def ode_littlerock(): filename = 'littlerock.nc' print 'reading file: %s\n' %(filename) nc_file = Dataset(filename) var_names = nc_file.variables.keys() print nc_file.ncattrs() print nc_file.units print nc_file.col_names sound_var = nc_file.variables[var_names[3]] press = sound_var[:,0] height = sound_var[:,1] temp = sound_var[:,2] dewpoint = sound_var[:,3] #height must have unique values newHeight= nudge(height) #Tenv and TdEnv interpolators return temp. in deg C, given height in m #Press interpolator returns pressure in hPa given height in m interpTenv = lambda zVals: np.interp(zVals, newHeight, temp) interpTdEnv = lambda zVals: np.interp(zVals, newHeight, dewpoint) interpPress = lambda zVals: np.interp(zVals, newHeight, press) p900_level = np.where(abs(900 - press) < 2.) p800_level = np.where(abs(800 - press) < 7.) thetaeVal=thetaep(dewpoint[p900_level] + c.Tc,temp[p900_level] + c.Tc,press[p900_level]*100.) height_800=height[p800_level] yinit = [0.5, height_800] #(intial velocity = 0.5 m/s, initial height in m) tinit = 0 tfin = 2500 dt = 10 #want to integrate F using ode45 (from MATLAB) equivalent integrator r = ode(F).set_integrator('dopri5') r.set_f_params(thetaeVal, interpTenv, interpTdEnv, interpPress) r.set_initial_value(yinit, tinit) y = np.array(yinit) t = np.array(tinit) #stop integration when the parcel changes direction, or time runs out while r.successful() and r.t < tfin and r.y[0] > 0: #find y at the next time step #(r.integrate(t) updates the fields r.y and r.t so that r.y = F(t) and r.t = t #where F is the function being integrated) r.integrate(r.t+dt) #keep track of y at each time step y = np.vstack((y, r.y)) t = np.vstack((t, r.t)) wvel = y[:,0] height = y[:,1] plt.figure(1) plt.plot(wvel, height) plt.xlabel('vertical velocity (m/s)') plt.ylabel('height about surface (m)') plt.show()
def F(t, y, entrain_rate, interpTenv, interpTdEnv, interpPress): yp = np.zeros((4,1)) velocity = y[0] height = y[1] thetae_cloud = y[2] wT_cloud = y[3] #yp[0] is the acceleration, in this case the buoyancy yp[0] = calcBuoy(height, thetae_cloud, interpTenv, interpTdEnv, interpPress) press = interpPress(height)*100. #Pa Tdenv = interpTdEnv(height) + c.Tc #K Tenv = interpTenv(height) + c.Tc #K wTenv = wsat(Tdenv, press) #kg/kg thetaeEnv = thetaep(Tdenv, Tenv, press) #yp[1] is the rate of change of height yp[1] = velocity #yp[2] is the rate of change of thetae_cloud yp[2] = entrain_rate*(thetaeEnv - thetae_cloud) #yp[3] is the rate of change of wT_cloud yp[3] = entrain_rate*(wTenv - wT_cloud) return yp
def answer_entrain(): filename = 'littlerock.nc' print 'reading file: %s\n' %(filename) nc_file = Dataset(filename) var_names = nc_file.variables.keys() print nc_file.ncattrs() print nc_file.units print nc_file.col_names sound_var = nc_file.variables[var_names[3]] press = sound_var[:,0] height = sound_var[:,1] temp = sound_var[:,2] dewpoint = sound_var[:,3] #height must have unique values envHeight= nudge(height) #Tenv and TdEnv interpolators return temp. in deg C, given height in m #Press interpolator returns pressure in hPa given height in m interpTenv = lambda zVals: np.interp(zVals, envHeight, temp) interpTdEnv = lambda zVals: np.interp(zVals, envHeight, dewpoint) interpPress = lambda zVals: np.interp(zVals, envHeight, press) p900_level = np.where(abs(900 - press) < 2.) p800_level = np.where(abs(800 - press) < 7.) thetaeVal=thetaep(dewpoint[p900_level] + c.Tc,temp[p900_level] + c.Tc,press[p900_level]*100.) height_800=height[p800_level] wTcloud = wsat(dewpoint[p900_level] + c.Tc, press[p900_level]*100.) entrain_rate = 2.e-4 winit = 0.5 #initial velocity (m/s) yinit = [winit, height_800, thetaeVal, wTcloud] tinit = 0 tfin = 2500 dt = 10 #want to integrate F using ode45 (from MATLAB) equivalent integrator r = ode(F).set_integrator('dopri5') r.set_f_params(entrain_rate, interpTenv, interpTdEnv, interpPress) r.set_initial_value(yinit, tinit) y = np.array(yinit) t = np.array(tinit) #stop tracking the parcel when the time runs out, or if the parcel stops moving/is desecnding while r.successful() and r.t < tfin and r.y[0] > 0: #find y at the next time step #(r.integrate(t) updates the fields r.y and r.t so that r.y = F(t) and r.t = t #where F is the function being integrated) r.integrate(r.t+dt) if r.y[0] <= 0: break #keep track of y at each time step y = np.vstack((y, r.y)) t = np.vstack((t, r.t)) wvel = y[:,0] cloud_height = y[:,1] thetae_cloud = y[:,2] wT_cloud = y[:,3] plt.figure(1) plt.plot(wvel, cloud_height) plt.xlabel('vertical velocity (m/s)') plt.ylabel('height above surface (m)') plt.gca().set_title('vertical velocity of a cloud parcel vs height,\ entrainment rate of %4.1e $s^{-1}$' %entrain_rate) Tcloud = np.zeros(cloud_height.size) wvCloud = np.zeros(cloud_height.size) wlCloud = np.zeros(cloud_height.size) for i in range(0, len(cloud_height)): the_press = interpPress(cloud_height[i])*100. Tcloud[i], wvCloud[i], wlCloud[i] = tinvert_thetae(thetae_cloud[i], wT_cloud[i], the_press) Tadia= np.zeros(cloud_height.size) wvAdia = np.zeros(cloud_height.size) wlAdia = np.zeros(cloud_height.size) for i in range(0, len(cloud_height)): the_press = interpPress(cloud_height[i])*100. Tadia[i], wvAdia[i], wlAdia[i] = tinvert_thetae(thetae_cloud[0], wT_cloud[0], the_press) plt.figure(2) TcloudHandle, = plt.plot(Tcloud - c.Tc, cloud_height, 'r-') TenvHandle, = plt.plot(temp, envHeight, 'g-') TadiaHandle, = plt.plot(Tadia - c.Tc, cloud_height, 'b-') plt.xlabel('temperature (deg C)') plt.ylabel('height above surface (m)') plt.gca().set_title('temp. of rising cloud parcel vs height,\ entrainment rate of %4.1e $s^{-1}$' %entrain_rate) plt.gca().legend([TcloudHandle, TenvHandle, TadiaHandle],['cloud', 'environment', 'moist adiabat']) plt.show()
plt.title('convectively unstable sounding: base at 900 hPa') plt.show() #print -dpdf initial_sound.pdf #put on the top and bottom LCLs and the thetae sounding Tlcl=np.zeros(numPoints) pLCL=np.zeros(numPoints) theTheta=np.zeros(numPoints) theThetae=np.zeros(numPoints) Tpseudo=np.zeros(numPoints) wtotal=np.zeros(numPoints) for i in range(0, numPoints): wtotal[i]=wsat(Tdew[i] + c.Tc,press[i]*100.); Tlcl[i],pLCL[i]=LCLfind(Tdew[i] + c.Tc,Temp[i]+c.Tc,press[i]*100.) theThetae[i]=thetaep(Tdew[i] + c.Tc,Temp[i] + c.Tc,press[i]*100.) #find the temperature along the pseudo adiabat at press[i] Tpseudo[i]=findTmoist(theThetae[i],press[i]*100.) #no liquid water in sounding xplot=convertTempToSkew(Tlcl[0] - c.Tc,pLCL[0]*0.01,skew); bot,=plt.plot(xplot,pLCL[0]*0.01,'ro',markersize=12, markerfacecolor ='r') xplot=convertTempToSkew(Tlcl[-1] - c.Tc,pLCL[-1]*0.01,skew) top,=plt.plot(xplot,pLCL[-1]*0.01,'bd',markersize=12,markerfacecolor='b') #print -dpdf initial_lcls.pdf xplot=convertTempToSkew(Tpseudo - c.Tc,press,skew) thetaEhandle,=plt.plot(xplot,press,'c-', linewidth=2.5) ax.legend([Thandle, TdHandle, bot, top, thetaEhandle], ['Temp (deg C)','Dewpoint (deg C)', 'LCL bot (835 hPa)','LCL top (768 hPa)','$\\theta_e$']) plt.title('convectively unstable sounding: base at 900 hPa') plt.show() #print -dpdf base900_thetae.pdf
c = constants(); eqT_bot=30 + c.Tc eqwv_bot=14*1.e-3 sfT_bot=21 + c.Tc sfwv_bot=3.e-3 eqwv_top=3.e-3 sfwv_top=3.e-3 ptop=410.e2 pbot=1000.e2 eqTd_bot=findTdwv(eqwv_bot,pbot) sfTd_bot=findTdwv(sfwv_bot,pbot) thetae_eq=thetaep(eqTd_bot,eqT_bot,pbot) thetae_sf=thetaep(sfTd_bot,sfT_bot,pbot) fig1 = plt.figure(1) skew, ax1 = convecSkew(1) pvec=np.arange(ptop, pbot, 1000) #initialize vectors Tvec_eq = np.zeros(pvec.size) Tvec_sf = np.zeros(pvec.size) wv = np.zeros(pvec.size) wl = np.zeros(pvec.size) xcoord_eq = np.zeros(pvec.size) xcoord_sf = np.zeros(pvec.size)
plt.ylabel('pressure (hPa)') plt.xlabel('temperature (deg C)') plt.show() plt.figure(2) skew, ax2 = convecSkew(2) xtemp=convertTempToSkew(temp,press,skew) xdew=convertTempToSkew(dewpoint,press,skew) plt.semilogy(xtemp,press,'g-',linewidth=4) plt.semilogy(xdew,press,'b-',linewidth=4) #use 900 hPa sounding level for adiabat #array.argmin() finds the index of the min. value of array p900_level = np.abs(900 - press).argmin() thetaeVal=thetaep(dewpoint[p900_level] + c.Tc,temp[p900_level] + c.Tc,press[p900_level]*100.) pressVals,tempVals =calcAdiabat(press[p900_level]*100.,thetaeVal,200.e2) xTemp=convertTempToSkew(tempVals - c.Tc,pressVals*1.e-2,skew) p900_adiabat = plt.semilogy(xTemp,pressVals*1.e-2,'r-',linewidth=4) xleft=convertTempToSkew(-20,1.e3,skew) xright=convertTempToSkew(25.,1.e3,skew) # #interpolator fails if two pressure values are the same # newPress = nudge(press) #independent variable used to interpolate must be in increasing order #pVals must be in hPa interpTenv = lambda pVals: np.interp(pVals, newPress[::-1], temp[::-1]) interpTdenv = lambda pVals: np.interp(pVals, newPress[::-1], dewpoint[::-1]) interpDirec = lambda pVals: np.interp(pVals, newPress[::-1], direct[::-1])
c = constants() eqT_bot = 30 + c.Tc eqwv_bot = 14*1.e-3 sfT_bot = 21 + c.Tc sfwv_bot = 3.e-3 eqwv_top = 3.e-3 sfwv_top = 3.e-3 ptop = 4e2 pbot = 1000.e2 # Perform the functions as the heat expands eqTd_bot = findTdwv(eqwv_bot,pbot) sfTd_bot = findTdwv(sfwv_bot,pbot) thetae_eq = thetaep(eqTd_bot,eqT_bot,pbot) thetae_sf = thetaep(sfTd_bot,sfT_bot,pbot) # plot fig1 = plt.figure(1) skew, ax1 = convecSkew(1) # Initialize vector arrays. pvec = np.arange(ptop, pbot, 1000) Tvec_eq = np.zeros(pvec.size) Tvec_sf = np.zeros(pvec.size) wv = np.zeros(pvec.size) wl = np.zeros(pvec.size) xcoord_eq = np.zeros(pvec.size) xcoord_sf = np.zeros(pvec.size)
from findLCL0 import findLCL0 from findTmoist import findTmoist press0=1.e5 Temp0=15 + c.Tc Td0=2 + c.Tc # #step 1: find the lcl # wv0=wsat(Td0,press0) plcl, Tlcl =findLCL0(wv0,press0,Temp0) print 'found Plcl=%8.2f (hPa) and Tlcl=%8.2f (deg C)\n' %(plcl*1.e-2, Tlcl - c.Tc) the_thetae=thetaep(Tlcl,Tlcl,plcl) # step 2 raise air 200 hPa above plcl along pseudo adiabat, # find wsat at that temperature, compare to wv0 to find the amount # of liquid water condensed pnew = plcl - 200.e2 newTemp, newWv, newWl = tinvert_thetae(the_thetae, wv0, pnew) #check: #ws = wsat(newTemp, pnew) #wl = wv0 - ws out_msg = '\nat new pressure level %8.2f hPa\n\ the temperature is %8.2f deg C\n\