=500, pass_type='bandstop', ... f_range=(55, 65), butterworth_order=7) """ # Design filter sos = design_iir_filter(fs, pass_type, f_range, butterworth_order) # Check filter properties: compute transition bandwidth & run checks check_filter_properties(sos, None, fs, pass_type, f_range, verbose=print_transitions) # Remove any NaN on the edges of 'sig' sig, sig_nans = remove_nans(sig) # Apply filter sig_filt = apply_iir_filter(sig, sos) # Add NaN back on the edges of 'sig', if there were any at the beginning sig_filt = restore_nans(sig_filt, sig_nans) # Plot frequency response, if desired if plot_properties: f_db, db = compute_frequency_response(sos, None, fs) plot_frequency_response(f_db, db) if return_filter: return sig_filt, sos else: return sig_filt
def filter_signal_fir(sig, fs, pass_type, f_range, n_cycles=3, n_seconds=None, remove_edges=True, print_transitions=False, plot_properties=False, return_filter=False): """Apply an FIR filter to a signal. Parameters ---------- sig : array Time series to be filtered. fs : float Sampling rate, in Hz. pass_type : {'bandpass', 'bandstop', 'lowpass', 'highpass'} Which kind of filter to apply: * 'bandpass': apply a bandpass filter * 'bandstop': apply a bandstop (notch) filter * 'lowpass': apply a lowpass filter * 'highpass' : apply a highpass filter f_range : tuple of (float, float) or float Cutoff frequency(ies) used for filter, specified as f_lo & f_hi. For 'bandpass' & 'bandstop', must be a tuple. For 'lowpass' or 'highpass', can be a float that specifies pass frequency, or can be a tuple and is assumed to be (None, f_hi) for 'lowpass', and (f_lo, None) for 'highpass'. n_cycles : float, optional, default: 3 Length of filter, in number of cycles, defined at the 'f_lo' frequency. This parameter is overwritten by `n_seconds`, if provided. n_seconds : float, optional Length of filter, in seconds. This parameter overwrites `n_cycles`. remove_edges : bool, optional If True, replace samples within half the kernel length to be np.nan. print_transitions : bool, optional, default: False If True, print out the transition and pass bandwidths. plot_properties : bool, optional, default: False If True, plot the properties of the filter, including frequency response and/or kernel. return_filter : bool, optional, default: False If True, return the filter coefficients of the FIR filter. Returns ------- sig_filt : array Filtered time series. filter_coefs : 1d array Filter coefficients of the FIR filter. Only returned if `return_filter` is True. Examples -------- Apply a band pass FIR filter to a simulated signal: >>> from neurodsp.sim import sim_combined >>> sig = sim_combined(n_seconds=10, fs=500, ... components={'sim_powerlaw': {}, 'sim_oscillation' : {'freq': 10}}) >>> filt_sig = filter_signal_fir(sig, fs=500, pass_type='bandpass', f_range=(1, 25)) Apply a high pass FIR filter to a signal, with a specified number of cycles: >>> sig = sim_combined(n_seconds=10, fs=500, ... components={'sim_powerlaw': {}, 'sim_oscillation' : {'freq': 10}}) >>> filt_sig = filter_signal_fir(sig, fs=500, pass_type='highpass', f_range=(2, None), n_cycles=5) """ # Design filter & check that the length is okay with signal filter_coefs = design_fir_filter(fs, pass_type, f_range, n_cycles, n_seconds) check_filter_length(sig.shape[-1], len(filter_coefs)) # Check filter properties: compute transition bandwidth & run checks check_filter_properties(filter_coefs, 1, fs, pass_type, f_range, verbose=print_transitions) # Remove any NaN on the edges of 'sig' sig, sig_nans = remove_nans(sig) # Apply filter sig_filt = apply_fir_filter(sig, filter_coefs) # Remove edge artifacts if remove_edges: sig_filt = remove_filter_edges(sig_filt, len(filter_coefs)) # Add NaN back on the edges of 'sig', if there were any at the beginning sig_filt = restore_nans(sig_filt, sig_nans) # Plot filter properties, if specified if plot_properties: f_db, db = compute_frequency_response(filter_coefs, 1, fs) plot_filter_properties(f_db, db, fs, filter_coefs) if return_filter: return sig_filt, filter_coefs else: return sig_filt
def sim_powerlaw(n_seconds, fs, exponent=-2.0, f_range=None, **filter_kwargs): """Simulate a power law time series, with a specified exponent. Parameters ---------- n_seconds : float Simulation time, in seconds. fs : float Sampling rate of simulated signal, in Hz. exponent : float, optional, default: -2 Desired power-law exponent, of the form P(f)=f^exponent. f_range : list of [float, float] or None, optional Frequency range to filter simulated data, as [f_lo, f_hi], in Hz. **filter_kwargs : kwargs, optional Keyword arguments to pass to `filter_signal`. Returns ------- sig : 1d array Time-series with the desired power law exponent. Notes ----- - Powerlaw data with exponents is created by spectrally rotating white noise [1]_. References ---------- .. [1] Timmer, J., & Konig, M. (1995). On Generating Power Law Noise. Astronomy and Astrophysics, 300, 707–710. Examples -------- Simulate a power law signal, with an exponent of -2 (brown noise): >>> sig = sim_powerlaw(n_seconds=1, fs=500, exponent=-2.0) Simulate a power law signal, with a highpass filter applied at 2 Hz: >>> sig = sim_powerlaw(n_seconds=1, fs=500, exponent=-1.5, f_range=(2, None)) """ # Compute the number of samples for the simulated time series n_samples = compute_nsamples(n_seconds, fs) # Get the number of samples to simulate for the signal # If signal is to be filtered, with FIR, add extra to compensate for edges if f_range and filter_kwargs.get('filter_type', None) != 'iir': pass_type = infer_passtype(f_range) filt_len = compute_filter_length( fs, pass_type, *check_filter_definition(pass_type, f_range), n_seconds=filter_kwargs.get('n_seconds', None), n_cycles=filter_kwargs.get('n_cycles', 3)) n_samples += filt_len + 1 # Simulate the powerlaw data sig = _create_powerlaw(n_samples, fs, exponent) if f_range is not None: sig = filter_signal(sig, fs, infer_passtype(f_range), f_range, remove_edges=True, **filter_kwargs) # Drop the edges, that were compensated for, if not using FIR filter if not filter_kwargs.get('filter_type', None) == 'iir': sig, _ = remove_nans(sig) return sig