optimal_delay = nk.embedding_delay(signal, show=True) # Save plot fig = plt.gcf() fig.set_size_inches(10, 6) fig.savefig("README_embedding.png", dpi=300, h_pad=3) nk.entropy_sample(signal) # ============================================================================= # Statistics # ============================================================================= x = np.random.normal(loc=0, scale=1, size=100000) ci_min, ci_max = nk.hdi(x, ci=0.95, show=True) # Save plot fig = plt.gcf() fig.set_size_inches(10 / 1.5, 6 / 1.5) fig.savefig("README_hdi.png", dpi=300, h_pad=3) # ============================================================================= # Popularity # ============================================================================= import popularipy # https://github.com/DominiqueMakowski/popularipy downloads = popularipy.pypi_downloads("neurokit2") stars = popularipy.github_stars("neuropsychology/neurokit", "b547333010d0b1253ab44569df3efd94c8a93a63 ")
def extract_hdi(X): X = X.astype(float) ci_min, ci_max = nk.hdi(X, ci=0.95, show=True) hdi = np.array([ci_max, ci_min]) return hdi