def setUpClass(cls):
        cls.test_client = Client(key=os.environ["NEXOSIS_API_TESTKEY"], uri=os.environ["NEXOSIS_API_TESTURI"])

        metadata = {'sales': ColumnMetadata({'dataType': 'numeric', 'role': 'target'}),
                    'transactions': ColumnMetadata({'dataType': 'numeric', 'role': 'none'}),
                    'timeStamp': ColumnMetadata({'dataType': 'date', 'role': 'timestamp'})}

        cls.import_response = cls.test_client.imports.import_from_s3('test-python-import', 'nexosis-sample-data',
                                                                       'LocationA.csv', 'us-east-1', metadata)
        #give import time to run
        time.sleep(10)
示例#2
0
 def __init__(self, data_dict):
     self._name = data_dict['dataSetName']
     cols = data_dict.get('columns') or {}
     self._column_metadata = {
         key: ColumnMetadata(value)
         for key, value in cols.items()
     }
示例#3
0
    def test_create_with_measure_type(self):
        metadata = {
            'observed':
            ColumnMetadata({
                'dataType': 'numericMeasure',
                'role': 'target'
            }),
            'timestamp':
            ColumnMetadata({
                'dataType': 'date',
                'role': 'timestamp'
            })
        }
        result = self.test_client.datasets.create(self.ds_name, self.data,
                                                  metadata)

        self.assertEqual(Imputation.mean,
                         result.column_metadata['observed'].imputation)
        self.assertEqual(Aggregation.mean,
                         result.column_metadata['observed'].aggregation)
示例#4
0
    def test_create_with_metadata(self):
        metadata = {
            'observed': ColumnMetadata({
                'dataType': 'string',
                'role': 'none'
            }),
            'timestamp': ColumnMetadata({
                'dataType': 'date',
                'role': 'timestamp'
            })
        }
        result = self.test_client.datasets.create(self.ds_name, self.data,
                                                  metadata)

        self.assertEqual(self.ds_name, result.name)
        self.assertEqual(metadata['observed'].data_type,
                         result.column_metadata['observed'].data_type)
        self.assertEqual(metadata['observed'].role,
                         result.column_metadata['observed'].role)
        self.assertEqual(metadata['timestamp'].data_type,
                         result.column_metadata['timestamp'].data_type)
        self.assertEqual(metadata['timestamp'].role,
                         result.column_metadata['timestamp'].role)
示例#5
0
    def __init__(self, data_dict=None):
        if data_dict is None:
            data_dict = {}

        cols = data_dict.get('columns') or {}
        joins = data_dict.get('joins') or []

        self._view_name = data_dict['viewName']
        self._dataset_name = data_dict['dataSetName']
        self._column_metadata = {
            key: ColumnMetadata(value)
            for (key, value) in cols.items()
        }
        self._joins = [Join(j) for j in joins]
示例#6
0
    def __init__(self, data_dict=None):
        """
        A Dataset is the representation of your data as stored by the Nexosis API

        :arg dict data_dict: the dictionary containing the data for this object
        """
        if data_dict is None:
            data_dict = {}
        self._data = data_dict.get('data')
        self._metadata = {
            key: ColumnMetadata(value)
            for (key, value) in data_dict.get('columns', {}).items()
        }
        self._links = data_dict.get('links')
示例#7
0
    def __init__(self, data_dict=None):
        """
        A Dataset is the representation of your data as stored by the Nexosis API

        :arg dict data_dict: the dictionary containing the data for this object
        """
        if data_dict is None:
            data_dict = {}
        self._data = data_dict.get('data')
        self._metadata = {key: ColumnMetadata(value) for (key, value) in data_dict.get('columns', {}).items()}
        self._links = data_dict.get('links')
        self._page_number = data_dict['pageNumber'] if 'pageNumber' in data_dict else 0
        self._total_pages = data_dict['totalPages'] if 'totalPages' in data_dict else 0
        self._page_size = data_dict['pageSize'] if 'pageSize' in data_dict else 50
        self._item_total = data_dict['totalCount'] if 'totalCount' in data_dict else 0
示例#8
0
    def test_create_assign_imputation_aggregation(self):
        metadata = {
            'observed':
            ColumnMetadata({
                'dataType': 'numeric',
                'role': 'target',
                'imputation': 'mode',
                'aggregation': 'median'
            }),
            'timestamp':
            ColumnMetadata({
                'dataType': 'date',
                'role': 'timestamp'
            })
        }

        result = self.test_client.datasets.create(self.ds_name, self.data,
                                                  metadata)

        self.assertEqual(self.ds_name, result.name)
        self.assertEqual(Aggregation.median,
                         result.column_metadata['observed'].aggregation)
        self.assertEqual(Imputation.mode,
                         result.column_metadata['observed'].imputation)
示例#9
0
    def __init__(self, data_dict=None):
        if data_dict is None:
            data_dict = {}

        self._model_id = data_dict.get('modelId')
        self._prediction_domain = data_dict.get('predictionDomain')
        self._datasource_name = data_dict.get('dataSourceName')
        self._created_on = data_dict.get('createdDate')
        self._algorithm = Algorithm(data_dict.get('algorithm'))
        cols = data_dict.get('columns') or {}
        self._column_metadata = {
            key: ColumnMetadata(value)
            for key, value in cols.items()
        }
        self._metrics = data_dict.get('metrics')
 def test_create_regression_model(self):
     columns = {
         'R.D.Spend':
         ColumnMetadata({
             'dataType': 'numeric',
             'role': 'feature',
             'imputation': 'mode',
             'aggregation': 'median'
         }),
         'Administration':
         ColumnMetadata({
             'dataType': 'numeric',
             'role': 'feature',
             'imputation': 'mode',
             'aggregation': 'median'
         }),
         'Marketing.Spend':
         ColumnMetadata({
             'dataType': 'numeric',
             'role': 'feature',
             'imputation': 'mode',
             'aggregation': 'median'
         }),
         'Profit':
         ColumnMetadata({
             'dataType': 'numeric',
             'role': 'target'
         }),
         'ny':
         ColumnMetadata({
             'dataType': 'logical',
             'role': 'feature'
         }),
         'florida':
         ColumnMetadata({
             'dataType': 'logical',
             'role': 'feature'
         }),
         'cali':
         ColumnMetadata({
             'dataType': 'logical',
             'role': 'feature'
         }),
     }
     results = self.test_client.sessions.train_regression_model(
         self.regression_ds_name, 'profit', columns)
示例#11
0
    def __init__(self, data_dict=None):
        if data_dict is None:
            data_dict = {}

        self._import_id = data_dict['importId']
        self._type = ImportType[data_dict['type']]
        self._status = Status[data_dict['status']]
        self._dataset_name = data_dict['dataSetName']
        self._requested_date = dateutil.parser.parse(
            data_dict['requestedDate'])
        self._status_history = data_dict['statusHistory']
        self._links = data_dict['links']
        self._parameters = data_dict['parameters']
        self._messages = data_dict['messages']
        md = data_dict.get('metadata') or {}
        self._column_metadata = {
            key: ColumnMetadata(value)
            for (key, value) in md.items()
        }
示例#12
0
    def __init__(self, data_dict=None):
        if data_dict is None:
            data_dict = {}

        self._session_id = data_dict['sessionId']
        self._type = SessionType[data_dict['type']]
        self._status = Status[data_dict['status']]
        self._status_history = data_dict['statusHistory']
        self._dataset_name = data_dict['dataSetName']
        self._target_column = data_dict['targetColumn']
        self._start_date = dateutil.parser.parse(data_dict['startDate'])
        self._end_date = dateutil.parser.parse(data_dict['endDate'])
        self._requested_date = dateutil.parser.parse(data_dict['requestedDate'])
        self._links = data_dict['links']
        self._is_estimate = bool(data_dict['isEstimate'])
        self._extra_parameters = data_dict['extraParameters']
        self._result_interval = TimeInterval[data_dict['resultInterval']] \
            if 'resultInterval' in data_dict.keys() and data_dict['resultInterval'] \
            else TimeInterval.day
        md = data_dict.get('metadata') or {}
        self._column_metadata = {key: ColumnMetadata(value) for (key, value) in md.items()}