示例#1
0
 def metadata_NXlog(self, spec_metadata, description):
     """Return the specific metadata in an NXlog object."""
     from spec2nexus import utils
     nxlog = NXlog()
     nxlog.attrs['description'] = description
     for subkey, value in spec_metadata.items():
         clean_name = utils.sanitize_name(nxlog, subkey)
         nxlog[clean_name] = NXfield(value)
         nxlog[clean_name].original_name = subkey
     return nxlog
示例#2
0
文件: readspec.py 项目: nexpy/nexpy
 def metadata_NXlog(self, spec_metadata, description):
     '''
     return the specific metadata in an NXlog object
     '''
     from spec2nexus import utils
     nxlog = NXlog()
     nxlog.attrs['description'] = description
     for subkey, value in spec_metadata.items():
         clean_name = utils.sanitize_name(nxlog, subkey)
         nxlog[clean_name] = NXfield(value)
         nxlog[clean_name].original_name = subkey
     return nxlog
示例#3
0
文件: readspec.py 项目: nexpy/nexpy
    def parser_1D_columns(self, nxdata, scan):
        '''generic data parser for 1-D column data'''
        from spec2nexus import utils
        for column in scan.L:
            if column in scan.data:
                clean_name = utils.sanitize_name(nxdata, column)
                nxdata[clean_name] = NXfield(scan.data[column])
                nxdata[clean_name].original_name = column

        signal = utils.sanitize_name(nxdata, scan.column_last)      # primary Y axis
        axis = utils.sanitize_name(nxdata, scan.column_first)       # primary X axis
        nxdata.nxsignal = nxdata[signal]
        nxdata.nxaxes = nxdata[axis]
        
        self.parser_mca_spectra(nxdata, scan, axis)
示例#4
0
    def parser_1D_columns(self, nxdata, scan):
        '''generic data parser for 1-D column data'''
        from spec2nexus import utils
        for column in scan.L:
            if column in scan.data:
                clean_name = utils.sanitize_name(nxdata, column)
                nxdata[clean_name] = NXfield(scan.data[column])
                nxdata[clean_name].original_name = column

        signal = utils.sanitize_name(nxdata,
                                     scan.column_last)  # primary Y axis
        axis = utils.sanitize_name(nxdata, scan.column_first)  # primary X axis
        nxdata.nxsignal = nxdata[signal]
        nxdata.nxaxes = nxdata[axis]

        self.parser_mca_spectra(nxdata, scan, axis)
示例#5
0
    def parser_mesh(self, nxdata, scan):
        '''data parser for 2-D mesh and hklmesh'''
        # 2-D parser: http://www.certif.com/spec_help/mesh.html
        #  mesh motor1 start1 end1 intervals1 motor2 start2 end2 intervals2 time
        # 2-D parser: http://www.certif.com/spec_help/hklmesh.html
        #  hklmesh Q1 start1 end1 intervals1 Q2 start2 end2 intervals2 time
        # mesh:    nexpy/examples/33id_spec.dat  scan 22  (also has MCA, thus 3-D data)
        # hklmesh: nexpy/examples/33bm_spec.dat  scan 17  (no MCA data)
        from spec2nexus import utils
        label1, start1, end1, intervals1, label2, start2, end2, intervals2, time = scan.scanCmd.split(
        )[1:]
        if label1 not in scan.data:
            label1 = scan.L[0]  # mnemonic v. name
        if label2 not in scan.data:
            label2 = scan.L[1]  # mnemonic v. name
        axis1 = scan.data.get(label1)
        axis2 = scan.data.get(label2)
        intervals1, intervals2 = int(intervals1), int(intervals2)
        start1, end1 = float(start1), float(end1)
        start2, end2 = float(start2), float(end2)
        time = float(time)
        if len(axis1) < intervals1:  # stopped scan before second row started
            self.parser_1D_columns(nxdata, scan)  # fallback support
            # TODO: what about the MCA data in this case?
        else:
            axis1 = axis1[0:intervals1 + 1]
            axis2 = [
                axis2[row] for row in range(len(axis2))
                if row % (intervals1 + 1) == 0
            ]

            column_labels = scan.L
            column_labels.remove(label1)  # special handling
            column_labels.remove(label2)  # special handling
            if scan.scanCmd.startswith('hkl'):
                # find the reciprocal space axis held constant
                label3 = [
                    key for key in ('H', 'K', 'L')
                    if key not in (label1, label2)
                ][0]
                axis3 = scan.data.get(label3)[0]
                nxdata[label3] = NXfield(axis3)
                column_labels.remove(label3)  # already handled

            nxdata[label1] = NXfield(axis1)  # 1-D array
            nxdata[label2] = NXfield(axis2)  # 1-D array

            # build 2-D data objects (do not build label1, label2, [or label3] as 2-D objects)
            data_shape = [len(axis2), len(axis1)]
            for label in column_labels:
                axis = np.array(scan.data.get(label))
                clean_name = utils.sanitize_name(nxdata, label)
                nxdata[clean_name] = NXfield(
                    utils.reshape_data(axis, data_shape))
                nxdata[clean_name].original_name = label

            signal_axis_label = utils.sanitize_name(nxdata, scan.column_last)
            nxdata.nxsignal = nxdata[signal_axis_label]
            nxdata.nxaxes = [nxdata[label2], nxdata[label1]]

        if '_mca_' in scan.data:  # 3-D array
            # TODO: ?merge with parser_mca_spectra()?
            for mca_key, mca_data in scan.data['_mca_'].items():
                key = "__" + mca_key

                spectra_lengths = list(map(len, mca_data))
                num_channels = max(spectra_lengths)
                if num_channels != min(spectra_lengths):
                    msg = 'MCA spectra have different lengths'
                    msg += ' in scan #' + str(scan.scanNum)
                    msg += ' in file ' + str(scan.specFile)
                    raise ValueError(msg)

                data_shape += [
                    num_channels,
                ]
                mca = np.array(mca_data)
                nxdata[key] = NXfield(utils.reshape_data(mca, data_shape))
                nxdata[key].units = "counts"

                try:
                    # use MCA channel numbers as known at time of scan
                    chan1 = scan.MCA['first_saved']
                    chanN = scan.MCA['last_saved']
                    channel_range = range(chan1, chanN + 1)
                except:
                    # basic indices
                    channel_range = range(1, num_channels + 1)

                ch_key = key + "_channel"
                nxdata[ch_key] = NXfield(channel_range)
                nxdata[ch_key].units = 'channel'
                axes = (label1, label2, ch_key)
                nxdata[key].axes = ':'.join(axes)
示例#6
0
文件: readspec.py 项目: nexpy/nexpy
    def parser_mesh(self, nxdata, scan):
        '''data parser for 2-D mesh and hklmesh'''
        # 2-D parser: http://www.certif.com/spec_help/mesh.html
        #  mesh motor1 start1 end1 intervals1 motor2 start2 end2 intervals2 time
        # 2-D parser: http://www.certif.com/spec_help/hklmesh.html
        #  hklmesh Q1 start1 end1 intervals1 Q2 start2 end2 intervals2 time
        # mesh:    nexpy/examples/33id_spec.dat  scan 22  (also has MCA, thus 3-D data)
        # hklmesh: nexpy/examples/33bm_spec.dat  scan 17  (no MCA data)
        from spec2nexus import utils
        label1, start1, end1, intervals1, label2, start2, end2, intervals2, time = scan.scanCmd.split()[1:]
        if label1 not in scan.data:
            label1 = scan.L[0]      # mnemonic v. name
        if label2 not in scan.data:
            label2 = scan.L[1]      # mnemonic v. name
        axis1 = scan.data.get(label1)
        axis2 = scan.data.get(label2)
        intervals1, intervals2 = int(intervals1), int(intervals2)
        start1, end1 = float(start1), float(end1)
        start2, end2 = float(start2), float(end2)
        time = float(time)
        if len(axis1) < intervals1:     # stopped scan before second row started
            self.parser_1D_columns(nxdata, scan)        # fallback support
            # TODO: what about the MCA data in this case?
        else:
            axis1 = axis1[0:intervals1+1]
            axis2 = [axis2[row] for row in range(len(axis2)) if row % (intervals1+1) == 0]

            column_labels = scan.L
            column_labels.remove(label1)    # special handling
            column_labels.remove(label2)    # special handling
            if scan.scanCmd.startswith('hkl'):
                # find the reciprocal space axis held constant
                label3 = [key for key in ('H', 'K', 'L') if key not in (label1, label2)][0]
                axis3 = scan.data.get(label3)[0]
                nxdata[label3] = NXfield(axis3)
                column_labels.remove(label3)    # already handled

            nxdata[label1] = NXfield(axis1)    # 1-D array
            nxdata[label2] = NXfield(axis2)    # 1-D array

            # build 2-D data objects (do not build label1, label2, [or label3] as 2-D objects)
            data_shape = [len(axis2), len(axis1)]
            for label in column_labels:
                axis = np.array( scan.data.get(label) )
                clean_name = utils.sanitize_name(nxdata, label)
                nxdata[clean_name] = NXfield(utils.reshape_data(axis, data_shape))
                nxdata[clean_name].original_name = label

            signal_axis_label = utils.sanitize_name(nxdata, scan.column_last)
            nxdata.nxsignal = nxdata[signal_axis_label]
            nxdata.nxaxes = [nxdata[label2], nxdata[label1]]

        if '_mca_' in scan.data:    # 3-D array
            # TODO: ?merge with parser_mca_spectra()?
            for mca_key, mca_data in scan.data['_mca_'].items():
                key = "__" + mca_key

                spectra_lengths = list(map(len, mca_data))
                num_channels = max(spectra_lengths)
                if num_channels != min(spectra_lengths):
                    msg = 'MCA spectra have different lengths'
                    msg += ' in scan #' + str(scan.scanNum)
                    msg += ' in file ' + str(scan.specFile)
                    raise ValueError(msg)

                data_shape += [num_channels, ]
                mca = np.array(mca_data)
                nxdata[key] = NXfield(utils.reshape_data(mca, data_shape))
                nxdata[key].units = "counts"

                try:
                    # use MCA channel numbers as known at time of scan
                    chan1 = scan.MCA['first_saved']
                    chanN = scan.MCA['last_saved']
                    channel_range = range(chan1, chanN+1)
                except:
                    # basic indices
                    channel_range = range(1, num_channels+1)

                ch_key = key + "_channel"
                nxdata[ch_key] = NXfield(channel_range)
                nxdata[ch_key].units = 'channel'
                axes = (label1, label2, ch_key)
                nxdata[key].axes = ':'.join( axes )