def test_rsp_eventrelated(): rsp, info = nk.rsp_process(nk.rsp_simulate(duration=30, random_state=42)) epochs = nk.epochs_create(rsp, events=[5000, 10000, 15000], epochs_start=-0.1, epochs_end=1.9) rsp_eventrelated = nk.rsp_eventrelated(epochs) # Test rate features assert np.alltrue( np.array(rsp_eventrelated["RSP_Rate_Min"]) < np.array( rsp_eventrelated["RSP_Rate_Mean"])) assert np.alltrue( np.array(rsp_eventrelated["RSP_Rate_Mean"]) < np.array( rsp_eventrelated["RSP_Rate_Max"])) # Test amplitude features assert np.alltrue( np.array(rsp_eventrelated["RSP_Amplitude_Min"]) < np.array( rsp_eventrelated["RSP_Amplitude_Mean"])) assert np.alltrue( np.array(rsp_eventrelated["RSP_Amplitude_Mean"]) < np.array( rsp_eventrelated["RSP_Amplitude_Max"])) assert len(rsp_eventrelated["Label"]) == 3
def test_rsp_eventrelated(): rsp, info = nk.rsp_process(nk.rsp_simulate(duration=20)) epochs = nk.epochs_create(rsp, events=[5000, 10000, 15000], epochs_start=-0.1, epochs_end=1.9) rsp_eventrelated = nk.rsp_eventrelated(epochs) # Test rate features assert np.alltrue( np.array(rsp_eventrelated["RSP_Rate_Min"]) < np.array( rsp_eventrelated["RSP_Rate_Mean"])) assert np.alltrue( np.array(rsp_eventrelated["RSP_Rate_Mean"]) < np.array( rsp_eventrelated["RSP_Rate_Max"])) # Test amplitude features assert np.alltrue( np.array(rsp_eventrelated["RSP_Amplitude_Min"]) < np.array( rsp_eventrelated["RSP_Amplitude_Mean"])) assert np.alltrue( np.array(rsp_eventrelated["RSP_Amplitude_Mean"]) < np.array( rsp_eventrelated["RSP_Amplitude_Max"])) assert all(elem in [ "RSP_Rate_Max", "RSP_Rate_Min", "RSP_Rate_Mean", "RSP_Rate_Max_Time", "RSP_Rate_Min_Time", "RSP_Amplitude_Max", "RSP_Amplitude_Min", "RSP_Amplitude_Mean", "RSP_Phase", "RSP_PhaseCompletion", "Label" ] for elem in np.array(rsp_eventrelated.columns.values, dtype=str))
def test_rsp_eventrelated(): rsp, info = nk.rsp_process(nk.rsp_simulate(duration=30, random_state=42)) epochs = nk.epochs_create(rsp, events=[5000, 10000, 15000], epochs_start=-0.1, epochs_end=1.9) rsp_eventrelated = nk.rsp_eventrelated(epochs) # Test rate features assert np.alltrue( np.array(rsp_eventrelated["RSP_Rate_Min"]) < np.array( rsp_eventrelated["RSP_Rate_Mean"])) assert np.alltrue( np.array(rsp_eventrelated["RSP_Rate_Mean"]) < np.array( rsp_eventrelated["RSP_Rate_Max"])) # Test amplitude features assert np.alltrue( np.array(rsp_eventrelated["RSP_Amplitude_Min"]) < np.array( rsp_eventrelated["RSP_Amplitude_Mean"])) assert np.alltrue( np.array(rsp_eventrelated["RSP_Amplitude_Mean"]) < np.array( rsp_eventrelated["RSP_Amplitude_Max"])) assert len(rsp_eventrelated["Label"]) == 3 # Test warning on missing columns with pytest.warns(nk.misc.NeuroKitWarning, match=r".*does not have an `RSP_Amplitude`.*"): first_epoch_key = list(epochs.keys())[0] first_epoch_copy = epochs[first_epoch_key].copy() del first_epoch_copy["RSP_Amplitude"] nk.rsp_eventrelated({**epochs, first_epoch_key: first_epoch_copy}) with pytest.warns(nk.misc.NeuroKitWarning, match=r".*does not have an `RSP_Phase`.*"): first_epoch_key = list(epochs.keys())[0] first_epoch_copy = epochs[first_epoch_key].copy() del first_epoch_copy["RSP_Phase"] nk.rsp_eventrelated({**epochs, first_epoch_key: first_epoch_copy})