def createMorphoMlFile(fileName, cell): ''' Convert to new neuroml structures and write ''' if not muscle_dict.has_key(cell.name): neuroMlwriter = NeuroMlWriter(fileName, cell.name) neuroMlwriter.addCell(cell) neuroMlwriter.writeDocumentToFile() return # # Incomplete code to use the neuroml interface to write the file, # used for muscles, doesn't produce good enough result on neurons yet. # seg0 = cell.segments[0].position soma = Segment(proximal=cvt_pt(seg0.proximal_point), distal=cvt_pt(seg0.distal_point)) soma.name = 'Soma' soma.id = 0 axon_segments = [] for seg1 in cell.segments[1:]: parent = SegmentParent(segments=seg1.parent) if seg1.position.proximal_point is None: p = None else: p = cvt_pt(seg1.position.proximal_point) axon_segment = Segment(proximal = p, distal = cvt_pt(seg1.position.distal_point), parent = parent) axon_segment.id = seg1.id axon_segment.name = seg1.name axon_segments.append(axon_segment) morphology = Morphology() morphology.segments.append(soma) morphology.segments += axon_segments morphology.id = 'morphology_' + cell.name nml_cell = neuroml_Cell() nml_cell.id = cell.name nml_cell.morphology = morphology doc = NeuroMLDocument() doc.cells.append(nml_cell) #addCell(doc, cell) doc.id = "TestNeuroMLDocument" writers.NeuroMLWriter.write(doc, "Output/%s.nml" % fileName)
def createMorphoMlFile(fileName, cell): ''' Convert to new neuroml structures and write ''' seg0 = cell.segments[0].position soma = Segment(proximal=cvt_pt(seg0.proximal_point), distal=cvt_pt(seg0.distal_point)) soma.name = 'Soma' soma.id = 0 axon_segments = [] for seg1 in cell.segments[1:]: parent = SegmentParent(segments=seg1.parent) if seg1.position.distal_point is None: p = None else: p = cvt_pt(seg1.position.distal_point) axon_segment = Segment(proximal = p, distal = cvt_pt(seg1.position.distal_point), parent = parent) axon_segment.id = seg1.id axon_segment.name = seg1.name axon_segments.append(axon_segment) morphology = Morphology() morphology.segments.append(soma) morphology.segments += axon_segments morphology.id = 'morphology_' + cell.name nml_cell = neuroml_Cell() nml_cell.id = cell.name nml_cell.morphology = morphology doc = NeuroMLDocument() #doc.name = "Test neuroML document" doc.cells.append(nml_cell) doc.id = fileName writers.NeuroMLWriter.write(doc, "Output/%s.nml" % fileName)
def neuroml_network(cells, response): """ Write a list of Cell instances. cells: a list of Cell instances. response: somewhere to write to, like an HttpResponse Returns nothing. """ doc = NeuroMLDocument() doc.cells.extend(cells) doc.id = "NeuroMLDocument" namespacedef = 'xmlns="http://www.neuroml.org/schema/neuroml2"' \ + ' xmlns:xi="http://www.w3.org/2001/XInclude"' \ + ' xmlns:xs="http://www.w3.org/2001/XMLSchema"' \ + ' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"' \ + ' xsi:schemaLocation="http://www.w3.org/2001/XMLSchema"' doc.export( response, 0, name_="neuroml", namespacedef_=namespacedef) return response
from neuroml import Input from neuroml import InputList from neuroml import ConnectionWD from neuroml import Projection from neuroml import Property from neuroml import Instance from neuroml import Location from neuroml import PoissonFiringSynapse import neuroml.writers as writers from random import random scale = 2 nml_doc = NeuroMLDocument(id="IafNet") nml_doc.notes = "Root notes" IafCell0 = IafCell(id="iaf0", C="1.0 nF", thresh="-50mV", reset="-65mV", leak_conductance="10 nS", leak_reversal="-65mV") nml_doc.iaf_cells.append(IafCell0) IafCell1 = IafCell(id="iaf1", C="1.0 nF", thresh="-50mV",
def generate_layered_network( network_id, numCells_exc_per_layer, numCells_inh_per_layer, num_layers=10, x_size=1000, layer_y_size=100, z_size=1000, exc_group_component="SimpleIaF", inh_group_component="SimpleIaF_inh", validate=True, random_seed=1234, generate_lems_simulation=False, connections=True, connection_probability_exc_exc=0.4, connection_probability_inh_exc=0.4, connection_probability_exc_inh=0.4, connection_probability_inh_inh=0.4, inputs=False, input_firing_rate=50, # Hz num_inputs_per_exc=4, duration=500, # ms dt=0.05, temperature="32.0 degC"): seed(random_seed) nml_doc = NeuroMLDocument(id=network_id) net = Network(id=network_id, type="networkWithTemperature", temperature=temperature) net.notes = "Network generated using libNeuroML v%s" % __version__ nml_doc.networks.append(net) for cell_comp in set([exc_group_component, inh_group_component]): # removes duplicates nml_doc.includes.append(IncludeType(href='%s.cell.nml' % cell_comp)) # The names of the Exc & Inh groups/populations exc_group = "Exc" inh_group = "Inh" # The names of the network connections net_conn_exc_inh = "NetConn_Exc_Inh" net_conn_inh_exc = "NetConn_Inh_Exc" net_conn_exc_exc = "NetConn_Exc_Exc" net_conn_inh_inh = "NetConn_Inh_Inh" # The names of the synapse types (should match names at Cell Mechanism/Network tabs in neuroConstruct) exc_inh_syn = "AMPAR" inh_exc_syn = "GABAA" exc_exc_syn = "AMPAR" inh_inh_syn = "GABAA" for syn in [exc_inh_syn, inh_exc_syn]: nml_doc.includes.append(IncludeType(href='%s.synapse.nml' % syn)) # Generate excitatory cells for layer in range(num_layers): y_offset = -1 * layer * layer_y_size exc_pop = Population(id="%s_%i" % (exc_group, layer), component=exc_group_component, type="populationList", size=numCells_exc_per_layer) net.populations.append(exc_pop) for i in range(0, numCells_exc_per_layer): index = i inst = Instance(id=index) exc_pop.instances.append(inst) inst.location = Location(x=str(x_size * random()), y=str(y_offset - layer_y_size * random()), z=str(z_size * random())) if numCells_inh_per_layer > 0: # Generate inhibitory cells inh_pop = Population(id="%s_%i" % (inh_group, layer), component=inh_group_component, type="populationList", size=numCells_inh_per_layer) net.populations.append(inh_pop) for i in range(0, numCells_inh_per_layer): index = i inst = Instance(id=index) inh_pop.instances.append(inst) inst.location = Location(x=str(x_size * random()), y=str(y_offset - layer_y_size * random()), z=str(z_size * random())) if connections: W = getW('mouse somatic M1') for pre in range(num_layers): for post in range(num_layers): id = "proj_%s_%s" % (pre, post) pre_pop = "%s_%i" % (exc_group, pre) post_pop = "%s_%i" % (exc_group, post) proj = Projection(id=id, presynaptic_population=pre_pop, postsynaptic_population=post_pop, synapse=exc_exc_syn) net.projections.append(proj) count = 0 prob = W[pre][post] print("Connecting layer %s to layer %s with probability %s" % (pre, post, prob)) for i in range(0, numCells_exc_per_layer): for j in range(0, numCells_exc_per_layer): if i != j: if random() < prob: add_connection(proj, count, pre_pop, exc_group_component, i, 0, post_pop, exc_group_component, j, 0) count += 1 if inputs: mf_input_syn = "AMPAR" if mf_input_syn != exc_inh_syn and mf_input_syn != inh_exc_syn: nml_doc.includes.append( IncludeType(href='%s.synapse.nml' % mf_input_syn)) rand_spiker_id = "input_%sHz" % input_firing_rate pfs = PoissonFiringSynapse(id=rand_spiker_id, average_rate="%s per_s" % input_firing_rate, synapse=mf_input_syn, spike_target="./%s" % mf_input_syn) nml_doc.poisson_firing_synapses.append(pfs) input_list = InputList(id="Input_0", component=rand_spiker_id, populations=exc_group) count = 0 for i in range(0, numCells_exc_per_layer): for j in range(num_inputs_per_exc): input = Input(id=count, target="../%s/%i/%s" % (exc_group, i, exc_group_component), destination="synapses") input_list.input.append(input) count += 1 net.input_lists.append(input_list) ####### Write to file ###### print("Saving to file...") nml_file = network_id + '.net.nml' writers.NeuroMLWriter.write(nml_doc, nml_file) print("Written network file to: " + nml_file) if validate: ###### Validate the NeuroML ###### from neuroml.utils import validate_neuroml2 validate_neuroml2(nml_file) if generate_lems_simulation: # Create a LEMSSimulation to manage creation of LEMS file ls = LEMSSimulation("Sim_%s" % network_id, duration, dt) # Point to network as target of simulation ls.assign_simulation_target(net.id) # Include generated/existing NeuroML2 files ls.include_neuroml2_file('%s.cell.nml' % exc_group_component) ls.include_neuroml2_file('%s.cell.nml' % inh_group_component) ls.include_neuroml2_file(nml_file) # Specify Displays and Output Files disp_exc = "display_exc" ls.create_display(disp_exc, "Voltages Exc cells", "-80", "50") of_exc = 'Volts_file_exc' ls.create_output_file(of_exc, "v_exc.dat") disp_inh = "display_inh" ls.create_display(disp_inh, "Voltages Inh cells", "-80", "50") of_inh = 'Volts_file_inh' ls.create_output_file(of_inh, "v_inh.dat") for i in range(numCells_exc_per_layer): quantity = "%s_0/%i/%s/v" % (exc_group, i, exc_group_component) ls.add_line_to_display(disp_exc, "Exc %i: Vm" % i, quantity, "1mV", pynml.get_next_hex_color()) ls.add_column_to_output_file(of_exc, "v_%i" % i, quantity) for i in range(numCells_inh_per_layer): quantity = "%s_0/%i/%s/v" % (inh_group, i, inh_group_component) ls.add_line_to_display(disp_inh, "Inh %i: Vm" % i, quantity, "1mV", pynml.get_next_hex_color()) ls.add_column_to_output_file(of_inh, "v_%i" % i, quantity) # Save to LEMS XML file lems_file_name = ls.save_to_file() print "-----------------------------------"
def generate(net_id, params, cells=None, cells_to_plot=None, cells_to_stimulate=None, include_muscles=False, conn_number_override=None, conn_number_scaling=None, duration=500, dt=0.01, vmin=None, vmax=None, seed=1234, validate=True, test=False, verbose=True, target_directory='./'): root_dir = os.path.dirname(os.path.abspath(__file__)) params.create_models() if vmin == None: if params.level == 'A': vmin = -72 elif params.level == 'B': vmin = -52 elif params.level == 'C': vmin = -60 else: vmin = -52 if vmax == None: if params.level == 'A': vmax = -48 elif params.level == 'B': vmax = -28 elif params.level == 'C': vmax = 25 else: vmax = -28 random.seed(seed) info = "\n\nParameters and setting used to generate this network:\n\n"+\ " Cells: %s\n" % (cells if cells is not None else "All cells")+\ " Cell stimulated: %s\n" % (cells_to_stimulate if cells_to_stimulate is not None else "All cells")+\ " Connection numbers overridden: %s\n" % (conn_number_override if conn_number_override is not None else "None")+\ " Connection numbers scaled: %s\n" % (conn_number_scaling if conn_number_scaling is not None else "None")+\ " Include muscles: %s\n" % include_muscles print_(info) info += "\n%s\n" % (params.bioparameter_info(" ")) nml_doc = NeuroMLDocument(id=net_id, notes=info) if params.level == "A" or params.level == "B" or params.level == "BC1": nml_doc.iaf_cells.append(params.generic_cell) elif params.level == "C": nml_doc.cells.append(params.generic_cell) net = Network(id=net_id) nml_doc.networks.append(net) nml_doc.pulse_generators.append(params.offset_current) cell_names, conns = get_cell_names_and_connection() # To hold all Cell NeuroML objects vs. names all_cells = {} # lems_file = "" lems_info = { "comment": info, "reference": net_id, "duration": duration, "dt": dt, "vmin": vmin, "vmax": vmax, "cell_component": params.generic_cell.id } lems_info["plots"] = [] lems_info["activity_plots"] = [] lems_info["muscle_plots"] = [] lems_info["muscle_activity_plots"] = [] lems_info["to_save"] = [] lems_info["activity_to_save"] = [] lems_info["muscles_to_save"] = [] lems_info["muscles_activity_to_save"] = [] lems_info["cells"] = [] lems_info["muscles"] = [] lems_info["includes"] = [] if params.custom_component_types_definitions: lems_info["includes"].append(params.custom_component_types_definitions) if target_directory != './': def_file = "%s/%s" % (os.path.dirname(__file__), params.custom_component_types_definitions) shutil.copy(def_file, target_directory) nml_doc.includes.append( IncludeType(href=params.custom_component_types_definitions)) backers_dir = root_dir + "/../../../../OpenWormBackers/" if test else root_dir + "/../../../OpenWormBackers/" sys.path.append(backers_dir) import backers cells_vs_name = backers.get_adopted_cell_names(backers_dir) populations_without_location = False # isinstance(params.elec_syn, GapJunction) count = 0 for cell in cell_names: if cells is None or cell in cells: inst = Instance(id="0") if not populations_without_location: # build a Population data structure out of the cell name pop0 = Population(id=cell, component=params.generic_cell.id, type="populationList") pop0.instances.append(inst) else: # build a Population data structure out of the cell name pop0 = Population(id=cell, component=params.generic_cell.id, size="1") # put that Population into the Network data structure from above net.populations.append(pop0) if cells_vs_name.has_key(cell): p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[cell]) pop0.properties.append(p) # also use the cell name to grab the morphology file, as a NeuroML data structure # into the 'all_cells' dict cell_file_path = root_dir + "/../../../" if test else root_dir + "/../../" #if running test cell_file = cell_file_path + 'generatedNeuroML2/%s.cell.nml' % cell doc = loaders.NeuroMLLoader.load(cell_file) all_cells[cell] = doc.cells[0] location = doc.cells[0].morphology.segments[0].proximal if verbose: print_( "Loaded morphology: %s; id: %s; location: (%s, %s, %s)" % (os.path.realpath(cell_file), all_cells[cell].id, location.x, location.y, location.z)) inst.location = Location(float(location.x), float(location.y), float(location.z)) target = "../%s/0/%s" % (pop0.id, params.generic_cell.id) if populations_without_location: target = "../%s[0]" % (cell) if cells_to_stimulate is None or cell in cells_to_stimulate: input_list = InputList(id="Input_%s_%s" % (cell, params.offset_current.id), component=params.offset_current.id, populations='%s' % cell) input_list.input.append( Input(id=0, target=target, destination="synapses")) net.input_lists.append(input_list) if cells_to_plot is None or cell in cells_to_plot: plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/v" % (cell, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/v" % (cell) lems_info["plots"].append(plot) if params.generic_cell.__class__.__name__ == 'IafActivityCell': plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/activity" % ( cell, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/activity" % (cell) lems_info["activity_plots"].append(plot) if params.generic_cell.__class__.__name__ == 'Cell': plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/caConc" % ( cell, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/caConc" % (cell) lems_info["activity_plots"].append(plot) save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/v" % (cell, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/v" % (cell) lems_info["to_save"].append(save) if params.generic_cell.__class__.__name__ == 'IafActivityCell': save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/activity" % ( cell, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/activity" % (cell) lems_info["activity_to_save"].append(save) if params.generic_cell.__class__.__name__ == 'Cell': save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/caConc" % (cell, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/caConc" % (cell) lems_info["activity_to_save"].append(save) lems_info["cells"].append(cell) count += 1 if verbose: print_("Finished loading %i cells" % count) mneurons, all_muscles, muscle_conns = get_cell_muscle_names_and_connection( ) muscles = get_muscle_names() if include_muscles: muscle_count = 0 for muscle in muscles: inst = Instance(id="0") if not populations_without_location: # build a Population data structure out of the cell name pop0 = Population(id=muscle, component=params.generic_cell.id, type="populationList") pop0.instances.append(inst) else: # build a Population data structure out of the cell name pop0 = Population(id=muscle, component=params.generic_cell.id, size="1") # put that Population into the Network data structure from above net.populations.append(pop0) if cells_vs_name.has_key(muscle): # No muscles adopted yet, but just in case they are in future... p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[muscle]) pop0.properties.append(p) x = 80 * (-1 if muscle[1] == 'V' else 1) z = 80 * (-1 if muscle[2] == 'L' else 1) y = -300 + 30 * int(muscle[3:5]) print_('Positioning muscle: %s at (%s,%s,%s)' % (muscle, x, y, z)) inst.location = Location(x, y, z) target = "%s/0/%s" % (pop0.id, params.generic_cell.id) if populations_without_location: target = "%s[0]" % (muscle) plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/v" % (muscle, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/v" % (muscle) lems_info["muscle_plots"].append(plot) if params.generic_cell.__class__.__name__ == 'IafActivityCell': plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/activity" % ( muscle, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/activity" % (muscle) lems_info["muscle_activity_plots"].append(plot) if params.generic_cell.__class__.__name__ == 'Cell': plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/caConc" % (muscle, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/caConc" % (muscle) lems_info["muscle_activity_plots"].append(plot) save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/v" % (muscle, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/v" % (muscle) lems_info["muscles_to_save"].append(save) if params.generic_cell.__class__.__name__ == 'IafActivityCell': save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/activity" % ( muscle, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/activity" % (muscle) lems_info["muscles_activity_to_save"].append(save) if params.generic_cell.__class__.__name__ == 'Cell': save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/caConc" % (muscle, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/caConc" % (muscle) lems_info["muscles_activity_to_save"].append(save) lems_info["muscles"].append(muscle) muscle_count += 1 if verbose: print_("Finished creating %i muscles" % muscle_count) existing_synapses = {} for conn in conns: if conn.pre_cell in lems_info["cells"] and conn.post_cell in lems_info[ "cells"]: # take information about each connection and package it into a # NeuroML Projection data structure proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype) elect_conn = False analog_conn = False syn0 = params.exc_syn if 'GABA' in conn.synclass: syn0 = params.inh_syn if '_GJ' in conn.synclass: syn0 = params.elec_syn elect_conn = isinstance(params.elec_syn, GapJunction) if isinstance(syn0, GradedSynapse): analog_conn = True if len(nml_doc.silent_synapses) == 0: silent = SilentSynapse(id="silent") nml_doc.silent_synapses.append(silent) number_syns = conn.number conn_shorthand = "%s-%s" % (conn.pre_cell, conn.post_cell) if conn_number_override is not None and ( conn_number_override.has_key(conn_shorthand)): number_syns = conn_number_override[conn_shorthand] elif conn_number_scaling is not None and ( conn_number_scaling.has_key(conn_shorthand)): number_syns = conn.number * conn_number_scaling[conn_shorthand] ''' else: print conn_shorthand print conn_number_override print conn_number_scaling''' if number_syns != conn.number: magnitude, unit = bioparameters.split_neuroml_quantity( syn0.gbase) cond0 = "%s%s" % (magnitude * conn.number, unit) cond1 = "%s%s" % (magnitude * number_syns, unit) if verbose: print_(">> Changing number of effective synapses connection %s -> %s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \ (conn.pre_cell, conn.post_cell, conn.number, cond0, number_syns, cond1)) syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc, existing_synapses) if elect_conn: if populations_without_location: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) # Add a Connection with the closest locations conn0 = ElectricalConnection(id="0", \ pre_cell="0", post_cell="0", synapse=syn_new.id) proj0.electrical_connections.append(conn0) else: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) pre_cell_id = "../%s/0/%s" % (conn.pre_cell, params.generic_cell.id) post_cell_id = "../%s/0/%s" % (conn.post_cell, params.generic_cell.id) #print_("Conn %s -> %s"%(pre_cell_id,post_cell_id)) # Add a Connection with the closest locations conn0 = ElectricalConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, synapse=syn_new.id) proj0.electrical_connection_instances.append(conn0) elif analog_conn: proj0 = ContinuousProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.continuous_projections.append(proj0) pre_cell_id = "../%s/0/%s" % (conn.pre_cell, params.generic_cell.id) post_cell_id = "../%s/0/%s" % (conn.post_cell, params.generic_cell.id) conn0 = ContinuousConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, pre_component="silent", post_component=syn_new.id) proj0.continuous_connection_instances.append(conn0) else: if not populations_without_location: proj0 = Projection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell, synapse=syn_new.id) net.projections.append(proj0) pre_cell_id = "../%s/0/%s" % (conn.pre_cell, params.generic_cell.id) post_cell_id = "../%s/0/%s" % (conn.post_cell, params.generic_cell.id) conn0 = Connection(id="0", \ pre_cell_id=pre_cell_id, post_cell_id=post_cell_id) proj0.connections.append(conn0) if populations_without_location: # <synapticConnection from="hh1pop[0]" to="hh2pop[0]" synapse="syn1exp" destination="synapses"/> pre_cell_id = "%s[0]" % (conn.pre_cell) post_cell_id = "%s[0]" % (conn.post_cell) conn0 = SynapticConnection(from_=pre_cell_id, to=post_cell_id, synapse=syn_new.id, destination="synapses") net.synaptic_connections.append(conn0) if include_muscles: for conn in muscle_conns: if conn.pre_cell in lems_info[ "cells"] and conn.post_cell in muscles: # take information about each connection and package it into a # NeuroML Projection data structure proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype) elect_conn = False analog_conn = False syn0 = params.exc_syn if 'GABA' in conn.synclass: syn0 = params.inh_syn if '_GJ' in conn.synclass: syn0 = params.elec_syn elect_conn = isinstance(params.elec_syn, GapJunction) if isinstance(syn0, GradedSynapse): analog_conn = True if len(nml_doc.silent_synapses) == 0: silent = SilentSynapse(id="silent") nml_doc.silent_synapses.append(silent) number_syns = conn.number conn_shorthand = "%s-%s" % (conn.pre_cell, conn.post_cell) if conn_number_override is not None and ( conn_number_override.has_key(conn_shorthand)): number_syns = conn_number_override[conn_shorthand] elif conn_number_scaling is not None and ( conn_number_scaling.has_key(conn_shorthand)): number_syns = conn.number * conn_number_scaling[ conn_shorthand] ''' else: print conn_shorthand print conn_number_override print conn_number_scaling''' if number_syns != conn.number: magnitude, unit = bioparameters.split_neuroml_quantity( syn0.gbase) cond0 = "%s%s" % (magnitude * conn.number, unit) cond1 = "%s%s" % (magnitude * number_syns, unit) if verbose: print_(">> Changing number of effective synapses connection %s -> %s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \ (conn.pre_cell, conn.post_cell, conn.number, cond0, number_syns, cond1)) syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc, existing_synapses) if elect_conn: if populations_without_location: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) # Add a Connection with the closest locations conn0 = ElectricalConnection(id="0", \ pre_cell="0", post_cell="0", synapse=syn_new.id) proj0.electrical_connections.append(conn0) else: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) pre_cell_id = "../%s/0/%s" % (conn.pre_cell, params.generic_cell.id) post_cell_id = "../%s/0/%s" % (conn.post_cell, params.generic_cell.id) #print_("Conn %s -> %s"%(pre_cell_id,post_cell_id)) # Add a Connection with the closest locations conn0 = ElectricalConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, synapse=syn_new.id) proj0.electrical_connection_instances.append(conn0) elif analog_conn: proj0 = ContinuousProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.continuous_projections.append(proj0) pre_cell_id = "../%s/0/%s" % (conn.pre_cell, params.generic_cell.id) post_cell_id = "../%s/0/%s" % (conn.post_cell, params.generic_cell.id) conn0 = ContinuousConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, pre_component="silent", post_component=syn_new.id) proj0.continuous_connection_instances.append(conn0) else: if not populations_without_location: proj0 = Projection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell, synapse=syn_new.id) net.projections.append(proj0) # Add a Connection with the closest locations pre_cell_id = "../%s/0/%s" % (conn.pre_cell, params.generic_cell.id) post_cell_id = "../%s/0/%s" % (conn.post_cell, params.generic_cell.id) conn0 = Connection(id="0", \ pre_cell_id=pre_cell_id, post_cell_id=post_cell_id) proj0.connections.append(conn0) if populations_without_location: # <synapticConnection from="hh1pop[0]" to="hh2pop[0]" synapse="syn1exp" destination="synapses"/> pre_cell_id = "%s[0]" % (conn.pre_cell) post_cell_id = "%s[0]" % (conn.post_cell) conn0 = SynapticConnection(from_=pre_cell_id, to=post_cell_id, synapse=syn_new.id, destination="synapses") net.synaptic_connections.append(conn0) # import pprint # pprint.pprint(lems_info) template_path = root_dir + '/../' if test else root_dir + '/' # if running test write_to_file(nml_doc, lems_info, net_id, template_path, validate=validate, verbose=verbose, target_directory=target_directory) return nml_doc
def _generate_neuron_files_from_neuroml(network, verbose=False, dir_for_mod_files=None): """ Generate NEURON hoc/mod files from the NeuroML files which are marked as included in the NeuroMLlite description; also compiles the mod files """ print_v( "------------- Generating NEURON files from NeuroML for %s (default dir: %s)..." % (network.id, dir_for_mod_files)) nml_src_files = [] from neuroml import NeuroMLDocument import neuroml.writers as writers temp_nml_doc = NeuroMLDocument(id="temp") dirs_for_mod_files = [] if dir_for_mod_files != None: dirs_for_mod_files.append(os.path.abspath(dir_for_mod_files)) for c in network.cells: if c.neuroml2_source_file: nml_src_files.append(c.neuroml2_source_file) dir_for_mod = os.path.dirname( os.path.abspath(c.neuroml2_source_file)) if not dir_for_mod in dirs_for_mod_files: dirs_for_mod_files.append(dir_for_mod) for s in network.synapses: if s.neuroml2_source_file: nml_src_files.append(s.neuroml2_source_file) dir_for_mod = os.path.dirname( os.path.abspath(s.neuroml2_source_file)) if not dir_for_mod in dirs_for_mod_files: dirs_for_mod_files.append(dir_for_mod) for i in network.input_sources: if i.neuroml2_source_file: nml_src_files.append(i.neuroml2_source_file) dir_for_mod = os.path.dirname( os.path.abspath(i.neuroml2_source_file)) if not dir_for_mod in dirs_for_mod_files: dirs_for_mod_files.append(dir_for_mod) temp_nml_doc = _extract_pynn_components_to_neuroml(network) summary = temp_nml_doc.summary() if 'IF_' in summary: import tempfile temp_nml_file = tempfile.NamedTemporaryFile(delete=False, suffix='.nml', dir=dir_for_mod_files) print_v("Writing temporary NML file to: %s, summary: " % temp_nml_file.name) print_v(summary) writers.NeuroMLWriter.write(temp_nml_doc, temp_nml_file.name) nml_src_files.append(temp_nml_file.name) for f in nml_src_files: from pyneuroml import pynml print_v("Generating/compiling hoc/mod files for: %s" % f) pynml.run_lems_with_jneuroml_neuron(f, nogui=True, only_generate_scripts=True, compile_mods=True, verbose=False) for dir_for_mod_files in dirs_for_mod_files: if not dir_for_mod_files in locations_mods_loaded_from: print_v( "Generated NEURON code; loading mechanisms from %s (cwd: %s; already loaded: %s)" % (dir_for_mod_files, os.getcwd(), locations_mods_loaded_from)) try: from neuron import load_mechanisms if os.getcwd() == dir_for_mod_files: print_v( "That's current dir => importing neuron module loads mods here..." ) else: load_mechanisms(dir_for_mod_files) locations_mods_loaded_from.append(dir_for_mod_files) except: print_v("Failed to load mod file mechanisms...") else: print_v("Already loaded mechanisms from %s (all loaded: %s)" % (dir_for_mod_files, locations_mods_loaded_from))
def run_fitted_cell_simulation(sweeps_to_tune_against: List, tuning_report: Dict, simulation_id: str) -> None: """Run a simulation with the values obtained from the fitting :param tuning_report: tuning report from the optimser :type tuning_report: Dict :param simulation_id: text id of simulation :type simulation_id: str """ # get the fittest variables fittest_vars = tuning_report["fittest vars"] C = str(fittest_vars["izhikevich2007Cell:Izh2007/C/pF"]) + "pF" k = str( fittest_vars["izhikevich2007Cell:Izh2007/k/nS_per_mV"]) + "nS_per_mV" vr = str(fittest_vars["izhikevich2007Cell:Izh2007/vr/mV"]) + "mV" vt = str(fittest_vars["izhikevich2007Cell:Izh2007/vt/mV"]) + "mV" vpeak = str(fittest_vars["izhikevich2007Cell:Izh2007/vpeak/mV"]) + "mV" a = str(fittest_vars["izhikevich2007Cell:Izh2007/a/per_ms"]) + "per_ms" b = str(fittest_vars["izhikevich2007Cell:Izh2007/b/nS"]) + "nS" c = str(fittest_vars["izhikevich2007Cell:Izh2007/c/mV"]) + "mV" d = str(fittest_vars["izhikevich2007Cell:Izh2007/d/pA"]) + "pA" # Create a simulation using our obtained parameters. # Note that the tuner generates a graph with the fitted values already, but # we want to keep a copy of our fitted cell also, so we'll create a NeuroML # Document ourselves also. sim_time = 1500.0 simulation_doc = NeuroMLDocument(id="FittedNet") # Add an Izhikevich cell with some parameters to the document simulation_doc.izhikevich2007_cells.append( Izhikevich2007Cell( id="Izh2007", C=C, v0="-60mV", k=k, vr=vr, vt=vt, vpeak=vpeak, a=a, b=b, c=c, d=d, )) simulation_doc.networks.append(Network(id="Network0")) # Add a cell for each acquisition list popsize = len(sweeps_to_tune_against) simulation_doc.networks[0].populations.append( Population(id="Pop0", component="Izh2007", size=popsize)) # Add a current source for each cell, matching the currents that # were used in the experimental study. counter = 0 for acq in sweeps_to_tune_against: simulation_doc.pulse_generators.append( PulseGenerator( id="Stim{}".format(counter), delay="80ms", duration="1000ms", amplitude="{}pA".format(currents[acq]), )) simulation_doc.networks[0].explicit_inputs.append( ExplicitInput(target="Pop0[{}]".format(counter), input="Stim{}".format(counter))) counter = counter + 1 # Print a summary print(simulation_doc.summary()) # Write to a neuroml file and validate it. reference = "FittedIzhFergusonPyr3" simulation_filename = "{}.net.nml".format(reference) write_neuroml2_file(simulation_doc, simulation_filename, validate=True) simulation = LEMSSimulation( sim_id=simulation_id, duration=sim_time, dt=0.1, target="Network0", simulation_seed=54321, ) simulation.include_neuroml2_file(simulation_filename) simulation.create_output_file("output0", "{}.v.dat".format(simulation_id)) counter = 0 for acq in sweeps_to_tune_against: simulation.add_column_to_output_file("output0", "Pop0[{}]".format(counter), "Pop0[{}]/v".format(counter)) counter = counter + 1 simulation_file = simulation.save_to_file() # simulate run_lems_with_jneuroml(simulation_file, max_memory="2G", nogui=True, plot=False)
def create_cell(): """Create the cell. :returns: name of the cell nml file """ # Create the nml file and add the ion channels hh_cell_doc = NeuroMLDocument(id="cell", notes="HH cell") hh_cell_fn = "HH_example_cell.nml" hh_cell_doc.includes.append(IncludeType(href=create_na_channel())) hh_cell_doc.includes.append(IncludeType(href=create_k_channel())) hh_cell_doc.includes.append(IncludeType(href=create_leak_channel())) # Define a cell hh_cell = Cell(id="hh_cell", notes="A single compartment HH cell") # Define its biophysical properties bio_prop = BiophysicalProperties(id="hh_b_prop") # notes="Biophysical properties for HH cell") # Membrane properties are a type of biophysical properties mem_prop = MembraneProperties() # Add membrane properties to the biophysical properties bio_prop.membrane_properties = mem_prop # Append to cell hh_cell.biophysical_properties = bio_prop # Channel density for Na channel na_channel_density = ChannelDensity(id="na_channels", cond_density="120.0 mS_per_cm2", erev="50.0 mV", ion="na", ion_channel="na_channel") mem_prop.channel_densities.append(na_channel_density) # Channel density for k channel k_channel_density = ChannelDensity(id="k_channels", cond_density="360 S_per_m2", erev="-77mV", ion="k", ion_channel="k_channel") mem_prop.channel_densities.append(k_channel_density) # Leak channel leak_channel_density = ChannelDensity(id="leak_channels", cond_density="3.0 S_per_m2", erev="-54.3mV", ion="non_specific", ion_channel="leak_channel") mem_prop.channel_densities.append(leak_channel_density) # Other membrane properties mem_prop.spike_threshes.append(SpikeThresh(value="-20mV")) mem_prop.specific_capacitances.append(SpecificCapacitance(value="1.0 uF_per_cm2")) mem_prop.init_memb_potentials.append(InitMembPotential(value="-65mV")) intra_prop = IntracellularProperties() intra_prop.resistivities.append(Resistivity(value="0.03 kohm_cm")) # Add to biological properties bio_prop.intracellular_properties = intra_prop # Morphology morph = Morphology(id="hh_cell_morph") # notes="Simple morphology for the HH cell") seg = Segment(id="0", name="soma", notes="Soma segment") # We want a diameter such that area is 1000 micro meter^2 # surface area of a sphere is 4pi r^2 = 4pi diam^2 diam = math.sqrt(1000 / math.pi) proximal = distal = Point3DWithDiam(x="0", y="0", z="0", diameter=str(diam)) seg.proximal = proximal seg.distal = distal morph.segments.append(seg) hh_cell.morphology = morph hh_cell_doc.cells.append(hh_cell) pynml.write_neuroml2_file(nml2_doc=hh_cell_doc, nml2_file_name=hh_cell_fn, validate=True) return hh_cell_fn
from neuroml import ElectricalConnection from neuroml import ElectricalConnectionInstance from neuroml import ElectricalConnectionInstanceW from neuroml import Property from neuroml import Instance from neuroml import Location from neuroml import PoissonFiringSynapse import neuroml.writers as writers import random random.seed(123) scale = 2 nml_doc = NeuroMLDocument(id="Complete") nml_doc.notes = "Lots of notes...." IafCell0 = IafCell(id="iaf0", C="1.0 nF", thresh="-50mV", reset="-65mV", leak_conductance="10 nS", leak_reversal="-65mV") nml_doc.iaf_cells.append(IafCell0) IafCell1 = IafCell(id="iaf1", C="1.0 nF", thresh="-50mV",
from neuroml import Input from neuroml import InputList from neuroml import ConnectionWD from neuroml import Projection from neuroml import Property from neuroml import Instance from neuroml import Location from neuroml import PoissonFiringSynapse import neuroml.writers as writers from random import random scale = 2 nml_doc = NeuroMLDocument(id="IafNet") nml_doc.notes = "Root notes" IafCell0 = IafCell(id="iaf0", C="1.0 nF", thresh = "-50mV", reset="-65mV", leak_conductance="10 nS", leak_reversal="-65mV") nml_doc.iaf_cells.append(IafCell0) IafCell1 = IafCell(id="iaf1", C="1.0 nF", thresh = "-50mV",
def generate(net_id, params, cells = None, cells_to_plot = None, cells_to_stimulate = None, include_muscles=False, conn_number_override = None, conn_number_scaling = None, duration = 500, dt = 0.01, vmin = -75, vmax = 20, seed = 1234, validate=True): random.seed(seed) info = "\n\nParameters and setting used to generate this network:\n\n"+\ " Cells: %s\n" % (cells if cells is not None else "All cells")+\ " Cell stimulated: %s\n" % (cells_to_stimulate if cells_to_stimulate is not None else "All cells")+\ " Connection numbers overridden: %s\n" % (conn_number_override if conn_number_override is not None else "None")+\ " Connection numbers scaled: %s\n" % (conn_number_scaling if conn_number_scaling is not None else "None")+\ " Include muscles: %s\n" % include_muscles info += "\n%s\n"%(bioparameter_info(" ")) nml_doc = NeuroMLDocument(id=net_id, notes=info) nml_doc.iaf_cells.append(params.generic_cell) net = Network(id=net_id) nml_doc.networks.append(net) nml_doc.pulse_generators.append(params.offset_current) # Use the spreadsheet reader to give a list of all cells and a list of all connections # This could be replaced with a call to "DatabaseReader" or "OpenWormNeuroLexReader" in future... spreadsheet_location = "../../../" cell_names, conns = SpreadsheetDataReader.readDataFromSpreadsheet(spreadsheet_location, include_nonconnected_cells=True) cell_names.sort() # To hold all Cell NeuroML objects vs. names all_cells = {} # lems_file = "" lems_info = {"comment": info, "reference": net_id, "duration": duration, "dt": dt, "vmin": vmin, "vmax": vmax, "cell_component": params.generic_cell.id} lems_info["plots"] = [] lems_info["activity_plots"] = [] lems_info["muscle_plots"] = [] lems_info["muscle_activity_plots"] = [] lems_info["to_save"] = [] lems_info["activity_to_save"] = [] lems_info["muscles_to_save"] = [] lems_info["muscles_activity_to_save"] = [] lems_info["cells"] = [] lems_info["muscles"] = [] lems_info["includes"] = [] if hasattr(params.generic_cell, 'custom_component_type_definition'): lems_info["includes"].append(params.generic_cell.custom_component_type_definition) backers_dir = "../../../OpenWormBackers/" sys.path.append(backers_dir) import backers cells_vs_name = backers.get_adopted_cell_names(backers_dir) populations_without_location = isinstance(params.elec_syn, GapJunction) count = 0 for cell in cell_names: if cells is None or cell in cells: inst = Instance(id="0") if not populations_without_location: # build a Population data structure out of the cell name pop0 = Population(id=cell, component=params.generic_cell.id, type="populationList") pop0.instances.append(inst) else: # build a Population data structure out of the cell name pop0 = Population(id=cell, component=params.generic_cell.id, size="1") # put that Population into the Network data structure from above net.populations.append(pop0) if cells_vs_name.has_key(cell): p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[cell]) pop0.properties.append(p) # also use the cell name to grab the morphology file, as a NeuroML data structure # into the 'all_cells' dict cell_file = '../../generatedNeuroML2/%s.nml'%cell doc = loaders.NeuroMLLoader.load(cell_file) all_cells[cell] = doc.cells[0] location = doc.cells[0].morphology.segments[0].proximal print("Loaded morphology file from: %s, with id: %s, location: (%s, %s, %s)"%(cell_file, all_cells[cell].id, location.x, location.y, location.z)) inst.location = Location(float(location.x), float(location.y), float(location.z)) target = "%s/0/%s"%(pop0.id, params.generic_cell.id) if populations_without_location: target = "%s[0]" % (cell) exp_input = ExplicitInput(target=target, input=params.offset_current.id) if cells_to_stimulate is None or cell in cells_to_stimulate: net.explicit_inputs.append(exp_input) if cells_to_plot is None or cell in cells_to_plot: plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/v" % (cell, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/v" % (cell) lems_info["plots"].append(plot) if hasattr(params.generic_cell, 'custom_component_type_definition'): plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/activity" % (cell, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/activity" % (cell) lems_info["activity_plots"].append(plot) save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/v" % (cell, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/v" % (cell) lems_info["to_save"].append(save) if hasattr(params.generic_cell, 'custom_component_type_definition'): save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/activity" % (cell, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/activity" % (cell) lems_info["activity_to_save"].append(save) lems_info["cells"].append(cell) count+=1 print("Finished loading %i cells"%count) mneurons, all_muscles, muscle_conns = SpreadsheetDataReader.readMuscleDataFromSpreadsheet(spreadsheet_location) muscles = get_muscle_names() if include_muscles: muscle_count = 0 for muscle in muscles: inst = Instance(id="0") if not populations_without_location: # build a Population data structure out of the cell name pop0 = Population(id=muscle, component=params.generic_cell.id, type="populationList") pop0.instances.append(inst) else: # build a Population data structure out of the cell name pop0 = Population(id=muscle, component=params.generic_cell.id, size="1") # put that Population into the Network data structure from above net.populations.append(pop0) if cells_vs_name.has_key(muscle): # No muscles adopted yet, but just in case they are in future... p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[muscle]) pop0.properties.append(p) inst.location = Location(100, 10*muscle_count, 100) target = "%s/0/%s"%(pop0.id, params.generic_cell.id) if populations_without_location: target = "%s[0]" % (muscle) plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/v" % (muscle, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/v" % (muscle) lems_info["muscle_plots"].append(plot) if hasattr(params.generic_cell, 'custom_component_type_definition'): plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/activity" % (muscle, params.generic_cell.id) if populations_without_location: plot["quantity"] = "%s[0]/activity" % (muscle) lems_info["muscle_activity_plots"].append(plot) save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/v" % (muscle, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/v" % (muscle) lems_info["muscles_to_save"].append(save) if hasattr(params.generic_cell, 'custom_component_type_definition'): save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/activity" % (muscle, params.generic_cell.id) if populations_without_location: save["quantity"] = "%s[0]/activity" % (muscle) lems_info["muscles_activity_to_save"].append(save) lems_info["muscles"].append(muscle) muscle_count+=1 print("Finished creating %i muscles"%muscle_count) for conn in conns: if conn.pre_cell in lems_info["cells"] and conn.post_cell in lems_info["cells"]: # take information about each connection and package it into a # NeuroML Projection data structure proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype) elect_conn = False syn0 = params.exc_syn if 'GABA' in conn.synclass: syn0 = params.inh_syn if '_GJ' in conn.synclass: syn0 = params.elec_syn elect_conn = isinstance(params.elec_syn, GapJunction) number_syns = conn.number conn_shorthand = "%s-%s"%(conn.pre_cell, conn.post_cell) if conn_number_override is not None and (conn_number_override.has_key(conn_shorthand)): number_syns = conn_number_override[conn_shorthand] elif conn_number_scaling is not None and (conn_number_scaling.has_key(conn_shorthand)): number_syns = conn.number*conn_number_scaling[conn_shorthand] ''' else: print conn_shorthand print conn_number_override print conn_number_scaling''' if number_syns != conn.number: magnitude, unit = split_neuroml_quantity(syn0.gbase) cond0 = "%s%s"%(magnitude*conn.number, unit) cond1 = "%s%s"%(magnitude*number_syns, unit) print(">> Changing number of effective synapses connection %s -> %s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \ (conn.pre_cell, conn.post_cell, conn.number, cond0, number_syns, cond1)) syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc) if not elect_conn: if not populations_without_location: proj0 = Projection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell, synapse=syn_new.id) net.projections.append(proj0) # Add a Connection with the closest locations pre_cell_id="../%s/0/%s"%(conn.pre_cell, params.generic_cell.id) post_cell_id="../%s/0/%s"%(conn.post_cell, params.generic_cell.id) conn0 = Connection(id="0", \ pre_cell_id=pre_cell_id, post_cell_id=post_cell_id) proj0.connections.append(conn0) if populations_without_location: # <synapticConnection from="hh1pop[0]" to="hh2pop[0]" synapse="syn1exp" destination="synapses"/> pre_cell_id="%s[0]"%(conn.pre_cell) post_cell_id="%s[0]"%(conn.post_cell) conn0 = SynapticConnection(from_=pre_cell_id, to=post_cell_id, synapse=syn_new.id, destination="synapses") net.synaptic_connections.append(conn0) else: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) # Add a Connection with the closest locations conn0 = ElectricalConnection(id="0", \ pre_cell="0", post_cell="0", synapse=syn_new.id) proj0.electrical_connections.append(conn0) if include_muscles: for conn in muscle_conns: if conn.pre_cell in lems_info["cells"] and conn.post_cell in muscles: # take information about each connection and package it into a # NeuroML Projection data structure proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype) elect_conn = False syn0 = params.exc_syn if 'GABA' in conn.synclass: syn0 = params.inh_syn if '_GJ' in conn.synclass: syn0 = params.elec_syn elect_conn = isinstance(params.elec_syn, GapJunction) number_syns = conn.number conn_shorthand = "%s-%s"%(conn.pre_cell, conn.post_cell) if conn_number_override is not None and (conn_number_override.has_key(conn_shorthand)): number_syns = conn_number_override[conn_shorthand] elif conn_number_scaling is not None and (conn_number_scaling.has_key(conn_shorthand)): number_syns = conn.number*conn_number_scaling[conn_shorthand] ''' else: print conn_shorthand print conn_number_override print conn_number_scaling''' if number_syns != conn.number: magnitude, unit = split_neuroml_quantity(syn0.gbase) cond0 = "%s%s"%(magnitude*conn.number, unit) cond1 = "%s%s"%(magnitude*number_syns, unit) print(">> Changing number of effective synapses connection %s -> %s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \ (conn.pre_cell, conn.post_cell, conn.number, cond0, number_syns, cond1)) syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc) if not elect_conn: if not populations_without_location: proj0 = Projection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell, synapse=syn_new.id) net.projections.append(proj0) # Add a Connection with the closest locations pre_cell_id="../%s/0/%s"%(conn.pre_cell, params.generic_cell.id) post_cell_id="../%s/0/%s"%(conn.post_cell, params.generic_cell.id) conn0 = Connection(id="0", \ pre_cell_id=pre_cell_id, post_cell_id=post_cell_id) proj0.connections.append(conn0) if populations_without_location: # <synapticConnection from="hh1pop[0]" to="hh2pop[0]" synapse="syn1exp" destination="synapses"/> pre_cell_id="%s[0]"%(conn.pre_cell) post_cell_id="%s[0]"%(conn.post_cell) conn0 = SynapticConnection(from_=pre_cell_id, to=post_cell_id, synapse=syn_new.id, destination="synapses") net.synaptic_connections.append(conn0) else: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) # Add a Connection with the closest locations conn0 = ElectricalConnection(id="0", \ pre_cell="0", post_cell="0", synapse=syn_new.id) proj0.electrical_connections.append(conn0) # import pprint # pprint.pprint(lems_info) write_to_file(nml_doc, lems_info, net_id, validate=validate) return nml_doc
def generate(net_id, params, cells=None, cells_to_plot=None, cells_to_stimulate=None, duration=500, dt=0.01, vmin=-75, vmax=20): nml_doc = NeuroMLDocument(id=net_id) nml_doc.iaf_cells.append(params.generic_cell) net = Network(id=net_id) nml_doc.networks.append(net) nml_doc.pulse_generators.append(params.offset_current) # Use the spreadsheet reader to give a list of all cells and a list of all connections # This could be replaced with a call to "DatabaseReader" or "OpenWormNeuroLexReader" in future... cell_names, conns = R().read() cell_names.sort() # To hold all Cell NeuroML objects vs. names all_cells = {} # lems_file = "" lems_info = { "reference": net_id, "duration": duration, "dt": dt, "vmin": vmin, "vmax": vmax, "cell_component": params.generic_cell.id } lems_info["plots"] = [] lems_info["cells"] = [] for cell in cell_names: if cells is None or cell in cells: # build a Population data structure out of the cell name pop0 = Population(id=cell, component=params.generic_cell.id, type="populationList") inst = Instance(id="0") pop0.instances.append(inst) # put that Population into the Network data structure from above net.populations.append(pop0) # also use the cell name to grab the morphology file, as a NeuroML data structure # into the 'all_cells' dict cell_file = '../../generatedNeuroML2/%s.nml' % cell doc = loaders.NeuroMLLoader.load(cell_file) all_cells[cell] = doc.cells[0] location = doc.cells[0].morphology.segments[0].proximal print( "Loaded morphology file from: %s, with id: %s, location: (%s, %s, %s)" % (cell_file, all_cells[cell].id, location.x, location.y, location.z)) inst.location = Location(float(location.x), float(location.y), float(location.z)) exp_input = ExplicitInput(target="%s/0/%s" % (pop0.id, params.generic_cell.id), input=params.offset_current.id) if cells_to_stimulate is None or cell in cells_to_stimulate: net.explicit_inputs.append(exp_input) if cells_to_plot is None or cell in cells_to_plot: plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() lems_info["plots"].append(plot) lems_info["cells"].append(cell) for conn in conns: if conn.pre_cell in lems_info["cells"] and conn.post_cell in lems_info[ "cells"]: # take information about each connection and package it into a # NeuroML Projection data structure proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype) syn0 = params.exc_syn if 'GABA' in conn.synclass: syn0 = params.inh_syn syn_new = create_n_connection_synapse(syn0, conn.number, nml_doc) proj0 = Projection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell, synapse=syn_new.id) # Get the corresponding Cell for each # pre_cell = all_cells[conn.pre_cell] # post_cell = all_cells[conn.post_cell] net.projections.append(proj0) # Add a Connection with the closest locations conn0 = Connection(id="0", \ pre_cell_id="../%s/0/%s"%(conn.pre_cell, params.generic_cell.id), post_cell_id="../%s/0/%s"%(conn.post_cell, params.generic_cell.id)) proj0.connections.append(conn0) write_to_file(nml_doc, lems_info, net_id)
def generatePopulationLEMS(pops, n_pops, amplitudes, baseline, sim_length, delay): def generatePopulationProjection(from_pop, to_pop, n_from_pop, n_to_pop, w_to_from_pop, p_to_from_pop, net): connection_count = 0 projection = ContinuousProjection( id='%s_%s' % (from_pop, to_pop), presynaptic_population='%sPop' % from_pop, postsynaptic_population='%sPop' % to_pop) for idx_from_pop in range(n_from_pop): for idx_to_pop in range(n_to_pop): if random.random() <= p_to_from_pop: pre_comp = from_pop.upper() to_comp = to_pop.upper() connection = ContinuousConnectionInstanceW( id=connection_count, pre_cell='../%sPop/%i/%s' % (from_pop, idx_from_pop, pre_comp), post_cell='../%sPop/%i/%s' % (to_pop, idx_to_pop, to_comp), pre_component='silent1', post_component='rs', weight=w_to_from_pop / (p_to_from_pop * n_from_pop)) projection.continuous_connection_instance_ws.append( connection) connection_count += 1 if connection_count > 0: net.continuous_projections.append(projection) # Connection probabilities for each pop in the population w_to_from_pops = np.array([[2.42, -.33, -0.80, 0], [2.97, -3.45, -2.13, 0], [4.64, 0, 0, -2.79], [0.71, 0, -0.16, 0]]) # p_to_from_pop = np.array([[1, 1, 1, 0], # [1, 1, 1, 0], # [1, 0, 0, 1], # [1, 0, 1, 0]]) p_to_from_pop = np.array([[0.02, 1, 1, 0], [0.01, 1, 0.85, 0], [0.01, 0, 0, 0.55], [0.01, 0, 0.5, 0]]) nml_doc = NeuroMLDocument(id='RandomPopulation') # Add silent synapsis silent_syn = SilentSynapse(id='silent1') nml_doc.silent_synapses.append(silent_syn) for pop_idx, pop in enumerate(pops): pulse = PulseGenerator(id='baseline_%s' % pop, delay='0ms', duration=str(sim_length) + 'ms', amplitude=amplitudes[pop_idx]) nml_doc.pulse_generators.append(pulse) if pop == 'vip': # time point when additional current is induced pulse_mod = PulseGenerator(id='modVIP', delay=str(delay) + 'ms', duration=str(sim_length - delay) + 'ms', amplitude='10 pA') nml_doc.pulse_generators.append(pulse_mod) # Create the network and add the 4 different populations net = Network(id='net2') nml_doc.networks.append(net) colours = ['0 0 1', '1 0 0', '.5 0 .5', '0 1 0'] centres = [(0, 0, 0), (-1200, 0, 0), (-800, 800, 0), (0, 1200, 0)] radii = [800, 200, 200, 200] # Populate the network with the 4 populations for pop_idx, pop in enumerate(pops): pop = Population(id='%sPop' % pop, component=(pops[pop_idx]).upper(), size=n_pops[pop_idx], type='populationList') net.populations.append(pop) pop.properties.append(Property(tag='color', value=colours[pop_idx])) pop.properties.append(Property(tag='radius', value=10)) for n_pop in range(n_pops[pop_idx]): inst = Instance(id=n_pop) pop.instances.append(inst) x, y, z = centres[pop_idx] r = (random.random() * radii[pop_idx]**3)**(1. / 3) theta = random.random() * math.pi phi = random.random() * math.pi * 2 inst.location = Location( x=str(x + r * math.sin(theta) * math.cos(phi)), y=str(y + r * math.sin(theta) * math.sin(phi)), z=str(z + r * math.cos(theta))) for from_idx, from_pop in enumerate(pops): for to_idx, to_pop in enumerate(pops): generatePopulationProjection(pops[from_idx], pops[to_idx], n_pops[from_idx], n_pops[to_idx], w_to_from_pops[to_idx, from_idx], p_to_from_pop[to_idx, from_idx], net) # Add inputs for pop_idx, pop in enumerate(pops): input_list = InputList(id='baseline_%s' % pop, component='baseline_%s' % pops[pop_idx], populations='%sPop' % pop) net.input_lists.append(input_list) if pop == 'vip': input_list_mod = InputList(id='modulation_%s' % pop, component='modVIP', populations='%sPop' % pop) net.input_lists.append(input_list_mod) for n_idx in range(n_pops[pop_idx]): input = Input(id=n_idx, target='../%sPop/%i/%s' % (pop, n_idx, pop.upper()), destination='synapses') input_list.input.append(input) # if vip add modulatory input if pop == 'vip': mod_input = Input(id=n_idx, target='../vipPop/%i/VIP' % n_idx, destination='synapses') input_list_mod.input.append(mod_input) nml_file = 'RandomPopulationRate_%s_baseline.nml' % baseline writers.NeuroMLWriter.write(nml_doc, nml_file) print('Written network file to: %s' % nml_file) # Validate the NeuroML from neuroml.utils import validate_neuroml2 validate_neuroml2(nml_file)
from neuroml import Member from neuroml import Input from neuroml import InputList from neuroml import Instance from neuroml import Location from neuroml import Network from neuroml import NeuroMLDocument from neuroml import PoissonFiringSynapse from neuroml import Population from neuroml import Projection from neuroml import Property import neuroml.writers as writers import random import math nml_doc = NeuroMLDocument(id="Example2") nml_doc.notes = "Demo of cell with spines" net = Network(id=nml_doc.id) net.notes = nml_doc.notes nml_doc.networks.append(net) populations = {} def add_instance(name, x, y, z): pop = populations[name] inst = Instance(id=len(pop.instances))
from neuroml import ElectricalProjection from neuroml import ElectricalConnection from neuroml import ElectricalConnectionInstance from neuroml import Property from neuroml import Instance from neuroml import Location from neuroml import PoissonFiringSynapse import neuroml.writers as writers import random random.seed(123) scale = 2 nml_doc = NeuroMLDocument(id="IafNet") nml_doc.notes = "Root notes" IafCell0 = IafCell(id="iaf0", C="1.0 nF", thresh="-50mV", reset="-65mV", leak_conductance="10 nS", leak_reversal="-65mV") nml_doc.iaf_cells.append(IafCell0) IafCell1 = IafCell(id="iaf1", C="1.0 nF", thresh="-50mV",
def tune_izh_model(acq_list: List, metrics_from_data: Dict, currents: Dict) -> Dict: """Tune networks model against the data. Here we generate a network with the necessary number of Izhikevich cells, one for each current stimulus, and tune them against the experimental data. :param acq_list: list of indices of acquisitions/sweeps to tune against :type acq_list: list :param metrics_from_data: dictionary with the sweep number as index, and the dictionary containing metrics generated from the analysis :type metrics_from_data: dict :param currents: dictionary with sweep number as index and stimulus current value """ # length of simulation of the cells---should match the length of the # experiment sim_time = 1500.0 # Create a NeuroML template network simulation file that we will use for # the tuning template_doc = NeuroMLDocument(id="IzhTuneNet") # Add an Izhikevich cell with some parameters to the document template_doc.izhikevich2007_cells.append( Izhikevich2007Cell( id="Izh2007", C="100pF", v0="-60mV", k="0.7nS_per_mV", vr="-60mV", vt="-40mV", vpeak="35mV", a="0.03per_ms", b="-2nS", c="-50.0mV", d="100pA", )) template_doc.networks.append(Network(id="Network0")) # Add a cell for each acquisition list popsize = len(acq_list) template_doc.networks[0].populations.append( Population(id="Pop0", component="Izh2007", size=popsize)) # Add a current source for each cell, matching the currents that # were used in the experimental study. counter = 0 for acq in acq_list: template_doc.pulse_generators.append( PulseGenerator( id="Stim{}".format(counter), delay="80ms", duration="1000ms", amplitude="{}pA".format(currents[acq]), )) template_doc.networks[0].explicit_inputs.append( ExplicitInput(target="Pop0[{}]".format(counter), input="Stim{}".format(counter))) counter = counter + 1 # Print a summary print(template_doc.summary()) # Write to a neuroml file and validate it. reference = "TuneIzhFergusonPyr3" template_filename = "{}.net.nml".format(reference) write_neuroml2_file(template_doc, template_filename, validate=True) # Now for the tuning bits # format is type:id/variable:id/units # supported types: cell/channel/izhikevich2007cell # supported variables: # - channel: vShift # - cell: channelDensity, vShift_channelDensity, channelDensityNernst, # erev_id, erev_ion, specificCapacitance, resistivity # - izhikevich2007Cell: all available attributes # we want to tune these parameters within these ranges # param: (min, max) parameters = { "izhikevich2007Cell:Izh2007/C/pF": (100, 300), "izhikevich2007Cell:Izh2007/k/nS_per_mV": (0.01, 2), "izhikevich2007Cell:Izh2007/vr/mV": (-70, -50), "izhikevich2007Cell:Izh2007/vt/mV": (-60, 0), "izhikevich2007Cell:Izh2007/vpeak/mV": (35, 70), "izhikevich2007Cell:Izh2007/a/per_ms": (0.001, 0.4), "izhikevich2007Cell:Izh2007/b/nS": (-10, 10), "izhikevich2007Cell:Izh2007/c/mV": (-65, -10), "izhikevich2007Cell:Izh2007/d/pA": (50, 500), } # type: Dict[str, Tuple[float, float]] # Set up our target data and so on ctr = 0 target_data = {} weights = {} for acq in acq_list: # data to fit to: # format: path/to/variable:metric # metric from pyelectro, for example: # https://pyelectro.readthedocs.io/en/latest/pyelectro.html?highlight=mean_spike_frequency#pyelectro.analysis.mean_spike_frequency mean_spike_frequency = "Pop0[{}]/v:mean_spike_frequency".format(ctr) average_last_1percent = "Pop0[{}]/v:average_last_1percent".format(ctr) first_spike_time = "Pop0[{}]/v:first_spike_time".format(ctr) # each metric can have an associated weight weights[mean_spike_frequency] = 1 weights[average_last_1percent] = 1 weights[first_spike_time] = 1 # value of the target data from our data set target_data[mean_spike_frequency] = metrics_from_data[acq][ "{}:mean_spike_frequency".format(acq)] target_data[average_last_1percent] = metrics_from_data[acq][ "{}:average_last_1percent".format(acq)] target_data[first_spike_time] = metrics_from_data[acq][ "{}:first_spike_time".format(acq)] # only add these if the experimental data includes them # these are only generated for traces with spikes if "{}:average_maximum".format(acq) in metrics_from_data[acq]: average_maximum = "Pop0[{}]/v:average_maximum".format(ctr) weights[average_maximum] = 1 target_data[average_maximum] = metrics_from_data[acq][ "{}:average_maximum".format(acq)] if "{}:average_minimum".format(acq) in metrics_from_data[acq]: average_minimum = "Pop0[{}]/v:average_minimum".format(ctr) weights[average_minimum] = 1 target_data[average_minimum] = metrics_from_data[acq][ "{}:average_minimum".format(acq)] ctr = ctr + 1 # simulator to use simulator = "jNeuroML" return run_optimisation( # Prefix for new files prefix="TuneIzh", # Name of the NeuroML template file neuroml_file=template_filename, # Name of the network target="Network0", # Parameters to be fitted parameters=list(parameters.keys()), # Our max and min constraints min_constraints=[v[0] for v in parameters.values()], max_constraints=[v[1] for v in parameters.values()], # Weights we set for parameters weights=weights, # The experimental metrics to fit to target_data=target_data, # Simulation time sim_time=sim_time, # EC parameters population_size=100, max_evaluations=500, num_selected=30, num_offspring=50, mutation_rate=0.9, num_elites=3, # Seed value seed=12345, # Simulator simulator=simulator, dt=0.025, show_plot_already='-nogui' not in sys.argv, save_to_file="fitted_izhikevich_fitness.png", save_to_file_scatter="fitted_izhikevich_scatter.png", save_to_file_hist="fitted_izhikevich_hist.png", save_to_file_output="fitted_izhikevich_output.png", num_parallel_evaluations=4, )
""" Example to create a file with multiple synapse types """ from neuroml import NeuroMLDocument from neuroml import * import neuroml.writers as writers from random import random nml_doc = NeuroMLDocument(id="SomeSynapses") expOneSyn0 = ExpOneSynapse(id="ampa", tau_decay="5ms", gbase="1nS", erev="0mV") nml_doc.exp_one_synapses.append(expOneSyn0) expTwoSyn0 = ExpTwoSynapse(id="gaba", tau_decay="12ms", tau_rise="3ms", gbase="1nS", erev="-70mV") nml_doc.exp_two_synapses.append(expTwoSyn0) bpSyn = BlockingPlasticSynapse(id="blockStpSynDep", gbase="1nS", erev="0mV", tau_rise="0.1ms", tau_decay="2ms") bpSyn.notes = "This is a note" bpSyn.plasticity_mechanism = PlasticityMechanism( type="tsodyksMarkramDepMechanism",
""" Example to build a PyNN based network """ from neuroml import NeuroMLDocument from neuroml import * import neuroml.writers as writers from random import random ######################## Build the network #################################### nml_doc = NeuroMLDocument(id="IafNet") pynn0 = IF_curr_alpha(id="IF_curr_alpha_pop_IF_curr_alpha", cm="1.0", i_offset="0.9", tau_m="20.0", tau_refrac="10.0", tau_syn_E="0.5", tau_syn_I="0.5", v_init="-65", v_reset="-62.0", v_rest="-65.0", v_thresh="-52.0") nml_doc.IF_curr_alpha.append(pynn0) pynn1 = HH_cond_exp(id="HH_cond_exp_pop_HH_cond_exp", cm="0.2", e_rev_E="0.0",
if "GapJunction" in syntype: proj_id += '_GJ' return proj_id if __name__ == "__main__": # Use the spreadsheet reader to give a list of all cells and a list of all connections # This could be replaced with a call to "DatabaseReader" or "OpenWormNeuroLexReader" in future... cell_names, conns = c302.SpreadsheetDataReader.readDataFromSpreadsheet() net_id = "CElegansConnectome" nml_network_doc = NeuroMLDocument(id=net_id) # Create a NeuroML Network data structure to hold on to all the connection info. net = Network(id=net_id) nml_network_doc.networks.append(net) # To hold all Cell NeuroML objects vs. names all_cells = {} for cell in cell_names: # build a Population data structure out of the cell name pop0 = Population(id=cell, component=cell, size=1) inst = Instance(id="0") # Each of these cells is at (0,0,0), i.e. segment 3D info in each cell is absolute inst.location = Location(x="0.0", y="0.0", z="0.0") pop0.instances.append(inst)
from neuroml import NeuroMLDocument from neuroml import Izhikevich2007Cell from neuroml import Population from neuroml import Network from neuroml import PulseGenerator from neuroml import ExplicitInput import neuroml.writers as writers from neuroml.utils import validate_neuroml2 from pyneuroml import pynml from pyneuroml.lems import LEMSSimulation import numpy as np # Create a new NeuroML model document nml_doc = NeuroMLDocument(id="IzhSingleNeuron") # Define the Izhikevich cell and add it to the model in the document izh0 = Izhikevich2007Cell( id="izh2007RS0", v0="-60mV", C="100pF", k="0.7nS_per_mV", vr="-60mV", vt="-40mV", vpeak="35mV", a="0.03per_ms", b="-2nS", c="-50.0mV", d="100pA") nml_doc.izhikevich2007_cells.append(izh0) # Create a network and add it to the model net = Network(id="IzhNet") nml_doc.networks.append(net) # Create a population of defined cells and add it to the model size0 = 1 pop0 = Population(id="IzhPop0", component=izh0.id, size=size0) net.populations.append(pop0)
def run(): cell_num = 10 x_size = 500 y_size = 500 z_size = 500 nml_doc = NeuroMLDocument(id="Net3DExample") syn0 = ExpOneSynapse(id="syn0", gbase="65nS", erev="0mV", tau_decay="3ms") nml_doc.exp_one_synapses.append(syn0) net = Network(id="Net3D") nml_doc.networks.append(net) proj_count = 0 #conn_count = 0 for cell_id in range(0, cell_num): cell = Cell(id="Cell_%i" % cell_id) cell.morphology = generateRandomMorphology() nml_doc.cells.append(cell) pop = Population(id="Pop_%i" % cell_id, component=cell.id, type="populationList") net.populations.append(pop) pop.properties.append(Property(tag="color", value="1 0 0")) inst = Instance(id="0") pop.instances.append(inst) inst.location = Location(x=str(x_size * random()), y=str(y_size * random()), z=str(z_size * random())) prob_connection = 0.5 for post in range(0, cell_num): if post is not cell_id and random() <= prob_connection: from_pop = "Pop_%i" % cell_id to_pop = "Pop_%i" % post pre_seg_id = 0 post_seg_id = 1 projection = Projection(id="Proj_%i" % proj_count, presynaptic_population=from_pop, postsynaptic_population=to_pop, synapse=syn0.id) net.projections.append(projection) connection = Connection(id=proj_count, \ pre_cell_id="%s[%i]"%(from_pop,0), \ pre_segment_id=pre_seg_id, \ pre_fraction_along=random(), post_cell_id="%s[%i]"%(to_pop,0), \ post_segment_id=post_seg_id, post_fraction_along=random()) projection.connections.append(connection) proj_count += 1 #net.synaptic_connections.append(SynapticConnection(from_="%s[%i]"%(from_pop,0), to="%s[%i]"%(to_pop,0))) ####### Write to file ###### nml_file = 'tmp/net3d.nml' writers.NeuroMLWriter.write(nml_doc, nml_file) print("Written network file to: " + nml_file) ###### Validate the NeuroML ###### from neuroml.utils import validate_neuroml2 validate_neuroml2(nml_file)
def createModel(self): # File names of all components pyr_file_name = "../ACnet2_NML2/Cells/pyr_4_sym.cell.nml" bask_file_name = "../ACnet2_NML2/Cells/bask.cell.nml" exc_exc_syn_names = '../ACnet2_NML2/Synapses/AMPA_syn.synapse.nml' exc_inh_syn_names = '../ACnet2_NML2/Synapses/AMPA_syn_inh.synapse.nml' inh_exc_syn_names = '../ACnet2_NML2/Synapses/GABA_syn.synapse.nml' inh_inh_syn_names = '../ACnet2_NML2/Synapses/GABA_syn_inh.synapse.nml' bg_exc_syn_names = '../ACnet2_NML2/Synapses/bg_AMPA_syn.synapse.nml' nml_doc = NeuroMLDocument(id=self.filename + '_doc') net = Network(id=self.filename + '_net') nml_doc.networks.append(net) nml_doc.includes.append(IncludeType(pyr_file_name)) nml_doc.includes.append(IncludeType(bask_file_name)) nml_doc.includes.append(IncludeType(exc_exc_syn_names)) nml_doc.includes.append(IncludeType(exc_inh_syn_names)) nml_doc.includes.append(IncludeType(inh_exc_syn_names)) nml_doc.includes.append(IncludeType(inh_inh_syn_names)) nml_doc.includes.append(IncludeType(bg_exc_syn_names)) # Create a LEMSSimulation to manage creation of LEMS file ls = LEMSSimulation(self.filename, self.sim_time, self.dt) # Point to network as target of simulation ls.assign_simulation_target(net.id) # The names of the cell type/component used in the Exc & Inh populations exc_group_component = "pyr_4_sym" inh_group_component = "bask" # The names of the Exc & Inh groups/populations exc_group = "pyramidals" #"pyramidals48x48" inh_group = "baskets" #"baskets24x24" # The names of the network connections net_conn_exc_exc = "pyr_pyr" net_conn_exc_inh = "pyr_bask" net_conn_inh_exc = "bask_pyr" net_conn_inh_inh = "bask_bask" # The names of the synapse types exc_exc_syn = "AMPA_syn" exc_exc_syn_seg_id = 3 # Middle apical dendrite exc_inh_syn = "AMPA_syn_inh" exc_inh_syn_seg_id = 1 # Dendrite inh_exc_syn = "GABA_syn" inh_exc_syn_seg_id = 6 # Basal dendrite inh_inh_syn = "GABA_syn_inh" inh_inh_syn_seg_id = 0 # Soma aff_exc_syn = "AMPA_aff_syn" aff_exc_syn_seg_id = 5 # proximal apical dendrite bg_exc_syn = "bg_AMPA_syn" bg_exc_syn_seg_id = 7 # Basal dendrite # Excitatory Parameters XSCALE_ex = 24 #48 ZSCALE_ex = 24 #48 xSpacing_ex = 40 # 10^-6m zSpacing_ex = 40 # 10^-6m # Inhibitory Parameters XSCALE_inh = 12 #24 ZSCALE_inh = 12 #24 xSpacing_inh = 80 # 10^-6m zSpacing_inh = 80 # 10^-6m numCells_ex = XSCALE_ex * ZSCALE_ex numCells_inh = XSCALE_inh * ZSCALE_inh # Connection probabilities (initial value) connection_probability_ex_ex = 0.15 connection_probability_ex_inh = 0.45 connection_probability_inh_ex = 0.6 connection_probability_inh_inh = 0.6 # Generate excitatory cells exc_pop = Population(id=exc_group, component=exc_group_component, type="populationList", size=XSCALE_ex * ZSCALE_ex) net.populations.append(exc_pop) exc_pos = np.zeros((XSCALE_ex * ZSCALE_ex, 2)) for i in range(0, XSCALE_ex): for j in range(0, ZSCALE_ex): # create cells x = i * xSpacing_ex z = j * zSpacing_ex index = i * ZSCALE_ex + j inst = Instance(id=index) exc_pop.instances.append(inst) inst.location = Location(x=x, y=0, z=z) exc_pos[index, 0] = x exc_pos[index, 1] = z # Generate inhibitory cells inh_pop = Population(id=inh_group, component=inh_group_component, type="populationList", size=XSCALE_inh * ZSCALE_inh) net.populations.append(inh_pop) inh_pos = np.zeros((XSCALE_inh * ZSCALE_inh, 2)) for i in range(0, XSCALE_inh): for j in range(0, ZSCALE_inh): # create cells x = i * xSpacing_inh z = j * zSpacing_inh index = i * ZSCALE_inh + j inst = Instance(id=index) inh_pop.instances.append(inst) inst.location = Location(x=x, y=0, z=z) inh_pos[index, 0] = x inh_pos[index, 1] = z proj_exc_exc = Projection(id=net_conn_exc_exc, presynaptic_population=exc_group, postsynaptic_population=exc_group, synapse=exc_exc_syn) net.projections.append(proj_exc_exc) proj_exc_inh = Projection(id=net_conn_exc_inh, presynaptic_population=exc_group, postsynaptic_population=inh_group, synapse=exc_inh_syn) net.projections.append(proj_exc_inh) proj_inh_exc = Projection(id=net_conn_inh_exc, presynaptic_population=inh_group, postsynaptic_population=exc_group, synapse=inh_exc_syn) net.projections.append(proj_inh_exc) proj_inh_inh = Projection(id=net_conn_inh_inh, presynaptic_population=inh_group, postsynaptic_population=inh_group, synapse=inh_inh_syn) net.projections.append(proj_inh_inh) # Generate exc -> * connections exc_exc_conn = np.zeros((numCells_ex, numCells_ex)) exc_inh_conn = np.zeros((numCells_ex, numCells_inh)) count_exc_exc = 0 count_exc_inh = 0 for i in range(0, XSCALE_ex): for j in range(0, ZSCALE_ex): x = i * xSpacing_ex y = j * zSpacing_ex index = i * ZSCALE_ex + j #print("Looking at connections for exc cell at (%i, %i)"%(i,j)) # exc -> exc connections conn_type = net_conn_exc_exc for k in range(0, XSCALE_ex): for l in range(0, ZSCALE_ex): # calculate distance from pre- to post-synaptic neuron xk = k * xSpacing_ex yk = l * zSpacing_ex distance = math.sqrt((x - xk)**2 + (y - yk)**2) connection_probability = connection_probability_ex_ex * math.exp( -(distance / (10.0 * xSpacing_ex))**2) # create a random number between 0 and 1, if it is <= connection_probability # accept connection otherwise refuse a = random.random() if 0 < a <= connection_probability: index2 = k * ZSCALE_ex + l count_exc_exc += 1 add_connection(proj_exc_exc, count_exc_exc, exc_group, exc_group_component, index, 0, exc_group, exc_group_component, index2, exc_exc_syn_seg_id) exc_exc_conn[index, index2] = 1 # exc -> inh connections conn_type = net_conn_exc_inh for k in range(0, XSCALE_inh): for l in range(0, ZSCALE_inh): # calculate distance from pre- to post-synaptic neuron xk = k * xSpacing_inh yk = l * zSpacing_inh distance = math.sqrt((x - xk)**2 + (y - yk)**2) connection_probability = connection_probability_ex_inh * math.exp( -(distance / (10.0 * xSpacing_ex))**2) # create a random number between 0 and 1, if it is <= connection_probability # accept connection otherwise refuse a = random.random() if 0 < a <= connection_probability: index2 = k * ZSCALE_inh + l count_exc_inh += 1 add_connection(proj_exc_inh, count_exc_inh, exc_group, exc_group_component, index, 0, inh_group, inh_group_component, index2, exc_inh_syn_seg_id) exc_inh_conn[index, index2] = 1 inh_exc_conn = np.zeros((numCells_inh, numCells_ex)) inh_inh_conn = np.zeros((numCells_inh, numCells_inh)) count_inh_exc = 0 count_inh_inh = 0 for i in range(0, XSCALE_inh): for j in range(0, ZSCALE_inh): x = i * xSpacing_inh y = j * zSpacing_inh index = i * ZSCALE_inh + j #print("Looking at connections for inh cell at (%i, %i)"%(i,j)) # inh -> exc connections conn_type = net_conn_inh_exc for k in range(0, XSCALE_ex): for l in range(0, ZSCALE_ex): # calculate distance from pre- to post-synaptic neuron xk = k * xSpacing_ex yk = l * zSpacing_ex distance = math.sqrt((x - xk)**2 + (y - yk)**2) connection_probability = connection_probability_inh_ex * math.exp( -(distance / (10.0 * xSpacing_ex))**2) # create a random number between 0 and 1, if it is <= connection_probability # accept connection otherwise refuse a = random.random() if 0 < a <= connection_probability: index2 = k * ZSCALE_ex + l count_inh_exc += 1 add_connection(proj_inh_exc, count_inh_exc, inh_group, inh_group_component, index, 0, exc_group, exc_group_component, index2, inh_exc_syn_seg_id) inh_exc_conn[index, index2] = 1 # inh -> inh connections conn_type = net_conn_inh_inh for k in range(0, XSCALE_inh): for l in range(0, ZSCALE_inh): # calculate distance from pre- to post-synaptic neuron xk = k * xSpacing_inh yk = l * zSpacing_inh distance = math.sqrt((x - xk)**2 + (y - yk)**2) connection_probability = connection_probability_inh_inh * math.exp( -(distance / (10.0 * xSpacing_ex))**2) # create a random number between 0 and 1, if it is <= connection_probability # accept connection otherwise refuse a = random.random() if 0 < a <= connection_probability: index2 = k * ZSCALE_inh + l count_inh_inh += 1 add_connection(proj_inh_inh, count_inh_inh, inh_group, inh_group_component, index, 0, inh_group, inh_group_component, index2, inh_inh_syn_seg_id) inh_inh_conn[index, index2] = 1 print( "Generated network with %i exc_exc, %i exc_inh, %i inh_exc, %i inh_inh connections" % (count_exc_exc, count_exc_inh, count_inh_exc, count_inh_inh)) ####### Create Input ###### # Create a sine generator sgE = SineGenerator(id="sineGen_0", phase="0", delay="0ms", duration=str(self.sim_time) + "ms", amplitude=str(self.Edrive_weight) + "nA", period=str(self.Drive_period) + "ms") sgI = SineGenerator(id="sineGen_1", phase="0", delay="0ms", duration=str(self.sim_time) + "ms", amplitude=str(self.Idrive_weight) + "nA", period=str(self.Drive_period) + "ms") nml_doc.sine_generators.append(sgE) nml_doc.sine_generators.append(sgI) # Create an input object for each excitatory cell for i in range(0, XSCALE_ex): exp_input = ExplicitInput(target="%s[%i]" % (exc_pop.id, i), input=sgE.id) net.explicit_inputs.append(exp_input) # Create an input object for a percentage of inhibitory cells input_probability = 0.65 for i in range(0, XSCALE_inh): ran = random.random() if 0 < ran <= input_probability: inh_input = ExplicitInput(target="%s[%i]" % (inh_pop.id, i), input=sgI.id) net.explicit_inputs.append(inh_input) # Define Poisson noise input # Ex #nml_doc.includes.append(IncludeType('Synapses/bg_AMPA_syn.synapse.nml')) pfs1 = PoissonFiringSynapse(id="poissonFiringSyn1", average_rate=str(self.bg_noise_frequency) + "Hz", synapse=bg_exc_syn, spike_target="./%s" % bg_exc_syn) nml_doc.poisson_firing_synapses.append(pfs1) pfs_input_list1 = InputList(id="pfsInput1", component=pfs1.id, populations=exc_pop.id) net.input_lists.append(pfs_input_list1) for i in range(0, numCells_ex): pfs_input_list1.input.append( Input(id=i, target='../%s/%i/%s' % (exc_pop.id, i, exc_group_component), segment_id=bg_exc_syn_seg_id, destination="synapses")) ####### Write to file ###### print("Saving to file...") nml_file = '../ACnet2_NML2/' + self.filename + '_doc' + '.net.nml' writers.NeuroMLWriter.write(nml_doc, nml_file) print("Written network file to: " + nml_file) ###### Validate the NeuroML ###### from neuroml.utils import validate_neuroml2 validate_neuroml2(nml_file) print "-----------------------------------" ###### Output ####### # Output membrane potential # Ex population Ex_potentials = 'V_Ex' ls.create_output_file(Ex_potentials, "../ACnet2_NML2/Results/v_exc.dat") for j in range(numCells_ex): quantity = "%s[%i]/v" % (exc_pop.id, j) v = 'v' + str(j) ls.add_column_to_output_file(Ex_potentials, v, quantity) # Inh population #Inh_potentials = 'V_Inh' #ls.create_output_file(Inh_potentials, "../ACnet2_NML2/Results/v_inh.dat") #for j in range(numCells_inh): # quantity = "%s[%i]/v"%(inh_pop.id, j) # v = 'v'+str(j) # ls.add_column_to_output_file(Inh_potentials,v, quantity) # include generated network ls.include_neuroml2_file(nml_file) # Save to LEMS XML file lems_file_name = ls.save_to_file(file_name='../ACnet2_NML2/LEMS_' + self.filename + '.xml')
def _extract_pynn_components_to_neuroml(nl_model, nml_doc=None): """ Parse the NeuroMLlite description for cell, synapses and inputs described as PyNN elements (e.g. IF_cond_alpha, DCSource) and parameters, and convert these to the equivalent elements in a NeuroMLDocument """ if nml_doc == None: from neuroml import NeuroMLDocument nml_doc = NeuroMLDocument(id="temp") for c in nl_model.cells: if c.pynn_cell: if nml_doc.get_by_id(c.id) == None: import pyNN.neuroml cell_params = c.parameters if c.parameters else {} #print('------- %s: %s' % (c, cell_params)) for p in cell_params: cell_params[p] = evaluate(cell_params[p], nl_model.parameters) #print('====== %s: %s' % (c, cell_params)) for proj in nl_model.projections: synapse = nl_model.get_child(proj.synapse, 'synapses') post_pop = nl_model.get_child(proj.postsynaptic, 'populations') if post_pop.component == c.id: #print("--------- Cell %s in post pop %s of %s uses %s"%(c.id,post_pop.id, proj.id, synapse)) if synapse.pynn_receptor_type == 'excitatory': post = '_E' elif synapse.pynn_receptor_type == 'inhibitory': post = '_I' for p in synapse.parameters: cell_params['%s%s' % (p, post)] = synapse.parameters[p] temp_cell = eval('pyNN.neuroml.%s(**cell_params)' % c.pynn_cell) if c.pynn_cell != 'SpikeSourcePoisson': temp_cell.default_initial_values[ 'v'] = temp_cell.parameter_space['v_rest'].base_value cell_id = temp_cell.add_to_nml_doc(nml_doc, None) cell = nml_doc.get_by_id(cell_id) cell.id = c.id for s in nl_model.synapses: if nml_doc.get_by_id(s.id) == None: if s.pynn_synapse_type and s.pynn_receptor_type: import neuroml if s.pynn_synapse_type == 'cond_exp': syn = neuroml.ExpCondSynapse( id=s.id, tau_syn=s.parameters['tau_syn'], e_rev=s.parameters['e_rev']) nml_doc.exp_cond_synapses.append(syn) elif s.pynn_synapse_type == 'cond_alpha': syn = neuroml.AlphaCondSynapse( id=s.id, tau_syn=s.parameters['tau_syn'], e_rev=s.parameters['e_rev']) nml_doc.alpha_cond_synapses.append(syn) elif s.pynn_synapse_type == 'curr_exp': syn = neuroml.ExpCurrSynapse( id=s.id, tau_syn=s.parameters['tau_syn']) nml_doc.exp_curr_synapses.append(syn) elif s.pynn_synapse_type == 'curr_alpha': syn = neuroml.AlphaCurrSynapse( id=s.id, tau_syn=s.parameters['tau_syn']) nml_doc.alpha_curr_synapses.append(syn) for i in nl_model.input_sources: #if nml_doc.get_by_id(i.id) == None: if i.pynn_input: import pyNN.neuroml input_params = i.parameters if i.parameters else {} exec('input__%s = pyNN.neuroml.%s(**input_params)' % (i.id, i.pynn_input)) exec('temp_input = input__%s' % i.id) pg_id = temp_input.add_to_nml_doc(nml_doc, None) #for pp in nml_doc.pulse_generators: # print('PG: %s: %s'%(pp,pp.id)) pg = nml_doc.get_by_id(pg_id) pg.id = i.id return nml_doc
cells = ['467703703', '323452245'] cells = [ '467703703', '471141261', '320207387', '471141261', '324493977', '464326095' ] cell_files = glob.glob('*.cell.nml') cells = [c.split('.')[0] for c in cell_files] problematic = [ '314642645', '469704261', '466664172', '314822529', '320654829', '324025371', '397353539', '469704261', '469753383' ] net_ref = "Net" net_doc = NeuroMLDocument(id=net_ref) net = Network(id=net_ref) net_doc.networks.append(net) def rotate_z(x, y, theta): x_ = x * math.cos(theta) - y * math.sin(theta) y_ = x * math.sin(theta) + y * math.cos(theta) return x_, y_ count = 0 for cell in cells:
def generate(net_id, params, data_reader = "SpreadsheetDataReader", cells = None, cells_to_plot = None, cells_to_stimulate = None, muscles_to_include=[], conns_to_include=[], conn_number_override = None, conn_number_scaling = None, conn_polarity_override = None, duration = 500, dt = 0.01, vmin = None, vmax = None, seed = 1234, test=False, verbose=True, param_overrides={}, target_directory='./'): validate = not (params.is_level_B() or params.is_level_C0()) root_dir = os.path.dirname(os.path.abspath(__file__)) for k in param_overrides.keys(): v = param_overrides[k] print_("Setting parameter %s = %s"%(k,v)) params.set_bioparameter(k, v, "Set with param_overrides", 0) params.create_models() if vmin==None: if params.is_level_A(): vmin=-72 elif params.is_level_B(): vmin=-52 elif params.is_level_C(): vmin=-60 elif params.is_level_D(): vmin=-60 else: vmin=-52 if vmax==None: if params.is_level_A(): vmax=-48 elif params.is_level_B(): vmax=-28 elif params.is_level_C(): vmax=25 elif params.is_level_D(): vmax=25 else: vmax=-28 random.seed(seed) info = "\n\nParameters and setting used to generate this network:\n\n"+\ " Data reader: %s\n" % data_reader+\ " Cells: %s\n" % (cells if cells is not None else "All cells")+\ " Cell stimulated: %s\n" % (cells_to_stimulate if cells_to_stimulate is not None else "All neurons")+\ " Connection: %s\n" % (conns_to_include if conns_to_include is not None else "All connections") + \ " Connection numbers overridden: %s\n" % (conn_number_override if conn_number_override is not None else "None")+\ " Connection numbers scaled: %s\n" % (conn_number_scaling if conn_number_scaling is not None else "None")+ \ " Connection polarities override: %s\n" % conn_polarity_override + \ " Muscles: %s\n" % (muscles_to_include if muscles_to_include is not None else "All muscles") if verbose: print_(info) info += "\n%s\n"%(params.bioparameter_info(" ")) nml_doc = NeuroMLDocument(id=net_id, notes=info) if params.is_level_A() or params.is_level_B() or params.level == "BC1": nml_doc.iaf_cells.append(params.generic_muscle_cell) nml_doc.iaf_cells.append(params.generic_neuron_cell) elif params.is_level_C(): nml_doc.cells.append(params.generic_muscle_cell) nml_doc.cells.append(params.generic_neuron_cell) elif params.is_level_D(): nml_doc.cells.append(params.generic_muscle_cell) net = Network(id=net_id) nml_doc.networks.append(net) nml_doc.pulse_generators.append(params.offset_current) if is_cond_based_cell(params): nml_doc.fixed_factor_concentration_models.append(params.concentration_model) cell_names, conns = get_cell_names_and_connection(data_reader) # To hold all Cell NeuroML objects vs. names all_cells = {} # lems_file = "" lems_info = {"comment": info, "reference": net_id, "duration": duration, "dt": dt, "vmin": vmin, "vmax": vmax} lems_info["plots"] = [] lems_info["activity_plots"] = [] lems_info["muscle_plots"] = [] lems_info["muscle_activity_plots"] = [] lems_info["to_save"] = [] lems_info["activity_to_save"] = [] lems_info["muscles_to_save"] = [] lems_info["muscles_activity_to_save"] = [] lems_info["cells"] = [] lems_info["muscles"] = [] lems_info["includes"] = [] if params.custom_component_types_definitions: if isinstance(params.custom_component_types_definitions, str): params.custom_component_types_definitions = [params.custom_component_types_definitions] for ctd in params.custom_component_types_definitions: lems_info["includes"].append(ctd) if target_directory != './': def_file = "%s/%s"%(os.path.dirname(os.path.abspath(__file__)), ctd) shutil.copy(def_file, target_directory) nml_doc.includes.append(IncludeType(href=ctd)) backers_dir = root_dir+"/../../../../OpenWormBackers/" if test else root_dir+"/../../../OpenWormBackers/" sys.path.append(backers_dir) import backers cells_vs_name = backers.get_adopted_cell_names(backers_dir) count = 0 for cell in cell_names: if cells is None or cell in cells: inst = Instance(id="0") if not params.is_level_D(): # build a Population data structure out of the cell name pop0 = Population(id=cell, component=params.generic_neuron_cell.id, type="populationList") cell_id = params.generic_neuron_cell.id else: # build a Population data structure out of the cell name pop0 = Population(id=cell, component=cell, type="populationList") cell_id = cell pop0.instances.append(inst) # put that Population into the Network data structure from above net.populations.append(pop0) if cells_vs_name.has_key(cell): p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[cell]) pop0.properties.append(p) # also use the cell name to grab the morphology file, as a NeuroML data structure # into the 'all_cells' dict cell_file_path = root_dir+"/../../../" if test else root_dir+"/../../" #if running test cell_file = cell_file_path+'generatedNeuroML2/%s.cell.nml'%cell doc = loaders.NeuroMLLoader.load(cell_file) all_cells[cell] = doc.cells[0] if params.is_level_D(): new_cell = params.create_neuron_cell(cell, doc.cells[0].morphology) nml_cell_doc = NeuroMLDocument(id=cell) nml_cell_doc.cells.append(new_cell) new_cell_file = 'cells/'+cell+'_D.cell.nml' nml_file = target_directory+'/'+new_cell_file print_("Writing new cell to: %s"%os.path.realpath(nml_file)) writers.NeuroMLWriter.write(nml_cell_doc, nml_file) nml_doc.includes.append(IncludeType(href=new_cell_file)) lems_info["includes"].append(new_cell_file) inst.location = Location(0,0,0) else: location = doc.cells[0].morphology.segments[0].proximal inst.location = Location(float(location.x), float(location.y), float(location.z)) if verbose: print_("Loaded morphology: %s; id: %s; placing at location: (%s, %s, %s)"%(os.path.realpath(cell_file), all_cells[cell].id, inst.location.x, inst.location.y, inst.location.z)) if cells_to_stimulate is None or cell in cells_to_stimulate: target = "../%s/0/%s"%(pop0.id, cell_id) if params.is_level_D(): target+="/0" input_list = InputList(id="Input_%s_%s"%(cell,params.offset_current.id), component=params.offset_current.id, populations='%s'%cell) input_list.input.append(Input(id=0, target=target, destination="synapses")) net.input_lists.append(input_list) if cells_to_plot is None or cell in cells_to_plot: plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/v" % (cell, cell_id) lems_info["plots"].append(plot) if params.is_level_B(): plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/activity" % (cell, cell_id) lems_info["activity_plots"].append(plot) if is_cond_based_cell(params): plot = {} plot["cell"] = cell plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/caConc" % (cell, cell_id) lems_info["activity_plots"].append(plot) save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/v" % (cell, cell_id) lems_info["to_save"].append(save) if params.is_level_B(): save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/activity" % (cell, cell_id) lems_info["activity_to_save"].append(save) if is_cond_based_cell(params): save = {} save["cell"] = cell save["quantity"] = "%s/0/%s/caConc" % (cell, cell_id) lems_info["activity_to_save"].append(save) lems_info["cells"].append(cell) count+=1 if verbose: print_("Finished loading %i cells"%count) mneurons, all_muscles, muscle_conns = get_cell_muscle_names_and_connection(data_reader) #if data_reader == "SpreadsheetDataReader": # all_muscles = get_muscle_names() if muscles_to_include == None or muscles_to_include == True: muscles_to_include = all_muscles elif muscles_to_include == False: muscles_to_include = [] for m in muscles_to_include: assert m in all_muscles if len(muscles_to_include)>0: muscle_count = 0 for muscle in muscles_to_include: inst = Instance(id="0") # build a Population data structure out of the cell name pop0 = Population(id=muscle, component=params.generic_muscle_cell.id, type="populationList") pop0.instances.append(inst) # put that Population into the Network data structure from above net.populations.append(pop0) if cells_vs_name.has_key(muscle): # No muscles adopted yet, but just in case they are in future... p = Property(tag="OpenWormBackerAssignedName", value=cells_vs_name[muscle]) pop0.properties.append(p) x, y, z = get_muscle_position(muscle, data_reader) print_('Positioning muscle: %s at (%s,%s,%s)'%(muscle,x,y,z)) inst.location = Location(x,y,z) #target = "%s/0/%s"%(pop0.id, params.generic_muscle_cell.id) # unused plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/v" % (muscle, params.generic_muscle_cell.id) lems_info["muscle_plots"].append(plot) if params.generic_muscle_cell.__class__.__name__ == 'IafActivityCell': plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/activity" % (muscle, params.generic_muscle_cell.id) lems_info["muscle_activity_plots"].append(plot) if params.generic_muscle_cell.__class__.__name__ == 'Cell': plot = {} plot["cell"] = muscle plot["colour"] = get_random_colour_hex() plot["quantity"] = "%s/0/%s/caConc" % (muscle, params.generic_muscle_cell.id) lems_info["muscle_activity_plots"].append(plot) save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/v" % (muscle, params.generic_muscle_cell.id) lems_info["muscles_to_save"].append(save) if params.generic_muscle_cell.__class__.__name__ == 'IafActivityCell': save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/activity" % (muscle, params.generic_muscle_cell.id) lems_info["muscles_activity_to_save"].append(save) if params.generic_muscle_cell.__class__.__name__ == 'Cell': save = {} save["cell"] = muscle save["quantity"] = "%s/0/%s/caConc" % (muscle, params.generic_muscle_cell.id) lems_info["muscles_activity_to_save"].append(save) lems_info["muscles"].append(muscle) muscle_count+=1 if muscle in cells_to_stimulate: target = "../%s/0/%s"%(pop0.id, params.generic_muscle_cell.id) if params.is_level_D(): target+="/0" input_list = InputList(id="Input_%s_%s"%(muscle,params.offset_current.id), component=params.offset_current.id, populations='%s'%pop0.id) input_list.input.append(Input(id=0, target=target, destination="synapses")) net.input_lists.append(input_list) if verbose: print_("Finished creating %i muscles"%muscle_count) existing_synapses = {} for conn in conns: if conn.pre_cell in lems_info["cells"] and conn.post_cell in lems_info["cells"]: # take information about each connection and package it into a # NeuroML Projection data structure proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype) conn_shorthand = "%s-%s" % (conn.pre_cell, conn.post_cell) elect_conn = False analog_conn = False syn0 = params.neuron_to_neuron_exc_syn orig_pol = "exc" if 'GABA' in conn.synclass: syn0 = params.neuron_to_neuron_inh_syn orig_pol = "inh" if '_GJ' in conn.synclass: syn0 = params.neuron_to_neuron_elec_syn elect_conn = isinstance(params.neuron_to_neuron_elec_syn, GapJunction) conn_shorthand = "%s-%s_GJ" % (conn.pre_cell, conn.post_cell) if conns_to_include and conn_shorthand not in conns_to_include: continue print conn_shorthand + " " + str(conn.number) + " " + orig_pol + " " + conn.synclass polarity = None if conn_polarity_override and conn_polarity_override.has_key(conn_shorthand): polarity = conn_polarity_override[conn_shorthand] if polarity and not elect_conn: if polarity == 'inh': syn0 = params.neuron_to_neuron_inh_syn else: syn0 = params.neuron_to_neuron_exc_syn if verbose and polarity != orig_pol: print_(">> Changing polarity of connection %s -> %s: was: %s, becomes %s " % \ (conn.pre_cell, conn.post_cell, orig_pol, polarity)) if isinstance(syn0, GradedSynapse) or isinstance(syn0, GradedSynapse2): analog_conn = True if len(nml_doc.silent_synapses)==0: silent = SilentSynapse(id="silent") nml_doc.silent_synapses.append(silent) number_syns = conn.number if conn_number_override is not None and (conn_number_override.has_key(conn_shorthand)): number_syns = conn_number_override[conn_shorthand] elif conn_number_scaling is not None and (conn_number_scaling.has_key(conn_shorthand)): number_syns = conn.number*conn_number_scaling[conn_shorthand] ''' else: print conn_shorthand print conn_number_override print conn_number_scaling''' """if polarity: print "%s %s num:%s" % (conn_shorthand, polarity, number_syns) elif elect_conn: print "%s num:%s" % (conn_shorthand, number_syns) else: print "%s %s num:%s" % (conn_shorthand, orig_pol, number_syns)""" if number_syns != conn.number: if analog_conn or elect_conn: magnitude, unit = bioparameters.split_neuroml_quantity(syn0.conductance) else: magnitude, unit = bioparameters.split_neuroml_quantity(syn0.gbase) cond0 = "%s%s"%(magnitude*conn.number, unit) cond1 = "%s%s" % (get_str_from_expnotation(magnitude * number_syns), unit) gj = "" if not elect_conn else " GapJunction" if verbose: print_(">> Changing number of effective synapses connection %s -> %s%s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \ (conn.pre_cell, conn.post_cell, gj, conn.number, cond0, number_syns, cond1)) #print "######## %s-%s %s %s" % (conn.pre_cell, conn.post_cell, conn.synclass, number_syns) #known_motor_prefixes = ["VA"] #if conn.pre_cell.startswith(tuple(known_motor_prefixes)) or conn.post_cell.startswith(tuple(known_motor_prefixes)): # print "######### %s-%s %s %s" % (conn.pre_cell, conn.post_cell, number_syns, conn.synclass) syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc, existing_synapses) if elect_conn: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) pre_cell_id=get_cell_id_string(conn.pre_cell, params) post_cell_id= get_cell_id_string(conn.post_cell, params) #print_("Conn %s -> %s"%(pre_cell_id,post_cell_id)) # Add a Connection with the closest locations conn0 = ElectricalConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, synapse=syn_new.id) proj0.electrical_connection_instances.append(conn0) elif analog_conn: proj0 = ContinuousProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.continuous_projections.append(proj0) pre_cell_id= get_cell_id_string(conn.pre_cell, params) post_cell_id= get_cell_id_string(conn.post_cell, params) conn0 = ContinuousConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, pre_component="silent", post_component=syn_new.id) proj0.continuous_connection_instances.append(conn0) else: proj0 = Projection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell, synapse=syn_new.id) net.projections.append(proj0) pre_cell_id= get_cell_id_string(conn.pre_cell, params) post_cell_id= get_cell_id_string(conn.post_cell, params) conn0 = ConnectionWD(id="0", \ pre_cell_id=pre_cell_id, post_cell_id=post_cell_id, weight = number_syns, delay = '0ms') proj0.connection_wds.append(conn0) if len(muscles_to_include)>0: for conn in muscle_conns: if not conn.post_cell in muscles_to_include: continue if not conn.pre_cell in lems_info["cells"] and not conn.pre_cell in muscles_to_include: continue # take information about each connection and package it into a # NeuroML Projection data structure proj_id = get_projection_id(conn.pre_cell, conn.post_cell, conn.synclass, conn.syntype) conn_shorthand = "%s-%s" % (conn.pre_cell, conn.post_cell) elect_conn = False analog_conn = False syn0 = params.neuron_to_muscle_exc_syn orig_pol = "exc" if 'GABA' in conn.synclass: syn0 = params.neuron_to_muscle_inh_syn orig_pol = "inh" if '_GJ' in conn.synclass : elect_conn = isinstance(params.neuron_to_muscle_elec_syn, GapJunction) conn_shorthand = "%s-%s_GJ" % (conn.pre_cell, conn.post_cell) if conn.pre_cell in lems_info["cells"]: syn0 = params.neuron_to_muscle_elec_syn elif conn.pre_cell in muscles_to_include: try: syn0 = params.muscle_to_muscle_elec_syn except: syn0 = params.neuron_to_muscle_elec_syn if conns_to_include and conn_shorthand not in conns_to_include: continue print conn_shorthand + " " + str(conn.number) + " " + orig_pol + " " + conn.synclass polarity = None if conn_polarity_override and conn_polarity_override.has_key(conn_shorthand): polarity = conn_polarity_override[conn_shorthand] if polarity and not elect_conn: if polarity == 'inh': syn0 = params.neuron_to_neuron_inh_syn else: syn0 = params.neuron_to_neuron_exc_syn if verbose and polarity != orig_pol: print_(">> Changing polarity of connection %s -> %s: was: %s, becomes %s " % \ (conn.pre_cell, conn.post_cell, orig_pol, polarity)) if isinstance(syn0, GradedSynapse) or isinstance(syn0, GradedSynapse2): analog_conn = True if len(nml_doc.silent_synapses)==0: silent = SilentSynapse(id="silent") nml_doc.silent_synapses.append(silent) number_syns = conn.number if conn_number_override is not None and (conn_number_override.has_key(conn_shorthand)): number_syns = conn_number_override[conn_shorthand] elif conn_number_scaling is not None and (conn_number_scaling.has_key(conn_shorthand)): number_syns = conn.number*conn_number_scaling[conn_shorthand] ''' else: print conn_shorthand print conn_number_override print conn_number_scaling''' """if polarity: print "%s %s num:%s" % (conn_shorthand, polarity, number_syns) elif elect_conn: print "%s num:%s" % (conn_shorthand, number_syns) else: print "%s %s num:%s" % (conn_shorthand, orig_pol, number_syns)""" if number_syns != conn.number: if analog_conn or elect_conn: magnitude, unit = bioparameters.split_neuroml_quantity(syn0.conductance) else: magnitude, unit = bioparameters.split_neuroml_quantity(syn0.gbase) cond0 = "%s%s"%(magnitude*conn.number, unit) cond1 = "%s%s" % (get_str_from_expnotation(magnitude * number_syns), unit) gj = "" if not elect_conn else " GapJunction" if verbose: print_(">> Changing number of effective synapses connection %s -> %s%s: was: %s (total cond: %s), becomes %s (total cond: %s)" % \ (conn.pre_cell, conn.post_cell, gj, conn.number, cond0, number_syns, cond1)) syn_new = create_n_connection_synapse(syn0, number_syns, nml_doc, existing_synapses) if elect_conn: proj0 = ElectricalProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.electrical_projections.append(proj0) pre_cell_id= get_cell_id_string(conn.pre_cell, params) post_cell_id= get_cell_id_string(conn.post_cell, params, muscle=True) #print_("Conn %s -> %s"%(pre_cell_id,post_cell_id)) # Add a Connection with the closest locations conn0 = ElectricalConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, synapse=syn_new.id) proj0.electrical_connection_instances.append(conn0) elif analog_conn: proj0 = ContinuousProjection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell) net.continuous_projections.append(proj0) pre_cell_id= get_cell_id_string(conn.pre_cell, params) post_cell_id= get_cell_id_string(conn.post_cell, params, muscle=True) conn0 = ContinuousConnectionInstance(id="0", \ pre_cell=pre_cell_id, post_cell=post_cell_id, pre_component="silent", post_component=syn_new.id) proj0.continuous_connection_instances.append(conn0) else: proj0 = Projection(id=proj_id, \ presynaptic_population=conn.pre_cell, postsynaptic_population=conn.post_cell, synapse=syn_new.id) net.projections.append(proj0) # Add a Connection with the closest locations pre_cell_id= get_cell_id_string(conn.pre_cell, params) post_cell_id= get_cell_id_string(conn.post_cell, params, muscle=True) conn0 = Connection(id="0", \ pre_cell_id=pre_cell_id, post_cell_id=post_cell_id) proj0.connections.append(conn0) # import pprint # pprint.pprint(lems_info) template_path = root_dir+'/../' if test else root_dir+'/' # if running test write_to_file(nml_doc, lems_info, net_id, template_path, validate=validate, verbose=verbose, target_directory=target_directory) return nml_doc
def create_olm_cell(): """Create the complete cell. :returns: cell object """ nml_cell_doc = NeuroMLDocument(id="oml_cell") cell = create_cell("olm") nml_cell_file = cell.id + ".cell.nml" # Add two soma segments diam = 10.0 soma_0 = add_segment(cell, prox=[0.0, 0.0, 0.0, diam], dist=[0.0, 10., 0.0, diam], name="Seg0_soma_0", group="soma_0") soma_1 = add_segment(cell, prox=None, dist=[0.0, 10. + 10., 0.0, diam], name="Seg1_soma_0", parent=soma_0, group="soma_0") # Add axon segments diam = 1.5 axon_0 = add_segment(cell, prox=[0.0, 0.0, 0.0, diam], dist=[0.0, -75, 0.0, diam], name="Seg0_axon_0", parent=soma_0, fraction_along=0.0, group="axon_0") axon_1 = add_segment(cell, prox=None, dist=[0.0, -150, 0.0, diam], name="Seg1_axon_0", parent=axon_0, group="axon_0") # Add 2 dendrite segments diam = 3.0 dend_0_0 = add_segment(cell, prox=[0.0, 20, 0.0, diam], dist=[100, 120, 0.0, diam], name="Seg0_dend_0", parent=soma_1, fraction_along=1, group="dend_0") dend_1_0 = add_segment(cell, prox=None, dist=[177, 197, 0.0, diam], name="Seg1_dend_0", parent=dend_0_0, fraction_along=1, group="dend_0") dend_0_1 = add_segment(cell, prox=[0.0, 20, 0.0, diam], dist=[-100, 120, 0.0, diam], name="Seg0_dend_1", parent=soma_1, fraction_along=1, group="dend_1") dend_1_1 = add_segment(cell, prox=None, dist=[-177, 197, 0.0, diam], name="Seg1_dend_1", parent=dend_0_1, fraction_along=1, group="dend_1") # XXX: For segment groups to be correctly mapped to sections in NEURON, # they must include the correct neurolex ID for section_name in ["soma_0", "axon_0", "dend_0", "dend_1"]: section_group = get_seg_group_by_id(section_name, cell) section_group.neuro_lex_id = 'sao864921383' den_seg_group = get_seg_group_by_id("dendrite_group", cell) den_seg_group.includes.append(Include(segment_groups="dend_0")) den_seg_group.includes.append(Include(segment_groups="dend_1")) den_seg_group.properties.append(Property(tag="color", value="0.8 0 0")) ax_seg_group = get_seg_group_by_id("axon_group", cell) ax_seg_group.includes.append(Include(segment_groups="axon_0")) ax_seg_group.properties.append(Property(tag="color", value="0 0.8 0")) soma_seg_group = get_seg_group_by_id("soma_group", cell) soma_seg_group.includes.append(Include(segment_groups="soma_0")) soma_seg_group.properties.append(Property(tag="color", value="0 0 0.8")) # Other cell properties set_init_memb_potential(cell, "-67mV") set_resistivity(cell, "0.15 kohm_cm") set_specific_capacitance(cell, "1.3 uF_per_cm2") # channels # leak add_channel_density(cell, nml_cell_doc, cd_id="leak_all", cond_density="0.01 mS_per_cm2", ion_channel="leak_chan", ion_chan_def_file="olm-example/leak_chan.channel.nml", erev="-67mV", ion="non_specific") # HCNolm_soma add_channel_density(cell, nml_cell_doc, cd_id="HCNolm_soma", cond_density="0.5 mS_per_cm2", ion_channel="HCNolm", ion_chan_def_file="olm-example/HCNolm.channel.nml", erev="-32.9mV", ion="h", group="soma_group") # Kdrfast_soma add_channel_density(cell, nml_cell_doc, cd_id="Kdrfast_soma", cond_density="73.37 mS_per_cm2", ion_channel="Kdrfast", ion_chan_def_file="olm-example/Kdrfast.channel.nml", erev="-77mV", ion="k", group="soma_group") # Kdrfast_dendrite add_channel_density(cell, nml_cell_doc, cd_id="Kdrfast_dendrite", cond_density="105.8 mS_per_cm2", ion_channel="Kdrfast", ion_chan_def_file="olm-example/Kdrfast.channel.nml", erev="-77mV", ion="k", group="dendrite_group") # Kdrfast_axon add_channel_density(cell, nml_cell_doc, cd_id="Kdrfast_axon", cond_density="117.392 mS_per_cm2", ion_channel="Kdrfast", ion_chan_def_file="olm-example/Kdrfast.channel.nml", erev="-77mV", ion="k", group="axon_group") # KvAolm_soma add_channel_density(cell, nml_cell_doc, cd_id="KvAolm_soma", cond_density="4.95 mS_per_cm2", ion_channel="KvAolm", ion_chan_def_file="olm-example/KvAolm.channel.nml", erev="-77mV", ion="k", group="soma_group") # KvAolm_dendrite add_channel_density(cell, nml_cell_doc, cd_id="KvAolm_dendrite", cond_density="2.8 mS_per_cm2", ion_channel="KvAolm", ion_chan_def_file="olm-example/KvAolm.channel.nml", erev="-77mV", ion="k", group="dendrite_group") # Nav_soma add_channel_density(cell, nml_cell_doc, cd_id="Nav_soma", cond_density="10.7 mS_per_cm2", ion_channel="Nav", ion_chan_def_file="olm-example/Nav.channel.nml", erev="50mV", ion="na", group="soma_group") # Nav_dendrite add_channel_density(cell, nml_cell_doc, cd_id="Nav_dendrite", cond_density="23.4 mS_per_cm2", ion_channel="Nav", ion_chan_def_file="olm-example/Nav.channel.nml", erev="50mV", ion="na", group="dendrite_group") # Nav_axon add_channel_density(cell, nml_cell_doc, cd_id="Nav_axon", cond_density="17.12 mS_per_cm2", ion_channel="Nav", ion_chan_def_file="olm-example/Nav.channel.nml", erev="50mV", ion="na", group="axon_group") nml_cell_doc.cells.append(cell) pynml.write_neuroml2_file(nml_cell_doc, nml_cell_file, True, True) return nml_cell_file