示例#1
0
# -*- coding: utf-8 -*-
import neuropsydia as n


questions_dictionary = {

"Item":{
1:"Neuropsydia is great",
2:"Neuropsydia is not great",
3:"Python is great",
4:"Python is not great"}

}



n.start()
n.questionnaire(questions_dictionary, anchors=["No","Yes"], results_save=True)
n.close()
示例#2
0
# -*- coding: utf-8 -*-
import neuropsydia as n

questions_dictionary = {
    "Item": {
        1: "Is Neuropsydia great?",
        2: "Is Neuropsydia not great?",
        3: "Is Python great?",
        4: "Is Python not great?"
    },
    "Reverse": {
        1: False,
        2: True,
        3: False,
        4: True
    },
    "Dimension": {
        1: "Neuropsydia",
        2: "Neuropsydia",
        3: "Python",
        4: "Python"
    }
}

n.start()
n.questionnaire(questions_dictionary,
                anchors=["No", "Yes"],
                results_save=True,
                dimensions_mean=True)
n.close()
示例#3
0
        3: False,
        4: False,
        5: False
    }
}

n.start()  # Initialize neuropsydia

participant_id = n.ask("Participant ID:", order=1)  # Get participant id
participant_gender = n.ask("Gender:", order=2)  # Get participant's gender
participant_age = n.ask("Age:", order=3)  # get participant's age

df = n.questionnaire(questions_dictionary,  # The questions
                participant_id=participant_id,
                analog=False,  # Lickert-like
                edges=[1, 4],  # Values underneath
                labels=["Almost never", "Sometimes", "Often", "Almost always"],
                style="blue",  # The cursor's color
                instructions_text="A number of statements which people have used to describe themselves are given below. \nSelect the number that indicate how you feel right now, that is, at this moment. \nThere are no right or wrong answers. Do not spend too much time on any one statement but give the answer which seems to describe your present feelings best.")  # Add instructions at the beginning


# Scoring
score = df["Answer"].sum()

# Cutoff based on Crawford et al. (2011). This just for illustration purposes, adapt it following your activity.
if score > 56:
    interpretation = "Possible Anxiety"
else:
    interpretation = "No anxiety"

# Add info and save
示例#4
0
        3: "Is Python great?",
        4: "Is Python not great?"
    },
    "Reverse": {
        1: False,
        2: True,
        3: False,
        4: True
    },
    "Dimension": {
        1: "Neuropsydia",
        2: "Neuropsydia",
        3: "Python",
        4: "Python"
    }

}

n.start()
n.questionnaire(questions_dictionary,  # The questions
                anchors=["Not at all", "Absolutely"],  # The edges of the scale
                results_save=True,  # Should it save the data?
                results_type="csv2",  # Change the separator for ";" instead of "," (for France)
                dimensions_mean=True,  # Compute the mean by dimension?
                analog=False,  # Lickert-like
                edges=[0, 7],  # Values underneath
                style="blue",  # The cursor's colour
                randomize=True,  # Randomize the question's order
                instructions_text="Here are the instructions")  # Add instructions at the beginning
n.close()
示例#5
0
# -*- coding: utf-8 -*-
import neuropsydia as n  # Load neuropsydia

questions_dictionary = {
    "Item": {
        1: "Is Neuropsydia great?",
        2: "Is Neuropsydia not great?",
        3: "Is Python great?",
        4: "Is Python not great?"
    }
}

n.start()
n.questionnaire(questions_dictionary)
n.close()
        2: "Is Neuropsydia not great?",
        3: "Is Python great?",
        4: "Is Python not great?"
    },
    "Reverse": {
        1: False,
        2: True,
        3: False,
        4: True
    },
    "Dimension": {
        1: "Neuropsydia",
        2: "Neuropsydia",
        3: "Python",
        4: "Python"
    }

}

n.start()
n.questionnaire(questions_dictionary,  # The questions
                anchors=["Not at all", "Absolutely"],  # The edges of the scale
                results_save=True,  # Should it save the data?
                dimensions_mean=True,  # Compute the mean by dimension?
                analog=False,  # Lickert-like
                edges=[0, 7],  # Values underneath
                style="blue",  # The cursor's colour
                randomize=True,  # Randomize the question's order
                instructions_text="Here are the instructions")  # Add instructions at the beginning
n.close()
# -*- coding: utf-8 -*-
import neuropsydia as n  # Load neuropsydia


questions_dictionary = {

    "Item": {
        1: "Is Neuropsydia great?",
        2: "Is Neuropsydia not great?",
        3: "Is Python great?",
        4: "Is Python not great?"
    }
}


n.start()
n.questionnaire(questions_dictionary)
n.close()