示例#1
0

net.projections.append(Projection(id='projEI',
                                  presynaptic=pE.id,
                                  postsynaptic=pRS.id,
                                  synapse='ampa',
                                  delay=2,
                                  weight=0.2,
                                  random_connectivity=RandomConnectivity(probability=.8)))

                            """
net.inputs.append(
    Input(
        id="stim0",
        input_source=input_source_p0.id,
        population=pop0.id,
        percentage=50,
        weight="weightInput",
    ))

net.inputs.append(
    Input(id="stim1",
          input_source=input_source1.id,
          population=pop1.id,
          percentage=100))

net.inputs.append(
    Input(id="stim2",
          input_source=input_source1.id,
          population=pop2.id,
          percentage=50))
示例#2
0
net.synapses.append(
    Synapse(id='gaba', neuroml2_source_file='test_files/gaba.synapse.nml'))

net.projections.append(
    Projection(id='projEI',
               presynaptic=pE.id,
               postsynaptic=pRS.id,
               synapse='ampa',
               delay=2,
               weight=0.2,
               random_connectivity=RandomConnectivity(probability=.8)))

net.inputs.append(
    Input(id='stim',
          input_source=input_source.id,
          population=pE.id,
          percentage=50,
          weight='weightInput'))

print(net)
print(net.to_json())
new_file = net.to_json_file('%s.json' % net.id)

################################################################################
###   Build Simulation object & save as JSON

sim = Simulation(id='SimExample8',
                 network=new_file,
                 duration='1000',
                 dt='0.025',
                 recordTraces={'all': '*'})
示例#3
0
net.projections[0].random_connectivity = RandomConnectivity(probability=1)

net.projections.append(
    Projection(
        id="proj1",
        presynaptic=p0.id,
        postsynaptic=p1.id,
        synapse=nmdaSyn.id,
        delay=0,
        weight="weight",
    ))
net.projections[1].random_connectivity = RandomConnectivity(probability=1)

net.inputs.append(
    Input(id="stim",
          input_source=input_source.id,
          population=p0.id,
          percentage=100))

print(net.to_json())
new_file = net.to_json_file("%s.json" % net.id)

################################################################################
###   Build Simulation object & save as JSON

sim = Simulation(
    id="SimExample11",
    network=new_file,
    duration="1000",
    dt="0.01",
    record_traces={"all": "*"},
    record_variables={
示例#4
0
                            pynn_receptor_type='inhibitory',
                            pynn_synapse_type='cond_alpha',
                            parameters={'e_rev':-80, 'tau_syn':10}))


net.projections.append(Projection(id='proj1',
                                  presynaptic=p0.id,
                                  postsynaptic=p2.id,
                                  synapse='gabaSyn',
                                  delay=2,
                                  weight=0.01))
net.projections[1].random_connectivity=RandomConnectivity(probability=1)'''

net.inputs.append(
    Input(id="stim",
          input_source=input_source.id,
          population=p0.id,
          cell_ids=[1, 2]))

print(net.to_json())
new_file = net.to_json_file("%s.json" % net.id)
new_file_yaml = net.to_yaml_file("%s.yaml" % net.id)

################################################################################
###   Build Simulation object & save as JSON

sim = Simulation(
    id="Sim%s" % net.id,
    network=new_file,
    duration="100",
    dt="0.01",
    record_traces={"all": "*"},
示例#5
0
def generate(ref, np2=0, np5=0, nb2=0, nb5=0, recordTraces='*'):
    ################################################################################
    ###   Build new network

    net = Network(id=ref)
    net.notes = 'Example: %s...' % ref

    net.seed = 7890
    net.temperature = 32

    net.parameters = {
        'np2': np2,
        'np5': np5,
        'nb2': nb2,
        'nb5': nb5,
        'offset_curr_l2p': -0.05,
        'weight_bkg_l2p': 0.01,
        'weight_bkg_l5p': 0.01
    }

    l2p_cell = Cell(id='CELL_HH_reduced_L2Pyr',
                    neuroml2_source_file='../CELL_HH_reduced_L2Pyr.cell.nml')
    net.cells.append(l2p_cell)
    l5p_cell = Cell(id='CELL_HH_reduced_L5Pyr',
                    neuroml2_source_file='../CELL_HH_reduced_L5Pyr.cell.nml')
    net.cells.append(l5p_cell)
    l2b_cell = Cell(id='CELL_HH_simple_L2Basket',
                    neuroml2_source_file='../CELL_HH_simple_L2Basket.cell.nml')
    net.cells.append(l2b_cell)
    l5b_cell = Cell(id='CELL_HH_simple_L5Basket',
                    neuroml2_source_file='../CELL_HH_simple_L5Basket.cell.nml')
    net.cells.append(l5b_cell)

    input_source_poisson100 = InputSource(id='poissonFiringSyn100Hz',
                                          neuroml2_source_file='../inputs.nml')
    net.input_sources.append(input_source_poisson100)

    input_offset_curr_l2p = InputSource(id='input_offset_curr_l2p',
                                        pynn_input='DCSource',
                                        parameters={
                                            'amplitude': 'offset_curr_l2p',
                                            'start': 0,
                                            'stop': 1e9
                                        })

    net.input_sources.append(input_offset_curr_l2p)

    l2 = RectangularRegion(id='L2',
                           x=0,
                           y=1000,
                           z=0,
                           width=1000,
                           height=10,
                           depth=1000)
    net.regions.append(l2)
    l5 = RectangularRegion(id='L5',
                           x=0,
                           y=0,
                           z=0,
                           width=1000,
                           height=10,
                           depth=1000)
    net.regions.append(l5)

    #https://github.com/OpenSourceBrain/OpenCortex
    import opencortex.utils.color as occ

    pop_l2p = Population(id='pop_l2p',
                         size='np2',
                         component=l2p_cell.id,
                         properties={'color': occ.L23_PRINCIPAL_CELL},
                         random_layout=RandomLayout(region=l2.id))
    net.populations.append(pop_l2p)
    pop_l5p = Population(id='pop_l5p',
                         size='np5',
                         component=l5p_cell.id,
                         properties={'color': occ.L5_PRINCIPAL_CELL},
                         random_layout=RandomLayout(region=l5.id))
    net.populations.append(pop_l5p)
    pop_l2b = Population(id='pop_l2b',
                         size='nb2',
                         component=l2b_cell.id,
                         properties={'color': occ.L23_INTERNEURON},
                         random_layout=RandomLayout(region=l2.id))
    net.populations.append(pop_l2b)
    pop_l5b = Population(id='pop_l5b',
                         size='nb5',
                         component=l5b_cell.id,
                         properties={'color': occ.L5_INTERNEURON},
                         random_layout=RandomLayout(region=l5.id))
    net.populations.append(pop_l5b)

    # L2 -> L2
    _add_projection(pop_l2p,
                    pop_l2b,
                    'AMPA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)
    _add_projection(pop_l2b,
                    pop_l2p,
                    'L2Pyr_GABAA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)
    _add_projection(pop_l2b,
                    pop_l2p,
                    'L2Pyr_GABAB',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)

    # L2 -> L5
    _add_projection(pop_l2p,
                    pop_l5p,
                    'L5Pyr_AMPA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)
    _add_projection(pop_l2p,
                    pop_l5b,
                    'AMPA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)
    _add_projection(pop_l2b,
                    pop_l5p,
                    'L5Pyr_GABAA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)

    # L5 -> L5
    _add_projection(pop_l5p,
                    pop_l5b,
                    'AMPA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)
    _add_projection(pop_l5b,
                    pop_l5p,
                    'L5Pyr_GABAA',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)
    _add_projection(pop_l5b,
                    pop_l5p,
                    'L5Pyr_GABAB',
                    delay=0,
                    weight=0.001,
                    probability=0.8,
                    net=net)

    net.inputs.append(
        Input(id='stim_%s' % pop_l2p.id,
              input_source=input_source_poisson100.id,
              population=pop_l2p.id,
              percentage=100,
              weight='weight_bkg_l2p'))
    net.inputs.append(
        Input(id='stim_%s' % pop_l5p.id,
              input_source=input_source_poisson100.id,
              population=pop_l5p.id,
              percentage=100,
              weight='weight_bkg_l5p'))

    print(net.to_json())
    new_file = net.to_json_file('%s.json' % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='Sim%s' % net.id,
                     network=new_file,
                     duration='500',
                     seed='1111',
                     dt='0.025',
                     recordTraces={'all': recordTraces},
                     recordSpikes={'all': '*'})

    sim.to_json_file()
    print(sim.to_json())

    return sim, net
示例#6
0
        weight = W[pops.index(post)][pops.index(pre)]
        print('Connection %s -> %s weight %s'%(pre.id, post.id, weight))
        if weight!=0:
            
            net.projections.append(Projection(id='proj_%s_%s'%(pre.id,post.id),
                                              presynaptic=pre.id, 
                                              postsynaptic=post.id,
                                              synapse='rs',
                                              type='continuousProjection',
                                              delay=0,
                                              weight=weight,
                                              random_connectivity=RandomConnectivity(probability=1)))
                               
                        
net.inputs.append(Input(id='modulation',
                        input_source=input_source0.id,
                        population=pE.id,
                        percentage=100))

print(net)
print(net.to_json())
new_file = net.to_json_file('%s.json'%net.id)


################################################################################
###   Build Simulation object & save as JSON

sim = Simulation(id='Sim%s'%net.id,
                 network=new_file,
                 duration='200',
                 dt='0.025',
                 recordRates={'all':'*'})
示例#7
0
                                               'filename':'test_files/cons_locs_pathways_mc0_Column.h5',
                                               'percentage_cells_per_pop':percent,
                                               'DEFAULT_CELL_ID':default_cell.id,
                                               'cell_info':{default_cell.id:default_cell}})
                            
net.cells.append(default_cell)
net.synapses.append(Synapse(id='ampa', neuroml2_source_file='test_files/ampa.synapse.nml'))
net.synapses.append(Synapse(id='gaba', neuroml2_source_file='test_files/gaba.synapse.nml'))

                            
input_source = InputSource(id='poissonFiringSyn', neuroml2_source_file='test_files/inputs.nml')
net.input_sources.append(input_source)

for pop in ['L4_PC']:
    net.inputs.append(Input(id='stim_%s'%pop,
                            input_source=input_source.id,
                            population=pop,
                            percentage=80))

new_file = net.to_json_file('%s.json'%net.id)


################################################################################
###   Builds a NeuroML 2 representation, save as XML

format_='xml'
generate_neuroml2_from_network(net, 
                               nml_file_name='%s.net.nml%s'%(net.id, '.h5' if format_=='hdf5' else ''), 
                               format=format_)


from neuromllite import Simulation
示例#8
0
def generate():
    ################################################################################
    ###   Build new network

    net = Network(id='ExampleK')
    net.notes = 'Example...'

    net.parameters = {'pop_size': '8', 'stim_amp': '0.3'}

    cell = Cell(id='kuramoto1', lems_source_file='CellExamples.xml')

    net.cells.append(cell)

    input_source = InputSource(id='iclamp0',
                               neuroml2_input='PulseGeneratorDL',
                               parameters={
                                   'amplitude': 'stim_amp',
                                   'delay': '100ms',
                                   'duration': '800ms'
                               })
    net.input_sources.append(input_source)
    '''

    input_source = InputSource(id='poissonFiringSyn', 
                               neuroml2_input='poissonFiringSynapse',
                               parameters={'average_rate':"eta", 'synapse':"ampa", 'spike_target':"./ampa"})


'''

    r1 = RectangularRegion(id='region1',
                           x=0,
                           y=0,
                           z=0,
                           width=1000,
                           height=100,
                           depth=1000)
    net.regions.append(r1)

    pE = Population(id='Epop',
                    size='pop_size',
                    component=cell.id,
                    properties={'color': '1 0 0'},
                    random_layout=RandomLayout(region=r1.id))

    net.populations.append(pE)
    '''
    net.synapses.append(Synapse(id='ampa', 
                                pynn_receptor_type='excitatory', 
                                pynn_synapse_type='curr_alpha', 
                                parameters={'tau_syn':0.1}))


    net.projections.append(Projection(id='projEinput',
                                      presynaptic=pEpoisson.id, 
                                      postsynaptic=pE.id,
                                      synapse='ampa',
                                      delay=2,
                                      weight=0.02,
                                      one_to_one_connector=OneToOneConnector()))
               
    net.projections.append(Projection(id='projEE',
                                      presynaptic=pE.id, 
                                      postsynaptic=pE.id,
                                      synapse='ampa',
                                      delay=2,
                                      weight=0.002,
                                      random_connectivity=RandomConnectivity(probability=.5)))

    net.projections.append(Projection(id='projEI',
                                      presynaptic=pE.id, 
                                      postsynaptic=pI.id,
                                      synapse='ampa',
                                      delay=2,
                                      weight=0.02,
                                      random_connectivity=RandomConnectivity(probability=.5)))
    
    net.projections.append(Projection(id='projIE',
                                      presynaptic=pI.id, 
                                      postsynaptic=pE.id,
                                      synapse='gaba',
                                      delay=2,
                                      weight=0.02,
                                      random_connectivity=RandomConnectivity(probability=.5)))
    '''
    net.inputs.append(
        Input(id='stim',
              input_source=input_source.id,
              population=pE.id,
              percentage=50))

    #print(net)
    #print(net.to_json())
    new_file = net.to_json_file('%s.json' % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='SimExampleK',
                     network=new_file,
                     duration='1000',
                     dt='0.025',
                     seed=123,
                     recordVariables={'sin_theta': {
                         pE.id: '*'
                     }})

    sim.to_json_file()

    return sim, net
syn = Synapse(id='AMPA_preLTP', neuroml2_source_file='fourPathwaySyn.synapse.nml')
syn = Synapse(id='AMPA_postLTD', neuroml2_source_file='fourPathwaySyn.synapse.nml')
net.synapses.append(syn)
                      

net.projections.append(Projection(id='proj0',
                                  presynaptic=p0.id, 
                                  postsynaptic=p1.id,
                                  synapse=syn.id,
                                  delay=0,
                                  weight='weight'))
net.projections[0].random_connectivity=RandomConnectivity(probability=1)


net.inputs.append(Input(id='i_stim1',
                        input_source=stim1.id,
                        population=p1.id,
                        percentage=100))
net.inputs.append(Input(id='i_stim2',
                        input_source=stim2.id,
                        population=p1.id,
                        percentage=100))

print(net.to_json())
new_file = net.to_json_file('%s.json'%net.id)


################################################################################
###   Build Simulation object & save as JSON

recordVariables={}
syn_vars = ['g', 'u_bar', 'T', 'N_alpha_bar', 'N_beta_bar', 'N_alpha', 'N_beta', 'N', 'Z', 'X', 'w_pre', 'w_post','w', 'G','C','P']
示例#10
0
net.synapses.append(Synapse(id='ampa', neuroml2_source_file='test_files/ampa.synapse.nml'))
#net.synapses.append(Synapse(id='gaba', neuroml2_source_file='test_files/gaba.synapse.nml'))
                            
                            
net.projections.append(Projection(id='projEI',
                                  presynaptic=pE.id, 
                                  postsynaptic=pRS.id,
                                  synapse='ampa',
                                  delay=2,
                                  weight=0.2,
                                  random_connectivity=RandomConnectivity(probability=.8)))
                            
                            '''
net.inputs.append(Input(id='stim0',
                        input_source=input_source_p0.id,
                        population=pop0.id,
                        percentage=50,
                        weight='weightInput'))

net.inputs.append(Input(id='stim1',
                        input_source=input_source1.id,
                        population=pop1.id,
                        percentage=100))

net.inputs.append(Input(id='stim2',
                        input_source=input_source1.id,
                        population=pop2.id,
                        percentage=50))

print(net)
print(net.to_json())
示例#11
0
net.populations[0].component = "hhcell"
net.populations[1].component = "hhcell"

net.cells.append(
    Cell(id="hhcell", neuroml2_source_file="test_files/hhcell.cell.nml"))
net.synapses.append(
    Synapse(id="ampa", neuroml2_source_file="test_files/ampa.synapse.nml"))

input_source = InputSource(id="poissonFiringSyn",
                           neuroml2_source_file="test_files/inputs.nml")
net.input_sources.append(input_source)

net.inputs.append(
    Input(
        id="stim_%s" % net.populations[0].id,
        input_source=input_source.id,
        population=net.populations[0].id,
        percentage=80,
    ))

print(net.to_json())
new_file = net.to_json_file("%s.json" % net.id)

################################################################################
###   Use a handler which just prints info on positions, etc.

def_handler = DefaultNetworkHandler()

generate_network(net, def_handler)

################################################################################
###   Export to some formats, e.g. try:
示例#12
0
                           weight=weight))
'''
bkgE = InputSource(id='bkgEstim', 
                           pynn_input='DCSource', 
                           parameters={'amplitude':2, 'start':0., 'stop':1e6})
                        
net.input_sources.append(bkgE)

net.inputs.append(Input(id='bkgE',
                        input_source=bkgE.id,
                        population=pE.id,
                        percentage=100))'''

net.inputs.append(
    Input(id='modulation',
          input_source=input_source0.id,
          population=pVIP.id,
          percentage=100))

print(net)
print(net.to_json())
new_file = net.to_json_file('%s.json' % net.id)

################################################################################
###   Build Simulation object & save as JSON

sim = Simulation(id='SimdelMolinoEtAl',
                 network=new_file,
                 duration='200',
                 dt='0.025',
                 recordTraces={'all': '*'})
示例#13
0
net.populations.append(exc_pop)
net.populations.append(inh_pop)

input_source = InputSource(id='pulseGenerator0',
                           neuroml2_input='PulseGenerator',
                           parameters={
                               'amplitude': '0nA',
                               'delay': '100.0ms',
                               'duration': '800.0ms'
                           })
net.input_sources.append(input_source)

net.inputs.append(
    Input(id='stim',
          input_source=input_source.id,
          population=exc_pop.id,
          percentage=100))

exc_syn = Synapse(id='rsExc', lems_source_file='Demirtas_Parameters.xml')
inh_syn = Synapse(id='rsInh', lems_source_file='Demirtas_Parameters.xml')
net.synapses.append(exc_syn)
net.synapses.append(inh_syn)

syns = {exc_pop.id: exc_syn.id, inh_pop.id: inh_syn.id}
W = [['wee', 'wie'], ['wei', 'wii']]

# Add internal connections
pops = [exc_pop, inh_pop]
internal_connections(pops, W)

# Save to JSON format
示例#14
0
                                  delay=1,
                                  weight='Wei',
                                  random_connectivity=RandomConnectivity(probability=.8)))
                                  
net.projections.append(Projection(id='projIE',
                                  presynaptic=pI.id, 
                                  postsynaptic=pE.id,
                                  synapse='gabaSyn',
                                  delay=1,
                                  weight='Wie',
                                  random_connectivity=RandomConnectivity(probability=.8)))
                            
                            
net.inputs.append(Input(id='stim',
                        input_source=input_source.id,
                        population=pE.id,
                        percentage=100,
                        weight='weightInput'))

print(net)
print(net.to_json())
new_file = net.to_json_file('%s.json'%net.id)


################################################################################
###   Build Simulation object & save as JSON

sim = Simulation(id='Sim%s'%net.id,
                 network=new_file,
                 duration='1000',
                 seed='1111',
示例#15
0
        id="projEI",
        presynaptic=pE.id,
        postsynaptic=pRS.id,
        synapse="ampa",
        delay=2,
        weight=0.2,
        random_connectivity=RandomConnectivity(probability=0.8),
    )
)


net.inputs.append(
    Input(
        id="stim",
        input_source=input_source.id,
        population=pE.id,
        percentage=50,
        weight="weightInput",
    )
)

print(net)
print(net.to_json())
new_file = net.to_json_file("%s.json" % net.id)


################################################################################
###   Build Simulation object & save as JSON

sim = Simulation(
    id="SimExample8",
net.parameters['input_delay'] = '20ms'
net.parameters['input_duration'] = '60ms'

#net.parameters['scaling'] = '1nA'

input_source_e = InputSource(id='Exc_in',
                             neuroml2_input='PulseGenerator',
                             parameters={
                                 'amplitude': 'exc_input',
                                 'delay': 'input_delay',
                                 'duration': 'input_duration'
                             })
net.input_sources.append(input_source_e)
net.inputs.append(
    Input(id='Exc_stim',
          input_source=input_source_e.id,
          population=exc_pop.id,
          percentage=100))

input_source_i = InputSource(id='Inh_in',
                             neuroml2_input='PulseGenerator',
                             parameters={
                                 'amplitude': 'inh_input',
                                 'delay': 'input_delay',
                                 'duration': 'input_duration'
                             })
net.input_sources.append(input_source_i)
net.inputs.append(
    Input(id='Inh_stim',
          input_source=input_source_i.id,
          population=inh_pop.id,
          percentage=100))
示例#17
0
def generate():

    dt = 0.025
    simtime = 1000

    ################################################################################
    ###   Build new network

    net = Network(id='McCPNet')
    net.notes = 'Example of simplified McCulloch-Pitts based Network'

    net.parameters = {'amp': 1.5, 'scale': 3}

    cell = Cell(id='mccp0', lems_source_file='McCPTest.xml')
    net.cells.append(cell)

    silentDL = Synapse(id='silentSyn_proj0', lems_source_file='McCPTest.xml')
    net.synapses.append(silentDL)
    rsDL = Synapse(id='rsDL', lems_source_file='McCPTest.xml')
    net.synapses.append(rsDL)

    r1 = RectangularRegion(id='region1',
                           x=0,
                           y=0,
                           z=0,
                           width=1000,
                           height=100,
                           depth=1000)
    net.regions.append(r1)

    p0 = Population(id='McCPpop0',
                    size='1*scale',
                    component=cell.id,
                    properties={
                        'color': '.9 0.9 0',
                        'radius': 5
                    },
                    random_layout=RandomLayout(region=r1.id))
    net.populations.append(p0)

    p1 = Population(id='McCPpop1',
                    size='1*scale',
                    component=cell.id,
                    properties={
                        'color': '.9 0 0.9',
                        'radius': 5
                    },
                    random_layout=RandomLayout(region=r1.id))
    net.populations.append(p1)

    net.projections.append(
        Projection(id='proj0',
                   presynaptic=p0.id,
                   postsynaptic=p1.id,
                   synapse=rsDL.id,
                   pre_synapse=silentDL.id,
                   type='continuousProjection',
                   weight='random()',
                   random_connectivity=RandomConnectivity(probability=0.6)))
    '''
                                      
    
    net.synapses.append(Synapse(id='ampa', 
                                pynn_receptor_type='excitatory', 
                                pynn_synapse_type='curr_alpha', 
                                parameters={'tau_syn':0.1}))
                                
    
    net.projections.append(Projection(id='proj1',
                                      presynaptic=pEpoisson.id, 
                                      postsynaptic=pLNP.id,
                                      synapse='ampa',
                                      delay=0,
                                      weight='in_weight',
                                      random_connectivity=RandomConnectivity(probability=0.7)))'''

    input_source0 = InputSource(id='sg0', neuroml2_source_file='inputs.nml')
    net.input_sources.append(input_source0)
    input_source1 = InputSource(id='sg1', neuroml2_source_file='inputs.nml')
    net.input_sources.append(input_source1)

    for pop in [p0.id]:
        net.inputs.append(
            Input(id='stim0_%s' % pop,
                  input_source=input_source0.id,
                  population=pop,
                  percentage=60))

        net.inputs.append(
            Input(id='stim1_%s' % pop,
                  input_source=input_source1.id,
                  population=pop,
                  percentage=60))

    #print(net)
    #print(net.to_json())
    new_file = net.to_json_file('%s.json' % net.id)

    ################################################################################
    ###   Build Simulation object & save as JSON

    sim = Simulation(id='Sim%s' % net.id,
                     network=new_file,
                     duration=simtime,
                     dt=dt,
                     seed=123,
                     recordVariables={
                         'R': {
                             'all': '*'
                         },
                         'ISyn': {
                             'all': '*'
                         }
                     })

    sim.to_json_file()

    return sim, net
示例#18
0
                                  synapse='ampaSyn',
                                  delay=2,
                                  weight=0.02))
net.projections[0].random_connectivity=RandomConnectivity(probability=1)

net.projections.append(Projection(id='proj1',
                                  presynaptic=p0.id, 
                                  postsynaptic=p2.id,
                                  synapse='gabaSyn',
                                  delay=2,
                                  weight=0.01))
net.projections[1].random_connectivity=RandomConnectivity(probability=1)'''

net.inputs.append(
    Input(id='stim',
          input_source=input_source.id,
          population=p0.id,
          percentage=50))

print(net.to_json())
new_file = net.to_json_file('%s.json' % net.id)

################################################################################
###   Build Simulation object & save as JSON

sim = Simulation(id='SimSonataExample',
                 network=new_file,
                 duration='1000',
                 dt='0.01',
                 recordTraces={'all': '*'},
                 recordSpikes={'pop0': '*'})
示例#19
0
net.cells.append(default_cell)
net.synapses.append(
    Synapse(id="ampa", neuroml2_source_file="test_files/ampa.synapse.nml"))
net.synapses.append(
    Synapse(id="gaba", neuroml2_source_file="test_files/gaba.synapse.nml"))

input_source = InputSource(id="poissonFiringSyn",
                           neuroml2_source_file="test_files/inputs.nml")
net.input_sources.append(input_source)

for pop in ["L4_PC"]:
    net.inputs.append(
        Input(
            id="stim_%s" % pop,
            input_source=input_source.id,
            population=pop,
            percentage=80,
        ))

new_file = net.to_json_file("%s.json" % net.id)

################################################################################
###   Builds a NeuroML 2 representation, save as XML

format_ = "xml"
nml_file_name, nml_doc = generate_neuroml2_from_network(
    net,
    nml_file_name="%s.net.nml%s" %
    (net.id, ".h5" if format_ == "hdf5" else ""),
    format=format_,
)
示例#20
0
input_sourceI = InputSource(id='noisyCurrentSourceI',
                            lems_source_file='TestNCS.xml',
                            parameters={
                                'mean': '0.0nA',
                                'stdev': str(stdNoiseI) + 'nA',
                                'noiseDt': '%sms' % dt,
                                'delay': '0ms',
                                'duration': '%sms' % duration
                            })

net.input_sources.append(input_sourceE)
net.input_sources.append(input_sourceI)

net.inputs.append(
    Input(id='stimE',
          input_source=input_sourceE.id,
          population=pE.id,
          percentage=100))

net.inputs.append(
    Input(id='stimI',
          input_source=input_sourceI.id,
          population=pI.id,
          percentage=100))

####################### Save network in json file #############################
print(net.to_json())
new_file = net.to_json_file('%s.json' % net.id)

################################################################################
###   Build Simulation object & save as JSON
示例#21
0
net.regions.append(r2)

net.populations[0].random_layout = RandomLayout(region=r1.id)
net.populations[1].random_layout = RandomLayout(region=r2.id)

net.populations[0].component = 'hhcell'
net.populations[1].component = 'hhcell'

net.cells.append(Cell(id='hhcell', neuroml2_source_file='test_files/hhcell.cell.nml'))
net.synapses.append(Synapse(id='ampa', neuroml2_source_file='test_files/ampa.synapse.nml'))

input_source = InputSource(id='poissonFiringSyn', neuroml2_source_file='test_files/inputs.nml')
net.input_sources.append(input_source)

net.inputs.append(Input(id='stim_%s'%net.populations[0].id,
                            input_source=input_source.id,
                            population=net.populations[0].id,
                            percentage=80))

print(net.to_json())
new_file = net.to_json_file('%s.json'%net.id)


################################################################################
###   Use a handler which just prints info on positions, etc.

def_handler = DefaultNetworkHandler()

generate_network(net, def_handler)


################################################################################