for i, gna in enumerate(ais_gna_x): for j, l in enumerate(len_x): print('na12m:', na12m, '; na16m:', na16m, ';gna:', gna, 'pS/um2; len:', l, 'um;') cell = nm.NeuronModel(ail=int(l), na_type=2, na12_map=na12m, na16_map=na16m, aina12=gna, aina16=gna) stim = nm.attach_current_clamp(cell, amp=.7) vec = nm.set_recording_vectors(cell) nm.simulate() nm.save_vec( vec, save_data_path + str(na12m) + str(na16m) + '_gna_' + str(gna) + '_len_' + str(l) + '_') nm.show_output( vec, save_figure_path + str(na12m) + str(na16m) + 'gna_' + str(gna) + '_len_' + str(l) + '_') bpv_len_sum[i, j], fwv_len_sum[i, j], ___ = nm.cal_velocity( vec, ['ais']) cell.dend1 = None cell.dend2 = None cell.soma = None cell.hill = None cell.ais = None cell.axon = None for sec in h.allsec(): print(sec)
file_name = 'type'+str(na_type)\ +'_aina12_'+str(aina12_x[p])\ +'_aina16_'+str(aina16_x[p])\ +'_aik_'+str(aik_x[p])\ +'_dist_'+str(d)+'_len_'+str(l)+'_v_vec.p' print(na_type, p, d, l) cell = nm.NeuronModel(hl=int(d),\ ail=int(l),\ na_type=na_type,\ aina12=aina12_x[p],\ aina16=aina16_x[p],\ aik=aik_x[p]) stim = nm.attach_current_clamp(cell, amp=.7) vec = nm.set_recording_vectors(cell) nm.simulate() nm.save_vec(vec, save_data_path + file_name) nm.show_output(vec, save_figure_path + file_name) bpv_sum[i, j], fwv_sum[i, j], ___ = nm.cal_velocity(vec, ['ais']) cell.dend1 = None cell.dend2 = None cell.soma = None cell.hill = None cell.ais = None cell.axon = None for sec in h.allsec(): print(sec) with open(save_data_path+'type'+str(na_type)\ +'_aina12_'+str(aina12_x[p])\ +'_aina16_'+str(aina16_x[p])\ +'_aik_'+str(aik_x[p])\
for j, l in enumerate(len_x): print(p, d, l) cell = nm.NeuronModel(hl=int(d), \ ail=int(l), \ na_type=2, \ na12_map=1, na16_map=1, aina12=aina12_x[p],\ aina16=aina16_x[p],\ aik=aik_x[p]) stim = nm.attach_current_clamp(cell, amp=.7) vec = nm.set_recording_vectors(cell) nm.simulate() nm.save_vec(vec, save_data_path\ +'type2_map1'\ +'_aina12_'+str(aina12_x[p])\ +'_aina16_'+str(aina16_x[p])\ +'_aik_'+str(aik_x[p])\ +'_dist_'+str(d)+'_len_'+str(l)+'_') nm.show_output(vec, save_figure_path\ +'type2_map1'\ +'_aina12_'+str(aina12_x[p])\ +'_aina16_'+str(aina16_x[p])\ +'_aik_'+str(aik_x[p])\ +'_dist_'+str(d)+'_len_'+str(l)+'_') bpv_sum[i, j], fwv_sum[i, j], ___ = nm.cal_velocity(vec, ['ais']) cell.dend1 = None cell.dend2 = None cell.soma = None cell.hill = None cell.ais = None cell.axon = None
fwv_len_sum = np.zeros([len(hill_gna_x), len(len_x)]) bpv_dist_sum = np.zeros([len(hill_gna_x), len(dist_x)]) fwv_dist_sum = np.zeros([len(hill_gna_x), len(dist_x)]) save_data_path = 'E:/02_AIS/Simulation/AIS/190708/fit_v2/data/hna/' save_figure_path = 'E:/02_AIS/Simulation/AIS/190708/fit_v2/figure/hna/' for i, gna in enumerate(hill_gna_x): for j, l in enumerate(len_x): print('hna:', gna, 'pS/um2; len:', l, 'um;') cell = nm.NeuronModel(ail=int(l), na_type=1, hna=gna) stim = nm.attach_current_clamp(cell, amp=.7) vec = nm.set_recording_vectors(cell) nm.simulate() nm.save_vec( vec, save_data_path + 'hna_' + str(gna) + '_len_' + str(l) + '_') nm.show_output( vec, save_figure_path + 'hna_' + str(gna) + '_len_' + str(l) + '_') bpv_len_sum[i, j], fwv_len_sum[i, j], ___ = nm.cal_velocity(vec, ['ais']) cell.dend1 = None cell.dend2 = None cell.soma = None cell.hill = None cell.ais = None cell.axon = None for sec in h.allsec(): print(sec) for j, d in enumerate(dist_x): print('hna:', gna, 'pS/um2; dist:', d, 'um;')
for p in aina_x + [aina]: bpv_sum = np.zeros([len(dist_x), len(len_x)]) fwv_sum = np.zeros([len(dist_x), len(len_x)]) for i, d in enumerate(dist_x): for j, l in enumerate(len_x): print(p, d, l) cell = nm.NeuronModel(hl=int(d), \ ail=int(l), \ na_type=1, \ aina=p,\ aik=aik) stim = nm.attach_current_clamp(cell, amp=.7) vec = nm.set_recording_vectors(cell) nm.simulate() nm.save_vec( vec, save_data_path + 'aina_' + str(p) + '_aik_' + str(aik) + '_dist_' + str(d) + '_len_' + str(l) + '_') nm.show_output( vec, save_figure_path + 'aina_' + str(p) + '_aik_' + str(aik) + '_dist_' + str(d) + '_len_' + str(l) + '_') bpv_sum[i, j], fwv_sum[i, j], ___ = nm.cal_velocity(vec, ['ais']) cell.dend1 = None cell.dend2 = None cell.soma = None cell.hill = None cell.ais = None cell.axon = None for sec in h.allsec(): print(sec) with open( save_data_path + 'aina_' + str(p) + '_aik_' + str(aik) + '_bpv.p',
save_data_path = 'E:/02_AIS/Simulation/AIS/190708/fit_v2/data/aik/' save_figure_path = 'E:/02_AIS/Simulation/AIS/190708/fit_v2/figure/aik/' if not os.path.exists(save_data_path): os.makedirs(save_data_path) if not os.path.exists(save_figure_path): os.makedirs(save_figure_path) for i,gk in enumerate(ais_gk_x): for j, l in enumerate(len_x): print('gk:', gk, 'pS/um2; len:', l,'um;') cell = nm.NeuronModel(ail=int(l), na_type=1, aik=gk) stim = nm.attach_current_clamp(cell, amp=.7) vec = nm.set_recording_vectors(cell) nm.simulate() nm.save_vec(vec, save_data_path+'gk_'+str(gk)+'_len_'+str(l)+'_') nm.show_output(vec, save_figure_path+'gk_'+str(gk)+'_len_'+str(l)+'_') bpv_len_sum[i,j], fwv_len_sum[i,j], ___ = nm.cal_velocity(vec, ['ais']) cell.dend1 = None cell.dend2 = None cell.soma = None cell.hill = None cell.ais = None cell.axon = None for sec in h.allsec(): print(sec) for j, d in enumerate(dist_x): print('gk:', gk, 'pS/um2; dist:', d,'um;') cell = nm.NeuronModel(hl=int(d), na_type=1, aik=gk) stim = nm.attach_current_clamp(cell, amp=.7)
cell = nm.NeuronModel(ail=int(l), \ na_type=na_type_i, \ # na12_map=na12_map_i, \ # na16_map=na16_map_i, \ aina12=aina12_ii, \ aina16=aina16_i, \ aik=aik_i,\ hna=hna_i,\ hk=hk_i,\ hl = hl_i,\ hd = hd_i) stim = nm.attach_current_clamp(cell, amp=.7) vec = nm.set_recording_vectors(cell) nm.simulate() nm.save_vec( vec, save_data_path + 'aina12_' + str(aina12_ii) + '_dist_' + str(hl_i) + '_len_' + str(l) + '_') nm.show_output( vec, save_figure_path + 'aina12_' + str(aina12_ii) + '_dist_' + str(hl_i) + '_len_' + str(l) + '_') bpv_len_sum[i, j], fwv_len_sum[i, j], ___ = nm.cal_velocity(vec, ['ais']) cell.dend1 = None cell.dend2 = None cell.soma = None cell.hill = None cell.ais = None cell.axon = None for sec in h.allsec(): print(sec)