示例#1
0
def run(out_name):
    V = vis.visualizer()

    # Assumes that generic_lpu_0_input.h5 and generic_lpu_1_input.h5
    # contain the same data:
    V.add_LPU('./data/generic_lpu_0_input.h5', LPU='Sensory')
    V.add_plot({'type': 'waveform', 'ids': [[0]]}, 'input_Sensory')

    for i in [0, 1]:
        G = nx.read_gexf('./data/generic_lpu_%s.gexf.gz' % i)
        neu_pub = sorted([int(n) for n, d in G.nodes_iter(True) \
                          if d['public'] == True])

        V.add_LPU('generic_lpu_%s_%s_output_spike.h5' % (i, out_name),
                  './data/generic_lpu_%s.gexf.gz' % i,
                  'Generic LPU %s' % i)
        V.add_plot({'type': 'raster',
                    'ids': {0: neu_pub},
                    #'yticks': range(1, 1+len(neu_out)),
                    #'yticklabels': range(len(neu_out))
                    },
                    'Generic LPU %s' % i, 'Output')

    V._update_interval = 50
    V.rows = 3
    V.cols = 1
    V.fontsize = 18
    V.out_filename = '%s.avi' % out_name
    V.codec = 'libtheora'
    V.dt = 0.0001
    V.xlim = [0, 1.0]
    V.run()
示例#2
0
def run(out_name):
    V = vis.visualizer()

    V.add_LPU('./data/generic_input_0.h5', LPU='Sensory')
    V.add_plot({'type':'waveform', 'ids': [[0]]}, 'input_Sensory')

    for i in [0, 1]:
        G = nx.read_gexf('./data/generic_lpu_%s.gexf.gz' % i)
        neu_out = [k for k, n in G.node.items() if n['name'][:3] == 'out']

        V.add_LPU('generic_output_%s_%s_spike.h5' % (i, out_name),
                  './data/generic_lpu_%s.gexf.gz' % i,
                  'Generic LPU %s' % i)
        V.add_plot({'type': 'raster',
                    'ids': {0: range(len(neu_out))},
                    #'yticks': range(1, 1+len(neu_out)),
                    #'yticklabels': range(len(neu_out))
                    },
                    'Generic LPU %s' % i, 'Output')

    V._update_interval = 50
    V.rows = 3
    V.cols = 1
    V.fontsize = 18
    V.out_filename = 'generic_output_%s.avi' % out_name
    V.codec = 'libtheora'
    V.dt = 0.0001
    V.xlim = [0, 1.0]
    V.run()
示例#3
0
import neurokernel.LPU.utils.visualizer as vis
import networkx as nx

nx.readwrite.gexf.GEXF.convert_bool = {
    'false': False,
    'False': False,
    'true': True,
    'True': True
}

# Select IDs of projection neurons:
G = nx.read_gexf('./data/generic_lpu.gexf.gz')
neu_proj = sorted(
    [int(k) for k, n in G.node.items() if n['name'][:4] == 'proj'])

V = vis.visualizer()
V.add_LPU('./data/generic_input.h5', LPU='Sensory')
V.add_plot({'type': 'waveform', 'ids': [[0]]}, 'input_Sensory')

V.add_LPU('generic_output_spike.h5', './data/generic_lpu.gexf.gz',
          'Generic LPU')
V.add_plot(
    {
        'type': 'raster',
        'ids': {
            0: neu_proj
        },
        'yticks': range(1, 1 + len(neu_proj)),
        'yticklabels': range(len(neu_proj))
    }, 'Generic LPU', 'Output')
示例#4
0
LAM_GEXF_FILE = 'lamina.gexf.gz'

INPUT_FILE = 'vision_input.h5'
IMAGE_FILE = 'image1.mat'
RET_OUTPUT_FILE = 'retina_output'
LAM_OUTPUT_FILE = 'lamina_output'
RET_OUTPUT_GPOT = RET_OUTPUT_FILE + '_gpot.h5'
LAM_OUTPUT_GPOT = LAM_OUTPUT_FILE + '_gpot.h5'
RET_OUTPUT_PNG = 'retina_output.png'
LAM_OUTPUT_PNG = 'lamina_output.png'
RET_OUTPUT_AVI = 'retina_output.avi'
LAM_OUTPUT_AVI = 'lamina_output.avi'
RET_OUTPUT_MPEG = 'retina_output.mp4'
LAM_OUTPUT_MPEG = 'lamina_output.mp4'

V = vis.visualizer()

n = Normalize(vmin=0, vmax=2000, clip=True)
conf_input = {}
conf_input['norm'] = n
conf_input['type'] = 'dome'
V.add_LPU('intensities.h5','retina.gexf.gz', LPU='Vision', is_input=True)
V.add_plot(conf_input, 'input_Vision')
conf_R1 = {}
conf_R1['type'] = 'dome'
V.add_LPU(RET_OUTPUT_GPOT,'retina.gexf.gz', LPU='Retina')
V.add_plot(conf_R1, 'Retina', 'R1')
conf_L1 = {}
conf_L1['type'] = 'dome'
V.add_LPU(LAM_OUTPUT_GPOT, 'lamina.gexf.gz', LPU='Lamina')
V.add_plot(conf_L1, 'Lamina', 'L1')
示例#5
0
    position_PEN = list(uids).index(sort_list_dict_PEN[i])
    id_positions_PEN.append(position_PEN)

sort_list['PEN'] = sort_list_list_PEN
data_out = data_T[id_positions_PEN, :].T

with h5py.File('%s_output_pick.h5' % 'PEN', 'w') as f:
    f.create_dataset('/array', data=data_out)

logger = setup_logger(screen=True)
dt = 1e-4
update_interval = None
fontsize = 16
xlim = [0, 1.0]

v_BU = vis.visualizer()

v_BU.add_LPU('BU_output.h5', LPU='BU')
v_BU.add_plot(
    {
        'type': 'raster',
        'uids': [sort_list['BU']],
        'variable': 'spike_state',
        'yticks': range(
            1,
            1 + len(sort_list['BU'])),  #'yticklabels': range(len(bu_neurons))
        'yticklabels': []
    },
    'BU')
#[list(np.arange(753,785, dtype=np.int32))]
v_BU.add_LPU('bu_output.h5', LPU='bu')