示例#1
0
#  llh86I= data_multi.init86I(energy=True,mode='box')
#  llh59= data_multi.init59(energy=True,mode='box')
#  llh40= data_multi.init40(energy=True,mode='box')
#
#else:
#  llh40= data_multi.init40(energy=True, weighting = modelweights['{}'.format(llhweight)],mode='box')
#  llh79 = data_multi.init79(energy=True, weighting = modelweights['{}'.format(llhweight)],mode='box')
#  llh86I= data_multi.init86I(energy=True, weighting = modelweights['{}'.format(llhweight)],mode='box')
#  llh59= data_multi.init59(energy=True, weighting = modelweights['{}'.format(llhweight)],mode='box')

import new_data_multi

## Like in the background trials, we have to define which llhmodel to use.
if llhweight == 'uniform':
    llh79 = new_data_multi.init79(energy=True, mode='box')
    llh86I = new_data_multi.init86I(energy=True, mode='box')
    llh59 = new_data_multi.init59(energy=True, mode='box')
    llh40 = new_data_multi.init40(energy=True, mode='box')

else:
    llh40 = new_data_multi.init40(
        energy=True,
        weighting=modelweights['{}'.format(llhweight)],
        mode='box')
    llh79 = new_data_multi.init79(
        energy=True,
        weighting=modelweights['{}'.format(llhweight)],
        mode='box')
    llh86I = new_data_multi.init86I(
        energy=True,
        weighting=modelweights['{}'.format(llhweight)],
示例#2
0
parser.add_option ('--years', dest = 'years', type = int,
                default = 4, metavar = 'YEARS',
                help = 'Number of years of data')


opts, args = parser.parse_args ()
batch = opts.batch
batchsize = opts.batchsize
llhweight = opts.llhweight
years = opts.years

## We'll assign the proper weighting scheme for the search, then use it to calculate and cache the associated bckg trials: ##

llh79 = new_data_multi.init79(energy=True,mode='box')
llh86I= new_data_multi.init86I(energy=True,mode='box')
llh59= new_data_multi.init59(energy=True,mode='box')
llh40= new_data_multi.init40(energy=True,mode='box')

#We've loaded in the appropriate llh samples, now let's put them both in the blender (not sure about weighting)

if years == 2:
  samples = [llh79,llh86I]
elif years == 3:
  samples = [llh59,llh79,llh86I]
elif years == 4:
  samples = [llh40,llh59,llh79,llh86I]

llhmodel = new_data_multi.multi_init(samples,energy=True)

示例#3
0
                  dest='years',
                  type=int,
                  default=4,
                  metavar='YEARS',
                  help='Number of years of data')

opts, args = parser.parse_args()
batch = opts.batch
batchsize = opts.batchsize
llhweight = opts.llhweight
years = opts.years

## We'll assign the proper weighting scheme for the search, then use it to calculate and cache the associated bckg trials: ##

llh79 = new_data_multi.init79(energy=True)
llh86I = new_data_multi.init86I(energy=True)
llh59 = new_data_multi.init59(energy=True)
llh40 = new_data_multi.init40(energy=True)

#We've loaded in the appropriate llh samples, now let's put them both in the blender (not sure about weighting)

if years == 2:
    samples = [llh79, llh86I]
elif years == 3:
    samples = [llh59, llh79, llh86I]
elif years == 4:
    samples = [llh40, llh59, llh79, llh86I]

llhmodel = new_data_multi.multi_init(samples, energy=True)

bckg_trials = StackingMultiPointSourceLLH.do_trials(