示例#1
0
def generate(net_id,
             params,
             cells=None,
             cells_to_plot=None,
             cells_to_stimulate=None,
             include_muscles=False,
             conn_number_override=None,
             conn_number_scaling=None,
             duration=500,
             dt=0.01,
             vmin=None,
             vmax=None,
             seed=1234,
             validate=True,
             test=False,
             verbose=True,
             target_directory='./'):

    root_dir = os.path.dirname(os.path.abspath(__file__))

    params.create_models()

    if vmin == None:
        if params.level == 'A':
            vmin = -72
        elif params.level == 'B':
            vmin = -52
        elif params.level == 'C':
            vmin = -60
        else:
            vmin = -52

    if vmax == None:
        if params.level == 'A':
            vmax = -48
        elif params.level == 'B':
            vmax = -28
        elif params.level == 'C':
            vmax = 25
        else:
            vmax = -28

    random.seed(seed)

    info = "\n\nParameters and setting used to generate this network:\n\n"+\
           "    Cells:                         %s\n" % (cells if cells is not None else "All cells")+\
           "    Cell stimulated:               %s\n" % (cells_to_stimulate if cells_to_stimulate is not None else "All cells")+\
           "    Connection numbers overridden: %s\n" % (conn_number_override if conn_number_override is not None else "None")+\
           "    Connection numbers scaled:     %s\n" % (conn_number_scaling if conn_number_scaling is not None else "None")+\
           "    Include muscles:               %s\n" % include_muscles
    print_(info)
    info += "\n%s\n" % (params.bioparameter_info("    "))

    nml_doc = NeuroMLDocument(id=net_id, notes=info)

    if params.level == "A" or params.level == "B" or params.level == "BC1":
        nml_doc.iaf_cells.append(params.generic_muscle_cell)
        nml_doc.iaf_cells.append(params.generic_neuron_cell)
    elif params.level == "C":
        nml_doc.cells.append(params.generic_muscle_cell)
        nml_doc.cells.append(params.generic_neuron_cell)

    net = Network(id=net_id)

    nml_doc.networks.append(net)

    nml_doc.pulse_generators.append(params.offset_current)

    if params.level == "C" or params.level == "C1":
        nml_doc.fixed_factor_concentration_models.append(
            params.concentration_model)

    cell_names, conns = get_cell_names_and_connection()

    # To hold all Cell NeuroML objects vs. names
    all_cells = {}

    # lems_file = ""
    lems_info = {
        "comment": info,
        "reference": net_id,
        "duration": duration,
        "dt": dt,
        "vmin": vmin,
        "vmax": vmax,
        "cell_component": params.generic_neuron_cell.id
    }

    lems_info["plots"] = []
    lems_info["activity_plots"] = []
    lems_info["muscle_plots"] = []
    lems_info["muscle_activity_plots"] = []

    lems_info["to_save"] = []
    lems_info["activity_to_save"] = []
    lems_info["muscles_to_save"] = []
    lems_info["muscles_activity_to_save"] = []
    lems_info["cells"] = []
    lems_info["muscles"] = []
    lems_info["includes"] = []

    if params.custom_component_types_definitions:
        lems_info["includes"].append(params.custom_component_types_definitions)
        if target_directory != './':
            def_file = "%s/%s" % (os.path.dirname(os.path.abspath(__file__)),
                                  params.custom_component_types_definitions)
            shutil.copy(def_file, target_directory)
        nml_doc.includes.append(
            IncludeType(href=params.custom_component_types_definitions))

    backers_dir = root_dir + "/../../../../OpenWormBackers/" if test else root_dir + "/../../../OpenWormBackers/"
    sys.path.append(backers_dir)
    import backers
    cells_vs_name = backers.get_adopted_cell_names(backers_dir)

    populations_without_location = False  # isinstance(params.elec_syn, GapJunction)

    count = 0
    for cell in cell_names:

        if cells is None or cell in cells:

            inst = Instance(id="0")

            if not populations_without_location:
                # build a Population data structure out of the cell name
                pop0 = Population(id=cell,
                                  component=params.generic_neuron_cell.id,
                                  type="populationList")
                pop0.instances.append(inst)

            else:
                # build a Population data structure out of the cell name
                pop0 = Population(id=cell,
                                  component=params.generic_neuron_cell.id,
                                  size="1")

            # put that Population into the Network data structure from above
            net.populations.append(pop0)

            if cells_vs_name.has_key(cell):
                p = Property(tag="OpenWormBackerAssignedName",
                             value=cells_vs_name[cell])
                pop0.properties.append(p)

            # also use the cell name to grab the morphology file, as a NeuroML data structure
            #  into the 'all_cells' dict
            cell_file_path = root_dir + "/../../../" if test else root_dir + "/../../"  #if running test
            cell_file = cell_file_path + 'generatedNeuroML2/%s.cell.nml' % cell
            doc = loaders.NeuroMLLoader.load(cell_file)
            all_cells[cell] = doc.cells[0]
            location = doc.cells[0].morphology.segments[0].proximal
            if verbose:
                print_(
                    "Loaded morphology: %s; id: %s; location: (%s, %s, %s)" %
                    (os.path.realpath(cell_file), all_cells[cell].id,
                     location.x, location.y, location.z))

            inst.location = Location(float(location.x), float(location.y),
                                     float(location.z))

            target = "../%s/0/%s" % (pop0.id, params.generic_neuron_cell.id)
            if populations_without_location:
                target = "../%s[0]" % (cell)

            if cells_to_stimulate is None or cell in cells_to_stimulate:
                input_list = InputList(id="Input_%s_%s" %
                                       (cell, params.offset_current.id),
                                       component=params.offset_current.id,
                                       populations='%s' % cell)

                input_list.input.append(
                    Input(id=0, target=target, destination="synapses"))

                net.input_lists.append(input_list)

            if cells_to_plot is None or cell in cells_to_plot:
                plot = {}

                plot["cell"] = cell
                plot["colour"] = get_random_colour_hex()
                plot["quantity"] = "%s/0/%s/v" % (
                    cell, params.generic_neuron_cell.id)
                if populations_without_location:
                    plot["quantity"] = "%s[0]/v" % (cell)
                lems_info["plots"].append(plot)

                if params.generic_neuron_cell.__class__.__name__ == 'IafActivityCell':
                    plot = {}

                    plot["cell"] = cell
                    plot["colour"] = get_random_colour_hex()
                    plot["quantity"] = "%s/0/%s/activity" % (
                        cell, params.generic_neuron_cell.id)
                    if populations_without_location:
                        plot["quantity"] = "%s[0]/activity" % (cell)
                    lems_info["activity_plots"].append(plot)

                if params.generic_neuron_cell.__class__.__name__ == 'Cell':
                    plot = {}

                    plot["cell"] = cell
                    plot["colour"] = get_random_colour_hex()
                    plot["quantity"] = "%s/0/%s/caConc" % (
                        cell, params.generic_neuron_cell.id)
                    if populations_without_location:
                        plot["quantity"] = "%s[0]/caConc" % (cell)
                    lems_info["activity_plots"].append(plot)

            save = {}
            save["cell"] = cell
            save["quantity"] = "%s/0/%s/v" % (cell,
                                              params.generic_neuron_cell.id)
            if populations_without_location:
                save["quantity"] = "%s[0]/v" % (cell)
            lems_info["to_save"].append(save)

            if params.generic_neuron_cell.__class__.__name__ == 'IafActivityCell':
                save = {}
                save["cell"] = cell
                save["quantity"] = "%s/0/%s/activity" % (
                    cell, params.generic_neuron_cell.id)
                if populations_without_location:
                    save["quantity"] = "%s[0]/activity" % (cell)
                lems_info["activity_to_save"].append(save)
            if params.generic_neuron_cell.__class__.__name__ == 'Cell':
                save = {}
                save["cell"] = cell
                save["quantity"] = "%s/0/%s/caConc" % (
                    cell, params.generic_neuron_cell.id)
                if populations_without_location:
                    save["quantity"] = "%s[0]/caConc" % (cell)
                lems_info["activity_to_save"].append(save)

            lems_info["cells"].append(cell)

            count += 1

    if verbose:
        print_("Finished loading %i cells" % count)

    mneurons, all_muscles, muscle_conns = get_cell_muscle_names_and_connection(
    )

    muscles = get_muscle_names()

    if include_muscles:

        muscle_count = 0
        for muscle in muscles:

            inst = Instance(id="0")

            if not populations_without_location:
                # build a Population data structure out of the cell name
                pop0 = Population(id=muscle,
                                  component=params.generic_muscle_cell.id,
                                  type="populationList")
                pop0.instances.append(inst)

            else:
                # build a Population data structure out of the cell name
                pop0 = Population(id=muscle,
                                  component=params.generic_muscle_cell.id,
                                  size="1")

            # put that Population into the Network data structure from above
            net.populations.append(pop0)

            if cells_vs_name.has_key(muscle):
                # No muscles adopted yet, but just in case they are in future...
                p = Property(tag="OpenWormBackerAssignedName",
                             value=cells_vs_name[muscle])
                pop0.properties.append(p)

            x = 80 * (-1 if muscle[1] == 'V' else 1)
            z = 80 * (-1 if muscle[2] == 'L' else 1)
            y = -300 + 30 * int(muscle[3:5])
            print_('Positioning muscle: %s at (%s,%s,%s)' % (muscle, x, y, z))
            inst.location = Location(x, y, z)

            target = "%s/0/%s" % (pop0.id, params.generic_muscle_cell.id)
            if populations_without_location:
                target = "%s[0]" % (muscle)

            plot = {}

            plot["cell"] = muscle
            plot["colour"] = get_random_colour_hex()
            plot["quantity"] = "%s/0/%s/v" % (muscle,
                                              params.generic_muscle_cell.id)
            if populations_without_location:
                plot["quantity"] = "%s[0]/v" % (muscle)
            lems_info["muscle_plots"].append(plot)

            if params.generic_muscle_cell.__class__.__name__ == 'IafActivityCell':
                plot = {}

                plot["cell"] = muscle
                plot["colour"] = get_random_colour_hex()
                plot["quantity"] = "%s/0/%s/activity" % (
                    muscle, params.generic_muscle_cell.id)
                if populations_without_location:
                    plot["quantity"] = "%s[0]/activity" % (muscle)
                lems_info["muscle_activity_plots"].append(plot)

            if params.generic_muscle_cell.__class__.__name__ == 'Cell':
                plot = {}

                plot["cell"] = muscle
                plot["colour"] = get_random_colour_hex()
                plot["quantity"] = "%s/0/%s/caConc" % (
                    muscle, params.generic_muscle_cell.id)
                if populations_without_location:
                    plot["quantity"] = "%s[0]/caConc" % (muscle)
                lems_info["muscle_activity_plots"].append(plot)

            save = {}
            save["cell"] = muscle
            save["quantity"] = "%s/0/%s/v" % (muscle,
                                              params.generic_muscle_cell.id)
            if populations_without_location:
                save["quantity"] = "%s[0]/v" % (muscle)
            lems_info["muscles_to_save"].append(save)

            if params.generic_muscle_cell.__class__.__name__ == 'IafActivityCell':
                save = {}
                save["cell"] = muscle
                save["quantity"] = "%s/0/%s/activity" % (
                    muscle, params.generic_muscle_cell.id)
                if populations_without_location:
                    save["quantity"] = "%s[0]/activity" % (muscle)
                lems_info["muscles_activity_to_save"].append(save)
            if params.generic_muscle_cell.__class__.__name__ == 'Cell':
                save = {}
                save["cell"] = muscle
                save["quantity"] = "%s/0/%s/caConc" % (
                    muscle, params.generic_muscle_cell.id)
                if populations_without_location:
                    save["quantity"] = "%s[0]/caConc" % (muscle)
                lems_info["muscles_activity_to_save"].append(save)

            lems_info["muscles"].append(muscle)

            muscle_count += 1

        if verbose:
            print_("Finished creating %i muscles" % muscle_count)

    existing_synapses = {}

    for conn in conns:

        if conn.pre_cell in lems_info["cells"] and conn.post_cell in lems_info[
                "cells"]:
            # take information about each connection and package it into a
            # NeuroML Projection data structure
            proj_id = get_projection_id(conn.pre_cell, conn.post_cell,
                                        conn.synclass, conn.syntype)

            elect_conn = False
            analog_conn = False
            syn0 = params.neuron_to_neuron_exc_syn
            if 'GABA' in conn.synclass:
                syn0 = params.neuron_to_neuron_inh_syn
            if '_GJ' in conn.synclass:
                syn0 = params.neuron_to_neuron_elec_syn
                elect_conn = isinstance(params.neuron_to_neuron_elec_syn,
                                        GapJunction)

            if isinstance(syn0, GradedSynapse):
                analog_conn = True
                if len(nml_doc.silent_synapses) == 0:
                    silent = SilentSynapse(id="silent")
                    nml_doc.silent_synapses.append(silent)

            number_syns = conn.number
            conn_shorthand = "%s-%s" % (conn.pre_cell, conn.post_cell)

            if conn_number_override is not None and (
                    conn_number_override.has_key(conn_shorthand)):
                number_syns = conn_number_override[conn_shorthand]
            elif conn_number_scaling is not None and (
                    conn_number_scaling.has_key(conn_shorthand)):
                number_syns = conn.number * conn_number_scaling[conn_shorthand]
            '''
            else:
                print conn_shorthand
                print conn_number_override
                print conn_number_scaling'''

            if number_syns != conn.number:
                magnitude, unit = bioparameters.split_neuroml_quantity(
                    syn0.gbase)
                cond0 = "%s%s" % (magnitude * conn.number, unit)
                cond1 = "%s%s" % (magnitude * number_syns, unit)
                if verbose:
                    print_(">> Changing number of effective synapses connection %s -> %s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \
                     (conn.pre_cell, conn.post_cell, conn.number, cond0, number_syns, cond1))

            syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc,
                                                  existing_synapses)

            if elect_conn:

                if populations_without_location:
                    proj0 = ElectricalProjection(id=proj_id, \
                                       presynaptic_population=conn.pre_cell,
                                       postsynaptic_population=conn.post_cell)

                    net.electrical_projections.append(proj0)

                    # Add a Connection with the closest locations
                    conn0 = ElectricalConnection(id="0", \
                               pre_cell="0",
                               post_cell="0",
                               synapse=syn_new.id)

                    proj0.electrical_connections.append(conn0)
                else:
                    proj0 = ElectricalProjection(id=proj_id, \
                                       presynaptic_population=conn.pre_cell,
                                       postsynaptic_population=conn.post_cell)

                    net.electrical_projections.append(proj0)

                    pre_cell_id = "../%s/0/%s" % (
                        conn.pre_cell, params.generic_neuron_cell.id)
                    post_cell_id = "../%s/0/%s" % (
                        conn.post_cell, params.generic_neuron_cell.id)

                    #print_("Conn %s -> %s"%(pre_cell_id,post_cell_id))

                    # Add a Connection with the closest locations
                    conn0 = ElectricalConnectionInstance(id="0", \
                               pre_cell=pre_cell_id,
                               post_cell=post_cell_id,
                               synapse=syn_new.id)

                    proj0.electrical_connection_instances.append(conn0)

            elif analog_conn:

                proj0 = ContinuousProjection(id=proj_id, \
                                   presynaptic_population=conn.pre_cell,
                                   postsynaptic_population=conn.post_cell)

                net.continuous_projections.append(proj0)

                pre_cell_id = "../%s/0/%s" % (conn.pre_cell,
                                              params.generic_neuron_cell.id)
                post_cell_id = "../%s/0/%s" % (conn.post_cell,
                                               params.generic_neuron_cell.id)

                conn0 = ContinuousConnectionInstance(id="0", \
                           pre_cell=pre_cell_id,
                           post_cell=post_cell_id,
                           pre_component="silent",
                           post_component=syn_new.id)

                proj0.continuous_connection_instances.append(conn0)

            else:

                if not populations_without_location:
                    proj0 = Projection(id=proj_id, \
                                       presynaptic_population=conn.pre_cell,
                                       postsynaptic_population=conn.post_cell,
                                       synapse=syn_new.id)

                    net.projections.append(proj0)

                    pre_cell_id = "../%s/0/%s" % (
                        conn.pre_cell, params.generic_neuron_cell.id)
                    post_cell_id = "../%s/0/%s" % (
                        conn.post_cell, params.generic_neuron_cell.id)

                    conn0 = ConnectionWD(id="0", \
                               pre_cell_id=pre_cell_id,
                               post_cell_id=post_cell_id,
                               weight = number_syns,
                               delay = '0ms')

                    proj0.connection_wds.append(conn0)

                if populations_without_location:
                    raise NotImplementedError
                    '''
                    #         <synapticConnection from="hh1pop[0]" to="hh2pop[0]" synapse="syn1exp" destination="synapses"/>
                    pre_cell_id="%s[0]"%(conn.pre_cell)
                    post_cell_id="%s[0]"%(conn.post_cell)

                    conn0 = SynapticConnection(from_=pre_cell_id,
                               to=post_cell_id,
                               synapse=syn_new.id,
                               destination="synapses")

                    net.synaptic_connections.append(conn0)'''

    if include_muscles:
        for conn in muscle_conns:

            if conn.pre_cell in lems_info[
                    "cells"] and conn.post_cell in muscles:
                # take information about each connection and package it into a
                # NeuroML Projection data structure
                proj_id = get_projection_id(conn.pre_cell, conn.post_cell,
                                            conn.synclass, conn.syntype)

                elect_conn = False
                analog_conn = False
                syn0 = params.neuron_to_muscle_exc_syn
                if 'GABA' in conn.synclass:
                    syn0 = params.neuron_to_muscle_inh_syn
                if '_GJ' in conn.synclass:
                    syn0 = params.neuron_to_muscle_elec_syn
                    elect_conn = isinstance(params.neuron_to_muscle_elec_syn,
                                            GapJunction)

                if isinstance(syn0, GradedSynapse):
                    analog_conn = True
                    if len(nml_doc.silent_synapses) == 0:
                        silent = SilentSynapse(id="silent")
                        nml_doc.silent_synapses.append(silent)

                number_syns = conn.number
                conn_shorthand = "%s-%s" % (conn.pre_cell, conn.post_cell)

                if conn_number_override is not None and (
                        conn_number_override.has_key(conn_shorthand)):
                    number_syns = conn_number_override[conn_shorthand]
                elif conn_number_scaling is not None and (
                        conn_number_scaling.has_key(conn_shorthand)):
                    number_syns = conn.number * conn_number_scaling[
                        conn_shorthand]
                '''
            else:
                print conn_shorthand
                print conn_number_override
                print conn_number_scaling'''

                if number_syns != conn.number:
                    magnitude, unit = bioparameters.split_neuroml_quantity(
                        syn0.gbase)
                    cond0 = "%s%s" % (magnitude * conn.number, unit)
                    cond1 = "%s%s" % (magnitude * number_syns, unit)
                    if verbose:
                        print_(">> Changing number of effective synapses connection %s -> %s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \
                         (conn.pre_cell, conn.post_cell, conn.number, cond0, number_syns, cond1))

                syn_new = create_n_connection_synapse(syn0, number_syns,
                                                      nml_doc,
                                                      existing_synapses)

                if elect_conn:

                    if populations_without_location:
                        proj0 = ElectricalProjection(id=proj_id, \
                                           presynaptic_population=conn.pre_cell,
                                           postsynaptic_population=conn.post_cell)

                        net.electrical_projections.append(proj0)

                        # Add a Connection with the closest locations
                        conn0 = ElectricalConnection(id="0", \
                                   pre_cell="0",
                                   post_cell="0",
                                   synapse=syn_new.id)

                        proj0.electrical_connections.append(conn0)
                    else:
                        proj0 = ElectricalProjection(id=proj_id, \
                                           presynaptic_population=conn.pre_cell,
                                           postsynaptic_population=conn.post_cell)

                        net.electrical_projections.append(proj0)

                        pre_cell_id = "../%s/0/%s" % (
                            conn.pre_cell, params.generic_neuron_cell.id)
                        post_cell_id = "../%s/0/%s" % (
                            conn.post_cell, params.generic_muscle_cell.id)

                        #print_("Conn %s -> %s"%(pre_cell_id,post_cell_id))

                        # Add a Connection with the closest locations
                        conn0 = ElectricalConnectionInstance(id="0", \
                                   pre_cell=pre_cell_id,
                                   post_cell=post_cell_id,
                                   synapse=syn_new.id)

                        proj0.electrical_connection_instances.append(conn0)

                elif analog_conn:

                    proj0 = ContinuousProjection(id=proj_id, \
                                       presynaptic_population=conn.pre_cell,
                                       postsynaptic_population=conn.post_cell)

                    net.continuous_projections.append(proj0)

                    pre_cell_id = "../%s/0/%s" % (
                        conn.pre_cell, params.generic_neuron_cell.id)
                    post_cell_id = "../%s/0/%s" % (
                        conn.post_cell, params.generic_muscle_cell.id)

                    conn0 = ContinuousConnectionInstance(id="0", \
                               pre_cell=pre_cell_id,
                               post_cell=post_cell_id,
                               pre_component="silent",
                               post_component=syn_new.id)

                    proj0.continuous_connection_instances.append(conn0)

                else:

                    if not populations_without_location:
                        proj0 = Projection(id=proj_id, \
                                           presynaptic_population=conn.pre_cell,
                                           postsynaptic_population=conn.post_cell,
                                           synapse=syn_new.id)

                        net.projections.append(proj0)

                        # Add a Connection with the closest locations

                        pre_cell_id = "../%s/0/%s" % (
                            conn.pre_cell, params.generic_neuron_cell.id)
                        post_cell_id = "../%s/0/%s" % (
                            conn.post_cell, params.generic_muscle_cell.id)

                        conn0 = Connection(id="0", \
                                   pre_cell_id=pre_cell_id,
                                   post_cell_id=post_cell_id)

                        proj0.connections.append(conn0)

                    if populations_without_location:
                        #         <synapticConnection from="hh1pop[0]" to="hh2pop[0]" synapse="syn1exp" destination="synapses"/>
                        pre_cell_id = "%s[0]" % (conn.pre_cell)
                        post_cell_id = "%s[0]" % (conn.post_cell)

                        conn0 = SynapticConnection(from_=pre_cell_id,
                                                   to=post_cell_id,
                                                   synapse=syn_new.id,
                                                   destination="synapses")

                        net.synaptic_connections.append(conn0)

    # import pprint
    # pprint.pprint(lems_info)
    template_path = root_dir + '/../' if test else root_dir + '/'  # if running test
    write_to_file(nml_doc,
                  lems_info,
                  net_id,
                  template_path,
                  validate=validate,
                  verbose=verbose,
                  target_directory=target_directory)

    return nml_doc
    inst.location = Location(x=str(x_size * random.random()),
                             y=str(y_size * random.random()),
                             z=str(z_size * random.random()))

prob_connection = 0.5
proj_count = 0

from_pop = pop.id
to_pop = pop.id
projection = Projection(id="Proj",
                        presynaptic_population=from_pop,
                        postsynaptic_population=to_pop,
                        synapse=syn0.id)
electricalProjection = ElectricalProjection(id="ElectProj",
                                            presynaptic_population=from_pop,
                                            postsynaptic_population=to_pop)
electricalProjectionW = ElectricalProjection(id="ElectProjW",
                                             presynaptic_population=from_pop,
                                             postsynaptic_population=to_pop)

net.projections.append(projection)
net.electrical_projections.append(electricalProjection)
net.electrical_projections.append(electricalProjectionW)

input_list = InputList(id='il', component=pfs.id, populations=from_pop)

net.input_lists.append(input_list)

input_list_w = InputList(id='ilw', component=pfs.id, populations=from_pop)
示例#3
0
def generate(net_id,
             params,
             cells = None,
             cells_to_plot = None,
             cells_to_stimulate = None,
             include_muscles=False,
             conn_number_override = None,
             conn_number_scaling = None,
             duration = 500,
             dt = 0.01,
             vmin = -75,
             vmax = 20,
             seed = 1234,
             validate=True, test=False):

    random.seed(seed)

    info = "\n\nParameters and setting used to generate this network:\n\n"+\
           "    Cells:                         %s\n" % (cells if cells is not None else "All cells")+\
           "    Cell stimulated:               %s\n" % (cells_to_stimulate if cells_to_stimulate is not None else "All cells")+\
           "    Connection numbers overridden: %s\n" % (conn_number_override if conn_number_override is not None else "None")+\
           "    Connection numbers scaled:     %s\n" % (conn_number_scaling if conn_number_scaling is not None else "None")+\
           "    Include muscles:               %s\n" % include_muscles
    info += "\n%s\n"%(bioparameter_info("    "))

    nml_doc = NeuroMLDocument(id=net_id, notes=info)

    nml_doc.iaf_cells.append(params.generic_cell)

    net = Network(id=net_id)


    nml_doc.networks.append(net)

    nml_doc.pulse_generators.append(params.offset_current)

    # Use the spreadsheet reader to give a list of all cells and a list of all connections
    # This could be replaced with a call to "DatabaseReader" or "OpenWormNeuroLexReader" in future...
    # If called from unittest folder ammend path to "../../../../"
    spreadsheet_location = "../../../../" if test else "../../../"

    cell_names, conns = SpreadsheetDataReader.readDataFromSpreadsheet(spreadsheet_location, include_nonconnected_cells=True)

    cell_names.sort()

    # To hold all Cell NeuroML objects vs. names
    all_cells = {}

    # lems_file = ""
    lems_info = {"comment":    info,
                 "reference":  net_id,
                 "duration":   duration,
                 "dt":         dt,
                 "vmin":       vmin,
                 "vmax":       vmax,
                 "cell_component":    params.generic_cell.id}

    lems_info["plots"] = []
    lems_info["activity_plots"] = []
    lems_info["muscle_plots"] = []
    lems_info["muscle_activity_plots"] = []

    lems_info["to_save"] = []
    lems_info["activity_to_save"] = []
    lems_info["muscles_to_save"] = []
    lems_info["muscles_activity_to_save"] = []
    lems_info["cells"] = []
    lems_info["muscles"] = []
    lems_info["includes"] = []

    if hasattr(params.generic_cell, 'custom_component_type_definition'):
        lems_info["includes"].append(params.generic_cell.custom_component_type_definition)

    backers_dir = "../../../../OpenWormBackers/" if test else "../../../OpenWormBackers/"
    sys.path.append(backers_dir)
    import backers
    cells_vs_name = backers.get_adopted_cell_names(backers_dir)

    populations_without_location = isinstance(params.elec_syn, GapJunction)

    count = 0
    for cell in cell_names:

        if cells is None or cell in cells:

            inst = Instance(id="0")

            if not populations_without_location:
                # build a Population data structure out of the cell name
                pop0 = Population(id=cell,
                                  component=params.generic_cell.id,
                                  type="populationList")
                pop0.instances.append(inst)

            else:
                # build a Population data structure out of the cell name
                pop0 = Population(id=cell,
                                  component=params.generic_cell.id,
                                  size="1")


            # put that Population into the Network data structure from above
            net.populations.append(pop0)

            if cells_vs_name.has_key(cell):
                p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[cell])
                pop0.properties.append(p)

            # also use the cell name to grab the morphology file, as a NeuroML data structure
            #  into the 'all_cells' dict
            cell_file_path = "../../../" if test else "../../" #if running test
            cell_file = cell_file_path+'generatedNeuroML2/%s.nml'%cell
            doc = loaders.NeuroMLLoader.load(cell_file)
            all_cells[cell] = doc.cells[0]
            location = doc.cells[0].morphology.segments[0].proximal
            print("Loaded morphology file from: %s, with id: %s, location: (%s, %s, %s)"%(cell_file, all_cells[cell].id, location.x, location.y, location.z))


            inst.location = Location(float(location.x), float(location.y), float(location.z))

            target = "%s/0/%s"%(pop0.id, params.generic_cell.id)
            if populations_without_location:
                target = "%s[0]" % (cell)

            exp_input = ExplicitInput(target=target, input=params.offset_current.id)

            if cells_to_stimulate is None or cell in cells_to_stimulate:
                net.explicit_inputs.append(exp_input)

            if cells_to_plot is None or cell in cells_to_plot:
                plot = {}

                plot["cell"] = cell
                plot["colour"] = get_random_colour_hex()
                plot["quantity"] = "%s/0/%s/v" % (cell, params.generic_cell.id)
                if populations_without_location:
                    plot["quantity"] = "%s[0]/v" % (cell)
                lems_info["plots"].append(plot)

                if hasattr(params.generic_cell, 'custom_component_type_definition'):
                    plot = {}

                    plot["cell"] = cell
                    plot["colour"] = get_random_colour_hex()
                    plot["quantity"] = "%s/0/%s/activity" % (cell, params.generic_cell.id)
                    if populations_without_location:
                        plot["quantity"] = "%s[0]/activity" % (cell)
                    lems_info["activity_plots"].append(plot)

            save = {}
            save["cell"] = cell
            save["quantity"] = "%s/0/%s/v" % (cell, params.generic_cell.id)
            if populations_without_location:
                save["quantity"] = "%s[0]/v" % (cell)
            lems_info["to_save"].append(save)

            if hasattr(params.generic_cell, 'custom_component_type_definition'):
                save = {}
                save["cell"] = cell
                save["quantity"] = "%s/0/%s/activity" % (cell, params.generic_cell.id)
                if populations_without_location:
                    save["quantity"] = "%s[0]/activity" % (cell)
                lems_info["activity_to_save"].append(save)

            lems_info["cells"].append(cell)

            count+=1

    print("Finished loading %i cells"%count)

    mneurons, all_muscles, muscle_conns = SpreadsheetDataReader.readMuscleDataFromSpreadsheet(spreadsheet_location)

    muscles = get_muscle_names()

    if include_muscles:

        muscle_count = 0
        for muscle in muscles:

            inst = Instance(id="0")

            if not populations_without_location:
                # build a Population data structure out of the cell name
                pop0 = Population(id=muscle,
                                  component=params.generic_cell.id,
                                  type="populationList")
                pop0.instances.append(inst)

            else:
                # build a Population data structure out of the cell name
                pop0 = Population(id=muscle,
                                  component=params.generic_cell.id,
                                  size="1")

            # put that Population into the Network data structure from above
            net.populations.append(pop0)

            if cells_vs_name.has_key(muscle):
                # No muscles adopted yet, but just in case they are in future...
                p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[muscle])
                pop0.properties.append(p)

            inst.location = Location(100, 10*muscle_count, 100)

            target = "%s/0/%s"%(pop0.id, params.generic_cell.id)
            if populations_without_location:
                target = "%s[0]" % (muscle)

            plot = {}

            plot["cell"] = muscle
            plot["colour"] = get_random_colour_hex()
            plot["quantity"] = "%s/0/%s/v" % (muscle, params.generic_cell.id)
            if populations_without_location:
                plot["quantity"] = "%s[0]/v" % (muscle)
            lems_info["muscle_plots"].append(plot)

            if hasattr(params.generic_cell, 'custom_component_type_definition'):
                plot = {}

                plot["cell"] = muscle
                plot["colour"] = get_random_colour_hex()
                plot["quantity"] = "%s/0/%s/activity" % (muscle, params.generic_cell.id)
                if populations_without_location:
                    plot["quantity"] = "%s[0]/activity" % (muscle)
                lems_info["muscle_activity_plots"].append(plot)

            save = {}
            save["cell"] = muscle
            save["quantity"] = "%s/0/%s/v" % (muscle, params.generic_cell.id)
            if populations_without_location:
                save["quantity"] = "%s[0]/v" % (muscle)
            lems_info["muscles_to_save"].append(save)

            if hasattr(params.generic_cell, 'custom_component_type_definition'):
                save = {}
                save["cell"] = muscle
                save["quantity"] = "%s/0/%s/activity" % (muscle, params.generic_cell.id)
                if populations_without_location:
                    save["quantity"] = "%s[0]/activity" % (muscle)
                lems_info["muscles_activity_to_save"].append(save)

            lems_info["muscles"].append(muscle)

            muscle_count+=1

        print("Finished creating %i muscles"%muscle_count)

    for conn in conns:

        if conn.pre_cell in lems_info["cells"] and conn.post_cell in lems_info["cells"]:
            # take information about each connection and package it into a
            # NeuroML Projection data structure
            proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype)

            elect_conn = False
            syn0 = params.exc_syn
            if 'GABA' in conn.synclass:
                syn0 = params.inh_syn
            if '_GJ' in conn.synclass:
                syn0 = params.elec_syn
                elect_conn = isinstance(params.elec_syn, GapJunction)

            number_syns = conn.number
            conn_shorthand = "%s-%s"%(conn.pre_cell, conn.post_cell)

            if conn_number_override is not None and (conn_number_override.has_key(conn_shorthand)):
                number_syns = conn_number_override[conn_shorthand]
            elif conn_number_scaling is not None and (conn_number_scaling.has_key(conn_shorthand)):
                number_syns = conn.number*conn_number_scaling[conn_shorthand]
            '''
            else:
                print conn_shorthand
                print conn_number_override
                print conn_number_scaling'''

            if number_syns != conn.number:
                magnitude, unit = split_neuroml_quantity(syn0.gbase)
                cond0 = "%s%s"%(magnitude*conn.number, unit)
                cond1 = "%s%s"%(magnitude*number_syns, unit)
                print(">> Changing number of effective synapses connection %s -> %s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \
                     (conn.pre_cell, conn.post_cell, conn.number, cond0, number_syns, cond1))


            syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc)

            if not elect_conn:

                if not populations_without_location:
                    proj0 = Projection(id=proj_id, \
                                       presynaptic_population=conn.pre_cell,
                                       postsynaptic_population=conn.post_cell,
                                       synapse=syn_new.id)

                    net.projections.append(proj0)

                    # Add a Connection with the closest locations

                    pre_cell_id="../%s/0/%s"%(conn.pre_cell, params.generic_cell.id)
                    post_cell_id="../%s/0/%s"%(conn.post_cell, params.generic_cell.id)

                    conn0 = Connection(id="0", \
                               pre_cell_id=pre_cell_id,
                               post_cell_id=post_cell_id)

                    proj0.connections.append(conn0)

                if populations_without_location:
                    #         <synapticConnection from="hh1pop[0]" to="hh2pop[0]" synapse="syn1exp" destination="synapses"/>
                    pre_cell_id="%s[0]"%(conn.pre_cell)
                    post_cell_id="%s[0]"%(conn.post_cell)

                    conn0 = SynapticConnection(from_=pre_cell_id,
                               to=post_cell_id,
                               synapse=syn_new.id,
                               destination="synapses")

                    net.synaptic_connections.append(conn0)


            else:
                proj0 = ElectricalProjection(id=proj_id, \
                                   presynaptic_population=conn.pre_cell,
                                   postsynaptic_population=conn.post_cell)

                net.electrical_projections.append(proj0)

                # Add a Connection with the closest locations
                conn0 = ElectricalConnection(id="0", \
                           pre_cell="0",
                           post_cell="0",
                           synapse=syn_new.id)

                proj0.electrical_connections.append(conn0)


    if include_muscles:
      for conn in muscle_conns:

        if conn.pre_cell in lems_info["cells"] and conn.post_cell in muscles:
            # take information about each connection and package it into a
            # NeuroML Projection data structure
            proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype)

            elect_conn = False
            syn0 = params.exc_syn
            if 'GABA' in conn.synclass:
                syn0 = params.inh_syn
            if '_GJ' in conn.synclass:
                syn0 = params.elec_syn
                elect_conn = isinstance(params.elec_syn, GapJunction)

            number_syns = conn.number
            conn_shorthand = "%s-%s"%(conn.pre_cell, conn.post_cell)

            if conn_number_override is not None and (conn_number_override.has_key(conn_shorthand)):
                number_syns = conn_number_override[conn_shorthand]
            elif conn_number_scaling is not None and (conn_number_scaling.has_key(conn_shorthand)):
                number_syns = conn.number*conn_number_scaling[conn_shorthand]
            '''
            else:
                print conn_shorthand
                print conn_number_override
                print conn_number_scaling'''

            if number_syns != conn.number:
                magnitude, unit = split_neuroml_quantity(syn0.gbase)
                cond0 = "%s%s"%(magnitude*conn.number, unit)
                cond1 = "%s%s"%(magnitude*number_syns, unit)
                print(">> Changing number of effective synapses connection %s -> %s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \
                     (conn.pre_cell, conn.post_cell, conn.number, cond0, number_syns, cond1))


            syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc)

            if not elect_conn:

                if not populations_without_location:
                    proj0 = Projection(id=proj_id, \
                                       presynaptic_population=conn.pre_cell,
                                       postsynaptic_population=conn.post_cell,
                                       synapse=syn_new.id)

                    net.projections.append(proj0)

                    # Add a Connection with the closest locations

                    pre_cell_id="../%s/0/%s"%(conn.pre_cell, params.generic_cell.id)
                    post_cell_id="../%s/0/%s"%(conn.post_cell, params.generic_cell.id)

                    conn0 = Connection(id="0", \
                               pre_cell_id=pre_cell_id,
                               post_cell_id=post_cell_id)

                    proj0.connections.append(conn0)

                if populations_without_location:
                    #         <synapticConnection from="hh1pop[0]" to="hh2pop[0]" synapse="syn1exp" destination="synapses"/>
                    pre_cell_id="%s[0]"%(conn.pre_cell)
                    post_cell_id="%s[0]"%(conn.post_cell)

                    conn0 = SynapticConnection(from_=pre_cell_id,
                               to=post_cell_id,
                               synapse=syn_new.id,
                               destination="synapses")

                    net.synaptic_connections.append(conn0)


            else:
                proj0 = ElectricalProjection(id=proj_id, \
                                   presynaptic_population=conn.pre_cell,
                                   postsynaptic_population=conn.post_cell)

                net.electrical_projections.append(proj0)

                # Add a Connection with the closest locations
                conn0 = ElectricalConnection(id="0", \
                           pre_cell="0",
                           post_cell="0",
                           synapse=syn_new.id)

                proj0.electrical_connections.append(conn0)

    # import pprint
    # pprint.pprint(lems_info)
    template_path = '../' if test else '' # if running test
    write_to_file(nml_doc, lems_info, net_id, template_path, validate=validate)


    return nml_doc
示例#4
0
def generate(net_id,
             params,
             data_reader = "SpreadsheetDataReader",
             cells = None,
             cells_to_plot = None,
             cells_to_stimulate = None,
             muscles_to_include=[],
             conns_to_include=[],
             conn_number_override = None,
             conn_number_scaling = None,
             conn_polarity_override = None,
             duration = 500,
             dt = 0.01,
             vmin = None,
             vmax = None,
             seed = 1234,
             test=False,
             verbose=True,
             param_overrides={},
             target_directory='./'):
                 
    validate = not (params.is_level_B() or params.is_level_C0())
                
    root_dir = os.path.dirname(os.path.abspath(__file__))
    for k in param_overrides.keys():
        v = param_overrides[k]
        print_("Setting parameter %s = %s"%(k,v))
        params.set_bioparameter(k, v, "Set with param_overrides", 0)
    

    params.create_models()
    
    if vmin==None:
        if params.is_level_A():
            vmin=-72
        elif params.is_level_B():
            vmin=-52 
        elif params.is_level_C():
            vmin=-60
        elif params.is_level_D():
            vmin=-60
        else:
            vmin=-52 
            
    
    if vmax==None:
        if params.is_level_A():
            vmax=-48
        elif params.is_level_B():
            vmax=-28
        elif params.is_level_C():
            vmax=25
        elif params.is_level_D():
            vmax=25
        else:
            vmax=-28
    
    random.seed(seed)

    info = "\n\nParameters and setting used to generate this network:\n\n"+\
           "    Data reader:                    %s\n" % data_reader+\
           "    Cells:                          %s\n" % (cells if cells is not None else "All cells")+\
           "    Cell stimulated:                %s\n" % (cells_to_stimulate if cells_to_stimulate is not None else "All neurons")+\
           "    Connection:                     %s\n" % (conns_to_include if conns_to_include is not None else "All connections") + \
           "    Connection numbers overridden:  %s\n" % (conn_number_override if conn_number_override is not None else "None")+\
           "    Connection numbers scaled:      %s\n" % (conn_number_scaling if conn_number_scaling is not None else "None")+ \
           "    Connection polarities override: %s\n" % conn_polarity_override + \
           "    Muscles:                        %s\n" % (muscles_to_include if muscles_to_include is not None else "All muscles")
    if verbose: print_(info)
    info += "\n%s\n"%(params.bioparameter_info("    "))

    nml_doc = NeuroMLDocument(id=net_id, notes=info)

    if params.is_level_A() or params.is_level_B() or params.level == "BC1":
        nml_doc.iaf_cells.append(params.generic_muscle_cell) 
        nml_doc.iaf_cells.append(params.generic_neuron_cell) 
    elif params.is_level_C():
        nml_doc.cells.append(params.generic_muscle_cell)
        nml_doc.cells.append(params.generic_neuron_cell)
    elif params.is_level_D():
        nml_doc.cells.append(params.generic_muscle_cell)
         

    net = Network(id=net_id)


    nml_doc.networks.append(net)

    nml_doc.pulse_generators.append(params.offset_current)

    if is_cond_based_cell(params):
        nml_doc.fixed_factor_concentration_models.append(params.concentration_model)

    cell_names, conns = get_cell_names_and_connection(data_reader)

    # To hold all Cell NeuroML objects vs. names
    all_cells = {}

    # lems_file = ""
    lems_info = {"comment":    info,
                 "reference":  net_id,
                 "duration":   duration,
                 "dt":         dt,
                 "vmin":       vmin,
                 "vmax":       vmax}

    lems_info["plots"] = []
    lems_info["activity_plots"] = []
    lems_info["muscle_plots"] = []
    lems_info["muscle_activity_plots"] = []

    lems_info["to_save"] = []
    lems_info["activity_to_save"] = []
    lems_info["muscles_to_save"] = []
    lems_info["muscles_activity_to_save"] = []
    lems_info["cells"] = []
    lems_info["muscles"] = []
    lems_info["includes"] = []

    if params.custom_component_types_definitions:
        if isinstance(params.custom_component_types_definitions, str):
            params.custom_component_types_definitions = [params.custom_component_types_definitions]
        for ctd in params.custom_component_types_definitions:
            lems_info["includes"].append(ctd)
            if target_directory != './':
                def_file = "%s/%s"%(os.path.dirname(os.path.abspath(__file__)), ctd)
                shutil.copy(def_file, target_directory)
            nml_doc.includes.append(IncludeType(href=ctd))
    
    
    backers_dir = root_dir+"/../../../../OpenWormBackers/" if test else root_dir+"/../../../OpenWormBackers/"
    sys.path.append(backers_dir)
    import backers
    cells_vs_name = backers.get_adopted_cell_names(backers_dir)


    count = 0
    for cell in cell_names:

        if cells is None or cell in cells:

            inst = Instance(id="0")

            if not params.is_level_D():
                # build a Population data structure out of the cell name
                pop0 = Population(id=cell,
                                  component=params.generic_neuron_cell.id,
                                  type="populationList")
                cell_id = params.generic_neuron_cell.id
            else:
                # build a Population data structure out of the cell name
                pop0 = Population(id=cell,
                                  component=cell,
                                  type="populationList")
                cell_id = cell
                                  
            pop0.instances.append(inst)



            # put that Population into the Network data structure from above
            net.populations.append(pop0)
            
            if cells_vs_name.has_key(cell):
                p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[cell])
                pop0.properties.append(p)

            # also use the cell name to grab the morphology file, as a NeuroML data structure
            #  into the 'all_cells' dict
            cell_file_path = root_dir+"/../../../" if test else root_dir+"/../../" #if running test
            cell_file = cell_file_path+'generatedNeuroML2/%s.cell.nml'%cell
            doc = loaders.NeuroMLLoader.load(cell_file)
            all_cells[cell] = doc.cells[0]
            
            
            if params.is_level_D():
                new_cell = params.create_neuron_cell(cell, doc.cells[0].morphology)
                
                nml_cell_doc = NeuroMLDocument(id=cell)
                nml_cell_doc.cells.append(new_cell)
                new_cell_file = 'cells/'+cell+'_D.cell.nml'
                nml_file = target_directory+'/'+new_cell_file
                print_("Writing new cell to: %s"%os.path.realpath(nml_file))
                writers.NeuroMLWriter.write(nml_cell_doc, nml_file)
                
                nml_doc.includes.append(IncludeType(href=new_cell_file))
                lems_info["includes"].append(new_cell_file)
                
                inst.location = Location(0,0,0)
            else:
                location = doc.cells[0].morphology.segments[0].proximal
            
                inst.location = Location(float(location.x), float(location.y), float(location.z))
            
            if verbose: 
                print_("Loaded morphology: %s; id: %s; placing at location: (%s, %s, %s)"%(os.path.realpath(cell_file), all_cells[cell].id, inst.location.x, inst.location.y, inst.location.z))


                
            if cells_to_stimulate is None or cell in cells_to_stimulate:

                target = "../%s/0/%s"%(pop0.id, cell_id)
                if params.is_level_D():
                    target+="/0"
                
                input_list = InputList(id="Input_%s_%s"%(cell,params.offset_current.id),
                                     component=params.offset_current.id,
                                     populations='%s'%cell)

                input_list.input.append(Input(id=0, 
                              target=target, 
                              destination="synapses"))

                net.input_lists.append(input_list)


            if cells_to_plot is None or cell in cells_to_plot:
                plot = {}

                plot["cell"] = cell
                plot["colour"] = get_random_colour_hex()
                plot["quantity"] = "%s/0/%s/v" % (cell, cell_id)
                lems_info["plots"].append(plot)

                if params.is_level_B():
                    plot = {}

                    plot["cell"] = cell
                    plot["colour"] = get_random_colour_hex()
                    plot["quantity"] = "%s/0/%s/activity" % (cell, cell_id)
                    lems_info["activity_plots"].append(plot)

                if is_cond_based_cell(params):
                    plot = {}

                    plot["cell"] = cell
                    plot["colour"] = get_random_colour_hex()
                    plot["quantity"] = "%s/0/%s/caConc" % (cell, cell_id)
                    lems_info["activity_plots"].append(plot)

            save = {}
            save["cell"] = cell
            save["quantity"] = "%s/0/%s/v" % (cell, cell_id)
            lems_info["to_save"].append(save)

            if params.is_level_B():
                save = {}
                save["cell"] = cell
                save["quantity"] = "%s/0/%s/activity" % (cell, cell_id)
                lems_info["activity_to_save"].append(save)
            if is_cond_based_cell(params):
                save = {}
                save["cell"] = cell
                save["quantity"] = "%s/0/%s/caConc" % (cell, cell_id)
                lems_info["activity_to_save"].append(save)

            lems_info["cells"].append(cell)

            count+=1

    if verbose: 
        print_("Finished loading %i cells"%count)

    
    mneurons, all_muscles, muscle_conns = get_cell_muscle_names_and_connection(data_reader)

    #if data_reader == "SpreadsheetDataReader":
    #    all_muscles = get_muscle_names()
        
    if muscles_to_include == None or muscles_to_include == True:
        muscles_to_include = all_muscles
    elif muscles_to_include == False:
        muscles_to_include = []
        
    for m in muscles_to_include:
        assert m in all_muscles

    if len(muscles_to_include)>0:

        muscle_count = 0
        for muscle in muscles_to_include:

            inst = Instance(id="0")

            # build a Population data structure out of the cell name
            pop0 = Population(id=muscle,
                              component=params.generic_muscle_cell.id,
                              type="populationList")
            pop0.instances.append(inst)


            # put that Population into the Network data structure from above
            net.populations.append(pop0)

            if cells_vs_name.has_key(muscle):
                # No muscles adopted yet, but just in case they are in future...
                p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[muscle])
                pop0.properties.append(p)

            x, y, z = get_muscle_position(muscle, data_reader)
            print_('Positioning muscle: %s at (%s,%s,%s)'%(muscle,x,y,z))
            inst.location = Location(x,y,z)

            #target = "%s/0/%s"%(pop0.id, params.generic_muscle_cell.id) # unused

            plot = {}

            plot["cell"] = muscle
            plot["colour"] = get_random_colour_hex()
            plot["quantity"] = "%s/0/%s/v" % (muscle, params.generic_muscle_cell.id)
            lems_info["muscle_plots"].append(plot)

            if params.generic_muscle_cell.__class__.__name__ == 'IafActivityCell':
                plot = {}

                plot["cell"] = muscle
                plot["colour"] = get_random_colour_hex()
                plot["quantity"] = "%s/0/%s/activity" % (muscle, params.generic_muscle_cell.id)
                lems_info["muscle_activity_plots"].append(plot)
                
            if params.generic_muscle_cell.__class__.__name__ == 'Cell':
                plot = {}

                plot["cell"] = muscle
                plot["colour"] = get_random_colour_hex()
                plot["quantity"] = "%s/0/%s/caConc" % (muscle, params.generic_muscle_cell.id)
                lems_info["muscle_activity_plots"].append(plot)

            save = {}
            save["cell"] = muscle
            save["quantity"] = "%s/0/%s/v" % (muscle, params.generic_muscle_cell.id)
            lems_info["muscles_to_save"].append(save)

            if params.generic_muscle_cell.__class__.__name__ == 'IafActivityCell':
                save = {}
                save["cell"] = muscle
                save["quantity"] = "%s/0/%s/activity" % (muscle, params.generic_muscle_cell.id)
                lems_info["muscles_activity_to_save"].append(save)
            if params.generic_muscle_cell.__class__.__name__ == 'Cell':
                save = {}
                save["cell"] = muscle
                save["quantity"] = "%s/0/%s/caConc" % (muscle, params.generic_muscle_cell.id)
                lems_info["muscles_activity_to_save"].append(save)

            lems_info["muscles"].append(muscle)

            muscle_count+=1
            
            if muscle in cells_to_stimulate:

                target = "../%s/0/%s"%(pop0.id, params.generic_muscle_cell.id)
                if params.is_level_D():
                    target+="/0"
                
                input_list = InputList(id="Input_%s_%s"%(muscle,params.offset_current.id),
                                     component=params.offset_current.id,
                                     populations='%s'%pop0.id)

                input_list.input.append(Input(id=0, 
                              target=target, 
                              destination="synapses"))

                net.input_lists.append(input_list)

        if verbose: 
            print_("Finished creating %i muscles"%muscle_count)
        
    
    existing_synapses = {}

    for conn in conns:

        if conn.pre_cell in lems_info["cells"] and conn.post_cell in lems_info["cells"]:
            # take information about each connection and package it into a
            # NeuroML Projection data structure
            proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype)
            conn_shorthand = "%s-%s" % (conn.pre_cell, conn.post_cell)

            elect_conn = False
            analog_conn = False
            syn0 = params.neuron_to_neuron_exc_syn
            orig_pol = "exc"
            
            if 'GABA' in conn.synclass:
                syn0 = params.neuron_to_neuron_inh_syn
                orig_pol = "inh"
            if '_GJ' in conn.synclass:
                syn0 = params.neuron_to_neuron_elec_syn
                elect_conn = isinstance(params.neuron_to_neuron_elec_syn, GapJunction)
                conn_shorthand = "%s-%s_GJ" % (conn.pre_cell, conn.post_cell)

            if conns_to_include and conn_shorthand not in conns_to_include:
                continue

            print conn_shorthand + " " + str(conn.number) + " " + orig_pol + " " + conn.synclass

            polarity = None
            if conn_polarity_override and conn_polarity_override.has_key(conn_shorthand):
                polarity = conn_polarity_override[conn_shorthand]

            if polarity and not elect_conn:
                if polarity == 'inh':
                    syn0 = params.neuron_to_neuron_inh_syn
                else:
                    syn0 = params.neuron_to_neuron_exc_syn
                if verbose and polarity != orig_pol:
                    print_(">> Changing polarity of connection %s -> %s: was: %s, becomes %s " % \
                       (conn.pre_cell, conn.post_cell, orig_pol, polarity))
                
                
                
            if isinstance(syn0, GradedSynapse) or isinstance(syn0, GradedSynapse2):
                analog_conn = True
                if len(nml_doc.silent_synapses)==0:
                    silent = SilentSynapse(id="silent")
                    nml_doc.silent_synapses.append(silent)

            number_syns = conn.number

            if conn_number_override is not None and (conn_number_override.has_key(conn_shorthand)):
                number_syns = conn_number_override[conn_shorthand]
            elif conn_number_scaling is not None and (conn_number_scaling.has_key(conn_shorthand)):
                number_syns = conn.number*conn_number_scaling[conn_shorthand]
            '''
            else:
                print conn_shorthand
                print conn_number_override
                print conn_number_scaling'''
            """if polarity:
                print "%s %s num:%s" % (conn_shorthand, polarity, number_syns)
            elif elect_conn:
                print "%s num:%s" % (conn_shorthand, number_syns)
            else:
                print "%s %s num:%s" % (conn_shorthand, orig_pol, number_syns)"""
            
            if number_syns != conn.number:
                if analog_conn or elect_conn:
                    magnitude, unit = bioparameters.split_neuroml_quantity(syn0.conductance)
                else:
                    magnitude, unit = bioparameters.split_neuroml_quantity(syn0.gbase)
                cond0 = "%s%s"%(magnitude*conn.number, unit)
                cond1 = "%s%s" % (get_str_from_expnotation(magnitude * number_syns), unit)
                gj = "" if not elect_conn else " GapJunction"
                if verbose: 
                    print_(">> Changing number of effective synapses connection %s -> %s%s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \
                     (conn.pre_cell, conn.post_cell, gj, conn.number, cond0, number_syns, cond1))

            #print "######## %s-%s %s %s" % (conn.pre_cell, conn.post_cell, conn.synclass, number_syns)
            #known_motor_prefixes = ["VA"]
            #if conn.pre_cell.startswith(tuple(known_motor_prefixes)) or conn.post_cell.startswith(tuple(known_motor_prefixes)):
            #    print "######### %s-%s %s %s" % (conn.pre_cell, conn.post_cell, number_syns, conn.synclass)

            syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc, existing_synapses)

            if elect_conn:

                proj0 = ElectricalProjection(id=proj_id, \
                                   presynaptic_population=conn.pre_cell,
                                   postsynaptic_population=conn.post_cell)

                net.electrical_projections.append(proj0)

                pre_cell_id=get_cell_id_string(conn.pre_cell, params)
                post_cell_id= get_cell_id_string(conn.post_cell, params)

                #print_("Conn %s -> %s"%(pre_cell_id,post_cell_id))

                # Add a Connection with the closest locations
                conn0 = ElectricalConnectionInstance(id="0", \
                           pre_cell=pre_cell_id,
                           post_cell=post_cell_id,
                           synapse=syn_new.id)

                proj0.electrical_connection_instances.append(conn0)
                
            elif analog_conn:
        
                proj0 = ContinuousProjection(id=proj_id, \
                                   presynaptic_population=conn.pre_cell,
                                   postsynaptic_population=conn.post_cell)

                net.continuous_projections.append(proj0)

                pre_cell_id= get_cell_id_string(conn.pre_cell, params)
                post_cell_id= get_cell_id_string(conn.post_cell, params)

                conn0 = ContinuousConnectionInstance(id="0", \
                           pre_cell=pre_cell_id,
                           post_cell=post_cell_id,
                           pre_component="silent",
                           post_component=syn_new.id)

                proj0.continuous_connection_instances.append(conn0)
                
                
            else:

                proj0 = Projection(id=proj_id, \
                                   presynaptic_population=conn.pre_cell,
                                   postsynaptic_population=conn.post_cell,
                                   synapse=syn_new.id)

                net.projections.append(proj0)

                pre_cell_id= get_cell_id_string(conn.pre_cell, params)
                post_cell_id= get_cell_id_string(conn.post_cell, params)

                conn0 = ConnectionWD(id="0", \
                           pre_cell_id=pre_cell_id,
                           post_cell_id=post_cell_id,
                           weight = number_syns,
                           delay = '0ms')

                proj0.connection_wds.append(conn0)



    if len(muscles_to_include)>0:
        for conn in muscle_conns:
            if not conn.post_cell in muscles_to_include:
                continue
            if not conn.pre_cell in lems_info["cells"] and not conn.pre_cell in muscles_to_include:
                continue

            # take information about each connection and package it into a
            # NeuroML Projection data structure
            proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype)
            conn_shorthand = "%s-%s" % (conn.pre_cell, conn.post_cell)

            elect_conn = False
            analog_conn = False
            syn0 = params.neuron_to_muscle_exc_syn
            orig_pol = "exc"
            if 'GABA' in conn.synclass:
                syn0 = params.neuron_to_muscle_inh_syn
                orig_pol = "inh"
            
            if '_GJ' in conn.synclass :
                elect_conn = isinstance(params.neuron_to_muscle_elec_syn, GapJunction)
                conn_shorthand = "%s-%s_GJ" % (conn.pre_cell, conn.post_cell)
                if conn.pre_cell in lems_info["cells"]:
                    syn0 = params.neuron_to_muscle_elec_syn
                elif conn.pre_cell in muscles_to_include:
                    try:
                        syn0 = params.muscle_to_muscle_elec_syn
                    except:
                        syn0 = params.neuron_to_muscle_elec_syn

            if conns_to_include and conn_shorthand not in conns_to_include:
                continue
                
            print conn_shorthand + " " + str(conn.number) + " " + orig_pol + " " + conn.synclass

            polarity = None
            if conn_polarity_override and conn_polarity_override.has_key(conn_shorthand):
                polarity = conn_polarity_override[conn_shorthand]

            if polarity and not elect_conn:
                if polarity == 'inh':
                    syn0 = params.neuron_to_neuron_inh_syn
                else:
                    syn0 = params.neuron_to_neuron_exc_syn
                if verbose and polarity != orig_pol:
                    print_(">> Changing polarity of connection %s -> %s: was: %s, becomes %s " % \
                       (conn.pre_cell, conn.post_cell, orig_pol, polarity))

            if isinstance(syn0, GradedSynapse) or isinstance(syn0, GradedSynapse2):
                analog_conn = True
                if len(nml_doc.silent_synapses)==0:
                    silent = SilentSynapse(id="silent")
                    nml_doc.silent_synapses.append(silent)
                    
            number_syns = conn.number
            
            if conn_number_override is not None and (conn_number_override.has_key(conn_shorthand)):
                number_syns = conn_number_override[conn_shorthand]
            elif conn_number_scaling is not None and (conn_number_scaling.has_key(conn_shorthand)):
                number_syns = conn.number*conn_number_scaling[conn_shorthand]
            '''
            else:
                print conn_shorthand
                print conn_number_override
                print conn_number_scaling'''
            """if polarity:
                print "%s %s num:%s" % (conn_shorthand, polarity, number_syns)
            elif elect_conn:
                print "%s num:%s" % (conn_shorthand, number_syns)
            else:
                print "%s %s num:%s" % (conn_shorthand, orig_pol, number_syns)"""

            if number_syns != conn.number:
                
                if analog_conn or elect_conn:
                    magnitude, unit = bioparameters.split_neuroml_quantity(syn0.conductance)
                else:
                    magnitude, unit = bioparameters.split_neuroml_quantity(syn0.gbase)
                cond0 = "%s%s"%(magnitude*conn.number, unit)
                cond1 = "%s%s" % (get_str_from_expnotation(magnitude * number_syns), unit)
                gj = "" if not elect_conn else " GapJunction"
                if verbose: 
                    print_(">> Changing number of effective synapses connection %s -> %s%s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \
                     (conn.pre_cell, conn.post_cell, gj, conn.number, cond0, number_syns, cond1))


            syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc, existing_synapses)

            if elect_conn:

                proj0 = ElectricalProjection(id=proj_id, \
                                   presynaptic_population=conn.pre_cell,
                                   postsynaptic_population=conn.post_cell)

                net.electrical_projections.append(proj0)

                pre_cell_id= get_cell_id_string(conn.pre_cell, params)
                post_cell_id= get_cell_id_string(conn.post_cell, params, muscle=True)

                #print_("Conn %s -> %s"%(pre_cell_id,post_cell_id))

                # Add a Connection with the closest locations
                conn0 = ElectricalConnectionInstance(id="0", \
                           pre_cell=pre_cell_id,
                           post_cell=post_cell_id,
                           synapse=syn_new.id)

                proj0.electrical_connection_instances.append(conn0)
                
            elif analog_conn:
        
                proj0 = ContinuousProjection(id=proj_id, \
                                   presynaptic_population=conn.pre_cell,
                                   postsynaptic_population=conn.post_cell)

                net.continuous_projections.append(proj0)

                pre_cell_id= get_cell_id_string(conn.pre_cell, params)
                post_cell_id= get_cell_id_string(conn.post_cell, params, muscle=True)

                conn0 = ContinuousConnectionInstance(id="0", \
                           pre_cell=pre_cell_id,
                           post_cell=post_cell_id,
                           pre_component="silent",
                           post_component=syn_new.id)

                proj0.continuous_connection_instances.append(conn0)

            else:

                proj0 = Projection(id=proj_id, \
                                   presynaptic_population=conn.pre_cell,
                                   postsynaptic_population=conn.post_cell,
                                   synapse=syn_new.id)

                net.projections.append(proj0)

                # Add a Connection with the closest locations

                pre_cell_id= get_cell_id_string(conn.pre_cell, params)
                post_cell_id= get_cell_id_string(conn.post_cell, params, muscle=True)

                conn0 = Connection(id="0", \
                           pre_cell_id=pre_cell_id,
                           post_cell_id=post_cell_id)

                proj0.connections.append(conn0)



    # import pprint
    # pprint.pprint(lems_info)
    template_path = root_dir+'/../' if test else root_dir+'/' # if running test
    write_to_file(nml_doc, lems_info, net_id, template_path, validate=validate, verbose=verbose, target_directory=target_directory)


    return nml_doc