示例#1
0
def test_register_neurite_feature_nrns():

    def npts(neurite):
        return len(neurite.points)

    def vol(neurite):
        return neurite.volume

    fst.register_neurite_feature('foo', npts)

    n_points_ref = [len(n.points) for n in iter_neurites(NRNS)]
    n_points = fst.get('foo', NRNS)
    assert_items_equal(n_points, n_points_ref)

    # test neurite type filtering
    n_points_ref = [len(n.points) for n in iter_neurites(NRNS, filt=_is_type(NeuriteType.axon))]
    n_points = fst.get('foo', NRNS, neurite_type=NeuriteType.axon)
    assert_items_equal(n_points, n_points_ref)

    fst.register_neurite_feature('bar', vol)

    n_volume_ref = [n.volume for n in iter_neurites(NRNS)]
    n_volume = fst.get('bar', NRNS)
    assert_items_equal(n_volume, n_volume_ref)

    # test neurite type filtering
    n_volume_ref = [n.volume for n in iter_neurites(NRNS, filt=_is_type(NeuriteType.axon))]
    n_volume = fst.get('bar', NRNS, neurite_type=NeuriteType.axon)
    assert_items_equal(n_volume, n_volume_ref)
示例#2
0
def test_register_neurite_feature_pop():

    def npts(neurite):
        return len(neurite.points)

    def vol(neurite):
        return neurite.volume

    fst.register_neurite_feature('foo', npts)

    n_points_ref = [len(n.points) for n in iter_neurites(POP)]
    n_points = fst.get('foo', POP)
    assert_items_equal(n_points, n_points_ref)

    # test neurite type filtering
    n_points_ref = [len(n.points) for n in iter_neurites(POP,
                                                         filt=_is_type(NeuriteType.basal_dendrite))]
    n_points = fst.get('foo', POP, neurite_type=NeuriteType.basal_dendrite)
    assert_items_equal(n_points, n_points_ref)

    fst.register_neurite_feature('bar', vol)

    n_volume_ref = [n.volume for n in iter_neurites(POP)]
    n_volume = fst.get('bar', POP)
    assert_items_equal(n_volume, n_volume_ref)

    # test neurite type filtering
    n_volume_ref = [n.volume for n in iter_neurites(POP, filt=_is_type(NeuriteType.basal_dendrite))]
    n_volume = fst.get('bar', POP, neurite_type=NeuriteType.basal_dendrite)
    assert_items_equal(n_volume, n_volume_ref)
示例#3
0
def test_register_neurite_feature_pop():

    def npts(neurite):
        return len(neurite.points)

    def vol(neurite):
        return neurite.volume

    fst.register_neurite_feature('foo', npts)

    n_points_ref = [len(n.points) for n in iter_neurites(POP)]
    n_points = fst.get('foo', POP)
    assert_items_equal(n_points, n_points_ref)

    # test neurite type filtering
    n_points_ref = [len(n.points) for n in iter_neurites(POP,
                                                         filt=_is_type(NeuriteType.basal_dendrite))]
    n_points = fst.get('foo', POP, neurite_type=NeuriteType.basal_dendrite)
    assert_items_equal(n_points, n_points_ref)

    fst.register_neurite_feature('bar', vol)

    n_volume_ref = [n.volume for n in iter_neurites(POP)]
    n_volume = fst.get('bar', POP)
    assert_items_equal(n_volume, n_volume_ref)

    # test neurite type filtering
    n_volume_ref = [n.volume for n in iter_neurites(POP, filt=_is_type(NeuriteType.basal_dendrite))]
    n_volume = fst.get('bar', POP, neurite_type=NeuriteType.basal_dendrite)
    assert_items_equal(n_volume, n_volume_ref)
示例#4
0
def test_register_neurite_feature_nrns():

    def npts(neurite):
        return len(neurite.points)

    def vol(neurite):
        return neurite.volume

    fst.register_neurite_feature('foo', npts)

    n_points_ref = [len(n.points) for n in iter_neurites(NRNS)]
    n_points = fst.get('foo', NRNS)
    assert_items_equal(n_points, n_points_ref)

    # test neurite type filtering
    n_points_ref = [len(n.points) for n in iter_neurites(NRNS, filt=_is_type(NeuriteType.axon))]
    n_points = fst.get('foo', NRNS, neurite_type=NeuriteType.axon)
    assert_items_equal(n_points, n_points_ref)

    fst.register_neurite_feature('bar', vol)

    n_volume_ref = [n.volume for n in iter_neurites(NRNS)]
    n_volume = fst.get('bar', NRNS)
    assert_items_equal(n_volume, n_volume_ref)

    # test neurite type filtering
    n_volume_ref = [n.volume for n in iter_neurites(NRNS, filt=_is_type(NeuriteType.axon))]
    n_volume = fst.get('bar', NRNS, neurite_type=NeuriteType.axon)
    assert_items_equal(n_volume, n_volume_ref)
示例#5
0
    def test_get_section_path_distances_endpoint(self):

        ref_sec_path_len_start = list(iter_neurites(self.neuron, sec.start_point_path_length))
        ref_sec_path_len = list(iter_neurites(self.neuron, sec.end_point_path_length))
        path_lengths = self.neuron.get_section_path_distances()
        nt.assert_true(ref_sec_path_len != ref_sec_path_len_start)
        nt.assert_equal(len(path_lengths), 84)
        nt.assert_true(np.all(path_lengths == ref_sec_path_len))
示例#6
0
def test_section_path_distances_endpoint():

    ref_sec_path_len_start = list(iter_neurites(NEURON, sec.start_point_path_length))
    ref_sec_path_len = list(iter_neurites(NEURON, sec.end_point_path_length))
    path_lengths = fst_get('section_path_distances', NEURON)
    nt.ok_(ref_sec_path_len != ref_sec_path_len_start)
    nt.eq_(len(path_lengths), 84)
    nt.ok_(np.all(path_lengths == ref_sec_path_len))
示例#7
0
def test_section_path_distances_endpoint():

    ref_sec_path_len_start = list(iter_neurites(NEURON, sec.start_point_path_length))
    ref_sec_path_len = list(iter_neurites(NEURON, sec.end_point_path_length))
    path_lengths = fst_get('section_path_distances', NEURON)
    nt.ok_(ref_sec_path_len != ref_sec_path_len_start)
    nt.eq_(len(path_lengths), 84)
    nt.ok_(np.all(path_lengths == ref_sec_path_len))
示例#8
0
def test_section_path_distances_endpoint():

    ref_sec_path_len_start = list(
        iter_neurites(NEURON, sec.start_point_path_length))
    ref_sec_path_len = list(iter_neurites(NEURON, sec.end_point_path_length))
    path_lengths = get_feature('section_path_distances', NEURON)
    assert ref_sec_path_len != ref_sec_path_len_start
    assert len(path_lengths) == 84
    assert np.all(path_lengths == ref_sec_path_len)
示例#9
0
def _check_volume(obj):
    sec_vol = [l for l in iter_neurites(obj, sec.volume)]
    seg_vol = [l for l in iter_neurites(obj, seg.volume)]
    sum_sec_vol = sum(sec_vol)
    sum_seg_vol = sum(seg_vol)

    # check that sum of section volumes is same as sum of segment lengths
    nt.assert_almost_equal(sum_sec_vol, sum_seg_vol)

    nt.assert_almost_equal(sum_sec_vol, 307.68010178856395)
示例#10
0
def _check_area(obj):
    sec_area = [l for l in iter_neurites(obj, sec.area)]
    seg_area = [l for l in iter_neurites(obj, seg.area)]
    sum_sec_area = sum(sec_area)
    sum_seg_area = sum(seg_area)

    # check that sum of section areas is same as sum of segment lengths
    nt.assert_almost_equal(sum_sec_area, sum_seg_area)

    nt.assert_almost_equal(sum_sec_area, 349.75070138106133)
示例#11
0
def _check_length(obj):
    sec_len = [l for l in iter_neurites(obj, sec.length)]
    seg_len = [l for l in iter_neurites(obj, seg.length)]
    sum_sec_len = sum(sec_len)
    sum_seg_len = sum(seg_len)

    # check that sum of section lengths is same as sum of segment lengths
    nt.eq_(sum_sec_len, sum_seg_len)

    nt.assert_almost_equal(sum_sec_len, 33.0330776588)
示例#12
0
def TMD(neuron_handle):
    """
    Compute the TMD of a neuron i.e. its dimension 0 persistence
    using path distance as a filtration
    :param neuron_handle:
    :return:
    """
    nrn = nm.load_neuron(neuron_handle)
    diag = []
    roots = []
    f = {None: 0}

    nodes = [neurite.root_node for neurite in nm.iter_neurites(nrn)]
    while len(nodes) > 0:
        n = nodes.pop()
        f[n] = f[n.parent] + n.length
        nodes.extend(n.children)

    for neurite in nm.iter_neurites(nrn):
        R = neurite.root_node  # the root of the neuron tree
        A = {}  # A set of active nodes, initialized to the set of tree leaves
        for l in R.ileaf():
            A[l] = f[l]

        while not R in A:
            for l in A:
                p = l.parent
                # break if a child of p is not active, might need to improve this to avoid quadratic complexity
                stop = False
                m = 0
                c0 = None
                for c in p.children:
                    if not c in A:
                        stop = True
                        break
                    elif A[c] > m:
                        m = A[c]
                        c0 = c
                if not stop:
                    A[p] = m
                    for c in p.children:
                        if not c == c0:
                            diag.append((min(A[c], f[p]), max(A[c], f[p])))
                        A.pop(c)
                    break

        roots.append((min(A[R], f[R]), max(A[R], f[R])))

    # merge root of dendrites
    i = np.argmax(map(lambda a, b: b, roots))
    a, b = roots.pop(i)
    diag.extend(roots)
    diag.append((b, ))

    return diag
示例#13
0
    def test_get_section_radial_distances_endpoint(self):
        ref_sec_rad_dist_start = []
        for t in self.neuron.neurites:
            ref_sec_rad_dist_start.extend(
                ll for ll in iter_neurites(t, sec.radial_dist(t.value, use_start_point=True)))

        ref_sec_rad_dist = []
        for t in self.neuron.neurites:
            ref_sec_rad_dist.extend(ll for ll in iter_neurites(t, sec.radial_dist(t.value)))

        rad_dists = self.neuron.get_section_radial_distances()
        nt.assert_true(ref_sec_rad_dist != ref_sec_rad_dist_start)
        nt.assert_equal(len(rad_dists), 84)
        nt.assert_true(np.all(rad_dists == ref_sec_rad_dist))
示例#14
0
def _check_segment_radial_dists(obj):

    origin = [0.0, 0.0, 0.0]

    rd = [d for d in iter_neurites(SIMPLE_NEURON, seg.radial_dist(origin))]

    nt.eq_(rd, [1.0, 3.0, 5.0, 7.0, 1.0, 3.0, 5.0, 7.0])
示例#15
0
def _check_section_radial_dists_start_point(obj):

    origin = [0.0, 0.0, 0.0]

    rd = [d for d in iter_neurites(obj, sec.radial_dist(origin, True))]

    nt.eq_(rd, [0.0, 0.0])
示例#16
0
def _check_section_radial_dists_end_point(obj):

    origin = [0.0, 0.0, 0.0]

    rd = [d for d in iter_neurites(obj, sec.radial_dist(origin))]

    nt.eq_(rd, [8.0, 8.0])
示例#17
0
def test_section_path_distances_start_point():
    ref_sec_path_len_start = list(
        iter_neurites(NEURON, sec.start_point_path_length))
    path_lengths = get_feature('section_path_distances',
                               NEURON,
                               use_start_point=True)
    assert len(path_lengths) == 84
    assert np.all(path_lengths == ref_sec_path_len_start)
示例#18
0
def _check_points(obj):
    @bif.bifurcation_point_function(as_tree=False)
    def point(bif):
        return bif[:4]

    bif_points = [p for p in iter_neurites(obj, point)]
    nt.eq_(bif_points,
           [[0.0, 4.0, 0.0, 2.0], [0.0, 5.0, 0.0, 2.0], [0.0, 5.0, 3.0, 0.75]])
示例#19
0
def test_load_trees_good_neuron():
    '''Check trees in good neuron are the same as trees from loaded neuron'''
    filepath = os.path.join(SWC_PATH, 'Neuron.swc')
    nrn = utils.load_neuron(filepath)
    trees = utils.load_trees(filepath)
    nt.eq_(len(nrn.neurites), 4)
    nt.eq_(len(nrn.neurites), len(trees))

    nrn2 = MockNeuron(trees)

    @pts.point_function(as_tree=False)
    def elem(point):
        return point

    # Check data are the same in tree collection and neuron's neurites
    for a, b in izip(iter_neurites(nrn, elem), iter_neurites(nrn2, elem)):
        nt.ok_(np.all(a == b))
示例#20
0
 def test_get_remote_bifurcation_angles(self):
     ref_remote_bifangles = list(iter_neurites(self.neuron, bifs.remote_angle))
     remote_bifangles = self.neuron.get_remote_bifurcation_angles()
     nt.assert_equal(len(remote_bifangles), 40)
     nt.assert_true(np.all(remote_bifangles == ref_remote_bifangles))
     remote_bifangles = self.neuron.get_remote_bifurcation_angles(TreeType.all)
     nt.assert_equal(len(remote_bifangles), 40)
     nt.assert_true(np.all(remote_bifangles == ref_remote_bifangles))
示例#21
0
 def _pkg(self, magic_iter, neurite_type=TreeType.all):
     '''Return an iterable built from magic_iter'''
     stuff = list(
         iter_neurites(self,
                       magic_iter,
                       tree_type_checker(neurite_type))
     )
     return self._iterable_type(stuff)
示例#22
0
def test_section_path_distances_start_point():

    ref_sec_path_len_start = list(
        iter_neurites(NEURON, sec.start_point_path_length))
    path_lengths = get_feature('section_path_distances',
                               NEURON,
                               use_start_point=True)
    nt.eq_(len(path_lengths), 84)
    nt.ok_(np.all(path_lengths == ref_sec_path_len_start))
示例#23
0
def _check_segment_areas(obj):

    sa = (l/math.pi for l in iter_neurites(obj, seg.area))

    ref = (2.0, 2.0, 6.7082039, 4.0, 6.7082039, 1.8038587,
           1.5, 6.7082039, 1.8038587, 1.5)

    for a, b in izip(sa, ref):
        nt.assert_almost_equal(a, b)
示例#24
0
    def test_get_section_lengths(self):
        ref_seclen = list(iter_neurites(self.neuron, sec.length))
        seclen = self.neuron.get_section_lengths()
        nt.assert_equal(len(seclen), 84)
        nt.assert_true(np.all(seclen == ref_seclen))

        seclen = self.neuron.get_section_lengths(TreeType.all)
        nt.assert_equal(len(seclen), 84)
        nt.assert_true(np.all(seclen == ref_seclen))
示例#25
0
def _check_segment_volumes(obj):

    sv = (l/math.pi for l in iter_neurites(obj, seg.volume))

    ref = (1.0, 1.0, 4.6666667, 4.0, 4.6666667, 0.7708333,
           0.5625, 4.6666667, 0.7708333, 0.5625)

    for a, b in izip(sv, ref):
        nt.assert_almost_equal(a, b)
示例#26
0
def test_volume_density_per_neurite():

    vol = np.array(_nf.total_volume_per_neurite(NRN))
    hull_vol = np.array([convex_hull(n).volume for n in nm.iter_neurites(NRN)])

    vol_density = _nf.volume_density_per_neurite(NRN)
    nt.eq_(len(vol_density), 4)
    nt.ok_(np.allclose(vol_density, vol / hull_vol))

    ref_density = [0.43756606998299519, 0.52464681266899216,
                   0.24068543213643726, 0.26289304906104355]
    nt.ok_(np.allclose(vol_density, ref_density))
示例#27
0
def _make_trace(neuron,
                plane,
                prefix='',
                opacity=1.,
                visible=True,
                style=None,
                line_width=2):
    '''Create the trace to be plotted'''
    names = defaultdict(int)
    lines = list()
    for neurite in iter_neurites(neuron):
        names[neurite.type] += 1

        coords = dict(x=list(), y=list(), z=list())
        colors = list()

        try:
            default_color = style[neurite]['color']
        except KeyError:
            default_color = TREE_COLOR.get(neurite.root_node.type, 'black')

        for section in iter_sections(neurite):
            segs = [(s[0][COLS.XYZ], s[1][COLS.XYZ])
                    for s in iter_segments(section)]

            section_style = style.get(section, {
                'range': slice(0, len(segs)),
                'color': default_color
            })
            range_ = section_style['range']
            colors += list(repeat(default_color, 3 * range_.start))
            colors += list(
                repeat(section_style['color'],
                       3 * (range_.stop - range_.start)))
            colors += list(repeat(default_color,
                                  3 * (len(segs) - range_.stop)))

            for i, coord in enumerate('xyz'):
                coords[coord] += list(
                    chain.from_iterable(
                        (p1[i], p2[i], None) for p1, p2 in segs) if coord in
                    plane else chain.from_iterable((0, 0, None) for _ in segs))

        lines.append(
            go.Scatter3d(name=_neurite_name(neurite, prefix, names),
                         showlegend=False,
                         visible=visible,
                         opacity=opacity,
                         line=dict(color=colors, width=line_width),
                         mode='lines',
                         **coords))
    return lines
示例#28
0
def test_neurite_volume_density():

    vol = np.array(_nf.total_volume_per_neurite(NRN))
    hull_vol = np.array([convex_hull(n).volume for n in nm.iter_neurites(NRN)])

    vol_density = _nf.neurite_volume_density(NRN)
    nt.eq_(len(vol_density), 4)
    nt.ok_(np.allclose(vol_density, vol / hull_vol))

    ref_density = [
        0.43756606998299519, 0.52464681266899216, 0.24068543213643726,
        0.26289304906104355
    ]
    assert_allclose(vol_density, ref_density)
示例#29
0
    def _find_intact_sub_trees(self):
        '''Returns intact neurites

        There is a fallback mechanism in case there are no intact basals:
        https://bbpcode.epfl.ch/source/xref/platform/BlueRepairSDK/BlueRepairSDK/src/repair.cpp#658
        '''
        basals = [
            neurite.root_node for neurite in iter_neurites(self.neuron)
            if (neurite.type == NeuriteType.basal_dendrite
                and is_branch_intact(neurite.root_node, self.cut_leaves))
        ]

        if not basals:
            L.warning(
                "No intact basals found. Falling back on less strict selection."
            )
            basals = [
                section for section in iter_sections(self.neuron)
                if (section.type == NeuriteType.basal_dendrite
                    and not is_cut_section(section, self.cut_leaves))
            ]

        axons = [
            neurite.root_node for neurite in iter_neurites(self.neuron)
            if (neurite.type == NeuriteType.axon
                and is_branch_intact(neurite.root_node, self.cut_leaves))
        ]
        obliques = self._find_intact_obliques()

        tufts = [
            section for section in iter_sections(self.neuron)
            if (self.repair_type_map[section] == RepairType.tuft
                and not is_cut_section(section, self.cut_leaves))
        ]

        return basals + obliques + axons + tufts
示例#30
0
def _make_trace2d(neuron,
                  plane,
                  prefix='',
                  opacity=1.,
                  visible=True,
                  style=None,
                  line_width=2):
    '''Create the trace to be plotted'''
    names = defaultdict(int)
    lines = list()
    for neurite in iter_neurites(neuron):
        names[neurite.type] += 1

        try:
            neurite_color = style[neurite]['color']
        except KeyError:
            neurite_color = TREE_COLOR.get(neurite.root_node.type, 'black')

        name = _neurite_name(neurite, prefix, names)

        for section in iter_sections(neurite):
            segs = [(s[0][COLS.XYZ], s[1][COLS.XYZ])
                    for s in iter_segments(section)]

            try:
                colors = style[section]['color']
            except KeyError:
                colors = neurite_color

            coords = dict()
            for i, coord in enumerate('xyz'):
                coords[coord] = list(
                    chain.from_iterable(
                        (p1[i], p2[i], None) for p1, p2 in segs))

            coords = dict(x=coords[plane[0]], y=coords[plane[1]])
            lines.append(
                go.Scattergl(name=name,
                             visible=visible,
                             opacity=opacity,
                             showlegend=False,
                             line=dict(color=colors, width=line_width),
                             mode='lines',
                             **coords))
    return lines
示例#31
0
def _make_trace(neuron, plane):
    '''Create the trace to be plotted'''
    for neurite in iter_neurites(neuron):
        segments = list(iter_segments(neurite))

        segs = [(s[0][COLS.XYZ], s[1][COLS.XYZ]) for s in segments]

        coords = dict(x=list(chain.from_iterable((p1[0], p2[0], None) for p1, p2 in segs)),
                      y=list(chain.from_iterable((p1[1], p2[1], None) for p1, p2 in segs)),
                      z=list(chain.from_iterable((p1[2], p2[2], None) for p1, p2 in segs)))

        color = TREE_COLOR.get(neurite.root_node.type, 'black')
        if plane.lower() == '3d':
            plot_fun = go.Scatter3d
        else:
            plot_fun = go.Scatter
            coords = dict(x=coords[plane[0]], y=coords[plane[1]])
        yield plot_fun(
            line=dict(color=color, width=2),
            mode='lines',
            **coords
        )
示例#32
0
def _make_trace(neuron, plane):
    """Create the trace to be plotted."""
    for neurite in iter_neurites(neuron):
        segments = list(iter_segments(neurite))

        segs = [(s[0][COLS.XYZ], s[1][COLS.XYZ]) for s in segments]

        coords = dict(
            x=list(chain.from_iterable(
                (p1[0], p2[0], None) for p1, p2 in segs)),
            y=list(chain.from_iterable(
                (p1[1], p2[1], None) for p1, p2 in segs)),
            z=list(chain.from_iterable(
                (p1[2], p2[2], None) for p1, p2 in segs)))

        color = TREE_COLOR.get(neurite.root_node.type, 'black')
        if plane.lower() == '3d':
            plot_fun = go.Scatter3d
        else:
            plot_fun = go.Scatter
            coords = dict(x=coords[plane[0]], y=coords[plane[1]])
        yield plot_fun(line=dict(color=color, width=2), mode='lines', **coords)
示例#33
0
def count(neuron):
    """
    Return number of bifurcation points in neuron or population
    """
    return sum(1 for _ in iter_neurites(neuron, identity))
示例#34
0
def count(neuron, tree_filter=None):
    """
    Return number of segments in neuron or population
    """
    return sum(1 for _ in iter_neurites(neuron, identity, tree_filter))
示例#35
0
def _check_segment_taper_rate(obj):

    tp = [t for t in iter_neurites(obj, seg.taper_rate)]

    nt.eq_(tp,
           [0.0, 0.0, 1.0, 0.0, 1.0, 0.5, 0.0, 1.0, 0.5, 0.0])
示例#36
0
def _check_path_length_start_point(obj, ref):
    pl = [l for l in iter_neurites(obj, sec.start_point_path_length)]
    nt.eq_(pl, ref)
示例#37
0
def _check_segment_radius(obj):

    rad = [r for r in iter_neurites(obj, seg.radius)]

    nt.eq_(rad,
           [1.0, 1.0, 1.5, 2.0, 1.5, 0.875, 0.75, 1.5, 0.875, 0.75])
示例#38
0
def count(neuron):
    """
    Return number of triplets in neuron or population
    """
    return sum(1 for _ in iter_neurites(neuron, identity))
示例#39
0
def _check_segment_lengths(obj):

    lg = [l for l in iter_neurites(obj, seg.length)]

    nt.eq_(lg, [1.0, 1.0, 2.0, 1.0, 2.0, 1.0, 1.0, 2.0, 1.0, 1.0])
示例#40
0
def test_section_branch_order():

    sec_bo = [bo for bo in iter_neurites(MOCK_TREE, sec.branch_order)]
    nt.eq_(sec_bo, [0, 1, 1, 0, 1, 2, 2, 1])
示例#41
0
    def complete_morph_feature_info(self, neuroM_extra_config_path=None):
        """Adding more features by means of other NeuroM's functionalities
        to the prediction generated by function 'set_morph_feature_info',
        which uses just NeuroM's API for morph_stats
        Example of features added: field diameter, bounding-box -X,Y,Z- extents
        and -largest,shortest- principal extents"""

        extra_file_exists = os.path.isfile(neuroM_extra_config_path)
        if not extra_file_exists:
            return
        with open(neuroM_extra_config_path, 'r') as fp:
            morph_extra_dict = json.load(fp)

        # Adding more neurite's features, if requested:
        # field diameter, bounding-box -X,Y,Z- extents and -largest,shortest- principal extents
        with open(self.output_pred_file, 'r') as fp:
            mod_prediction = json.load(fp)

        if os.path.isdir(self.morph_path):
            morph_files = nm.io.utils.get_morph_files(self.morph_path)

        mapping = lambda section: section.points
        for neurite_name, extra_feat_list in list(
                morph_extra_dict.items()):  # Dict. with neurite names and
            # extra features to be computed
            for cell_ID, dict0 in list(mod_prediction.items(
            )):  # Dict. with cell's morph_path-features dict. pairs
                # for each cell

                if os.path.isdir(self.morph_path):
                    morph_file_name = [
                        morph_file for morph_file in morph_files
                        if cell_ID in morph_file
                    ]
                    neuron_path = os.path.join(
                        self.morph_path, os.path.basename(morph_file_name[0]))
                else:
                    neuron_path = self.morph_path

                neuron_model = nm.load_neuron(neuron_path)

                for cell_part, dict1 in list(dict0.items()):
                    if cell_part == neurite_name:
                        neurite_filter = lambda neurite: neurite.type == getattr(
                            nm.NeuriteType, cell_part)
                        neurite_points = [
                            neurite_points
                            for neurite_points in nm.iter_neurites(
                                neuron_model, mapping, neurite_filter)
                        ]
                        neurite_points = np.concatenate(neurite_points)
                        neurite_cloud = neurite_points[:, 0:3]

                        for feat_name in extra_feat_list:
                            # Compute the neurite's bounding-box -X,Y,Z- extents
                            if feat_name == 'neurite_X_extent':
                                neurite_X_extent = np.max(neurite_cloud[:, 0], axis=0) - \
                                                   np.min(neurite_cloud[:, 0], axis=0)
                                dict1.update(
                                    {"neurite_X_extent": neurite_X_extent})

                            elif feat_name == 'neurite_Y_extent':
                                neurite_Y_extent = np.max(neurite_cloud[:, 1], axis=0) - \
                                                   np.min(neurite_cloud[:, 1], axis=0)
                                dict1.update(
                                    {"neurite_Y_extent": neurite_Y_extent})

                            elif feat_name == 'neurite_Z_extent':
                                neurite_Z_extent = np.max(neurite_cloud[:, 2], axis=0) - \
                                                   np.min(neurite_cloud[:, 2], axis=0)
                                dict1.update(
                                    {"neurite_Z_extent": neurite_Z_extent})

                            # Compute the neurite's principal extents
                            elif feat_name == 'neurite_shortest_extent':
                                # Compute the neurite's shortest principal extents
                                principal_extents = sorted(
                                    nm.morphmath.principal_direction_extent(
                                        neurite_cloud))
                                dict1.update({
                                    "neurite_shortest_extent":
                                    principal_extents[0]
                                })

                            elif feat_name == 'neurite_largest_extent':
                                # Compute the neurite's largest principal extents
                                principal_extents = sorted(
                                    nm.morphmath.principal_direction_extent(
                                        neurite_cloud))
                                dict1.update({
                                    "neurite_largest_extent":
                                    principal_extents[-1]
                                })

                            # Compute the neurite-field diameter
                            elif feat_name == 'neurite_field_diameter':
                                neurite_field_diameter = nm.morphmath.polygon_diameter(
                                    neurite_cloud)
                                dict1.update({
                                    "neurite_field_diameter":
                                    neurite_field_diameter
                                })

        # Saving NeuroM's output in a formatted json-file
        # with open(self.output_pred_file, 'w') as fp:
        #     json.dump(mod_prediction, fp, sort_keys=True, indent=3)

        return mod_prediction
示例#42
0
def _check_local_bifurcation_angles(obj):

    angles = [a for a in iter_neurites(obj, bif.local_angle)]

    nt.eq_(angles, [math.pi / 4, math.pi / 2, math.pi / 4])
示例#43
0
def _check_remote_bifurcation_angles(obj):

    angles = [a for a in iter_neurites(obj, bif.remote_angle)]

    nt.eq_(angles,
           [0.9380474917927135, math.pi / 2, math.pi / 4])
    view.plot_neuron(ax, neuron)

    # draw circles
    center = neuron.soma.center[:2]
    _dist = np.linalg.norm(neuron.points[:,:2]-center, axis=1).max()
    radii = np.arange(step_size, _dist, step_size)
    patches = []
    for rad in radii:
        circle = mpatches.Circle(center, rad, fill=False, edgecolor='dimgray')
        patches.append(circle)
    p = PatchCollection(patches, match_original=True)
    ax.add_collection(p)

    # add labels
    if label_dict is None:
        apical_points = np.concatenate([x.points for x in nm.iter_neurites(neuron, filt=lambda t: t.type==nm.APICAL_DENDRITE)])
        apical_label_pos_xs = [apical_points[:,0].min()-center[0], apical_points[:,0].max()-center[0]]
        apical_label_pos_x = apical_label_pos_xs[0] if np.abs(apical_label_pos_xs[0])>np.abs(apical_label_pos_xs[1]) else apical_label_pos_xs[1]
        apical_label_pos_y = center[1]+(apical_points[:,1].max()-center[1])/2
        basal_points = np.concatenate([x.points for x in nm.iter_neurites(neuron, filt=lambda t: t.type==nm.BASAL_DENDRITE)])
        basal_label_pos_xs = [basal_points[:,0].min()-center[0],basal_points[:,0].max()-center[0]]
        basal_label_pos_x = basal_label_pos_xs[0] if np.abs(basal_label_pos_xs[0])>np.abs(basal_label_pos_xs[1]) else basal_label_pos_xs[1]
        basal_label_pos_y = center[1]+(basal_points[:,1].min()-center[1])/2
        label_dict = {'Apical':(apical_label_pos_x, apical_label_pos_y), 'Basal': (basal_label_pos_x, basal_label_pos_y)}

    for name,pos in label_dict.items():
        plt.annotate(name, pos)

    ax.autoscale()
    ax.set_axis_off()
    plt.title(None)