示例#1
0
    def interpret_axes(self, in_obj, init_state):

        if self.w_in_axes is None:
            self.in_axes = in_obj.axes

            self.recurrent_axis = self.in_axes.recurrent_axis()
            self.in_feature_axes = self.in_axes.sample_axes() - self.recurrent_axis

            # if init state is given, use that as hidden axes
            if init_state:
                self.out_feature_axes = (init_state.axes.sample_axes() -
                                         init_state.axes.recurrent_axis())
                if sum(self.out_feature_axes.full_lengths) != self.nout:
                    raise ValueError("Length of init_state must be the same as nout: " +
                                     "{} != {}".format(sum(self.out_feature_axes.full_lengths),
                                                       self.nout))
            else:
                self.out_feature_axes = ng.make_axes([ng.make_axis(self.nout)])
                if len(self.in_feature_axes) == 1:
                    self.out_feature_axes[0].named(self.in_feature_axes[0].name)

            self.out_axes = self.out_feature_axes + self.in_axes.batch_axis()
            self.recurrent_axis_idx = len(self.out_feature_axes)

            # create temporary out axes which the dot ops will output.  These
            # temporary axes will be immediately cast to self.out_axes
            # afterwards.  We can't go directly to self.out_axes from the DotOp
            # because sometimes the self.out_axes intersect with the self.in_axes
            # and so the weight matrix would have a duplicate Axis which isn't
            # allowed.
            temp_out_axes = ng.make_axes(shadow_axes_map(self.out_feature_axes).keys())

            # determine the shape of the weight matrices
            self.w_in_axes = temp_out_axes + self.in_feature_axes
            self.w_re_axes = temp_out_axes + self.out_feature_axes
示例#2
0
    def __call__(self, in_obj, **kwargs):
        """
        Arguments:
            in_obj (Tensor): object that provides the lookup indices
        """
        LABELS = {"weight": "weight", "bias": "bias"}

        in_obj = ng.axes_with_order(
            in_obj,
            ng.make_axes(
                [in_obj.axes.recurrent_axis(),
                 in_obj.axes.batch_axis()]))
        in_obj = ng.flatten(in_obj)
        in_axes = in_obj.axes

        # label lut_v_axis as shadow axis for initializers ... once #1158 is
        # in, shadow axis will do more than just determine fan in/out for
        # initializers.
        self.lut_v_axis = ng.make_axis(self.vocab_size).named('V')
        self.axes_map = shadow_axes_map([self.lut_v_axis])
        self.lut_v_axis = list(self.axes_map.values())[0]

        self.lut_f_axis = ng.make_axis(self.embed_dim).named('F')

        self.w_axes = ng.make_axes([self.lut_v_axis, self.lut_f_axis])
        self.lut_o_axes = in_axes | ng.make_axes([self.lut_f_axis])
        self.o_axes = ng.make_axes([self.lut_f_axis]) | in_axes[0].axes

        if not self.initialized:
            self.W = ng.variable(
                axes=self.w_axes,
                initial_value=self.lut_init(self.w_axes, self.lut_v_axis,
                                            self.pad_idx),
                metadata={
                    "label": LABELS["weight"]
                },
            ).named('LutW')

        lut_result = ng.lookuptable(self.W,
                                    in_obj,
                                    self.lut_o_axes,
                                    update=self.update,
                                    pad_idx=self.pad_idx)
        return ng.axes_with_order(
            ng.map_roles(ng.unflatten(lut_result), self.axes_map), self.o_axes)
    def __call__(self, in_obj, **kwargs):
        """
        Arguments:
            in_obj (Tensor): object that provides the lookup indices
        """
        in_obj = ng.flatten(in_obj)
        in_axes = in_obj.axes

        # label lut_v_axis as shadow axis for initializers ... once #1158 is
        # in, shadow axis will do more than just determine fan in/out for
        # initializers.
        self.lut_v_axis = ng.make_axis(self.vocab_size).named('V')
        self.axes_map = shadow_axes_map([self.lut_v_axis])
        self.lut_v_axis = list(self.axes_map.values())[0]

        self.lut_f_axis = ng.make_axis(self.embed_dim).named('F')

        self.w_axes = ng.make_axes([self.lut_v_axis, self.lut_f_axis])
        self.lut_o_axes = in_axes | ng.make_axes([self.lut_f_axis])
        self.o_axes = ng.make_axes([self.lut_f_axis]) | in_axes[0].axes

        if not self.initialized:
            self.W = ng.variable(
                axes=self.w_axes,
                initial_value=self.lut_init(
                    self.w_axes,
                    self.lut_v_axis,
                    self.pad_idx),
                metadata={
                    "label": LABELS["weight"]},
            ).named('LutW')

        lut_result = ng.lookuptable(
            self.W,
            in_obj,
            self.lut_o_axes,
            update=self.update,
            pad_idx=self.pad_idx)
        return ng.map_roles(ng.unflatten(lut_result), self.axes_map)
示例#4
0
    def __call__(self, in_obj):
        cpm = self.convparams.copy()
        in_obj = reorder_spatial_axes(in_obj)
        in_axes = in_obj.axes

        if self.f_axes is None:
            self.f_axes = ng.make_axes([in_axes[0]])
            for nm in 'TRSK':
                self.f_axes |= ng.make_axis(length=cpm[nm], name=nm)
            # mark 'K' as a shadow axis for the initializers.
            self.axes_map = shadow_axes_map(self.f_axes.find_by_name('K'))
            self.f_axes = ng.make_axes([
                axis if axis.name != 'K' else list(self.axes_map.keys())[0]
                for axis in self.f_axes
            ])

            self.W = ng.variable(axes=self.f_axes, initial_value=self.init,
                                 scope=self.scope).named('convwt')

        if self.o_axes is None:
            self.o_axes = ng.make_axes([
                ng.make_axis(name=a.name) for a in in_axes if not a.is_batch
            ])
            # set lengths
            out_shape = [
                self.f_axes[-1].length,
                output_dim(in_axes[1].length, cpm['T'], cpm['pad_d'], cpm['str_d'], False,
                           cpm['dil_d']),
                output_dim(in_axes[2].length, cpm['R'], cpm['pad_h'], cpm['str_h'], False,
                           cpm['dil_h']),
                output_dim(in_axes[3].length, cpm['S'], cpm['pad_w'], cpm['str_w'], False,
                           cpm['dil_w'])
            ]
            self.o_axes.set_shape(out_shape)
            self.o_axes |= in_axes.batch_axis()

        return ng.map_roles(ng.convolution(cpm, in_obj, self.W, axes=self.o_axes), self.axes_map)
示例#5
0
    def __init__(self, init, nout=None, axes=None, **kwargs):
        """
        Args:
            nout (int or iterable of ints, optional): length or lengths of
                feature axes the Linear layer should output.  Must not be
                provided in combination with axes.
            axes (Axes, optional): axes of feature axes the Linear layer
                should output.  Must not be provided in combination with nout.
                Axes should not include recurrent or batch axes.
        """
        super(Linear, self).__init__(**kwargs)

        # axes should not include recurrent or batch axes
        if axes is not None:
            axes = ng.make_axes(axes)

            if axes.batch_axis() is not None:
                raise ValueError((
                    'Axes passed to Linear layer should only be the output feature'
                    'axis.  A batch axis {} was included.'
                ).format(axes.batch_axis()))
            if axes.recurrent_axis() is not None:
                raise ValueError((
                    'Axes passed to Linear layer should only be the output feature'
                    'axis.  A recurrent axis {} was included.'
                ).format(axes.recurrent_axis()))
            if any(is_shadow_axis(axis) for axis in axes):
                raise ValueError((
                    "Shadow Axes are not allowed in the output axes passed to "
                    "Linear.  Found {}."
                ).format([is_shadow_axis(axis) for axis in axes]))

        self.axes = infer_axes(nout, axes)
        self.axes_map = shadow_axes_map(self.axes)

        self.init = init
        self.W = None
    def __call__(self,
                 in_obj,
                 channel_axes="C",
                 spatial_axes=("D", "H", "W"),
                 **kwargs):
        """
        Arguments:
            in_obj (Op): Input op
            channel_axes (str): name of the expected channel axis type - defaults to "C"
            spatial_axes (tuple): names of expected depth, height and width axis types - defaults
                                  to "D", "H", and "W"
        """
        if isinstance(spatial_axes, dict):
            spatial_axes = tuple(
                spatial_axes.get(name, name) for name in ("D", "H", "W"))
        elif isinstance(spatial_axes, tuple):
            if len(spatial_axes) < 3:
                raise ValueError(
                    "spatial_axes must have length 3 (e.g. ('D', 'H', 'W'))")
            spatial_axes = tuple(
                name if name else default
                for name, default in zip(spatial_axes, ("D", "H", "W")))

        orig_axes = in_obj.axes
        in_obj = reorder_spatial_axes(in_obj, channel_axes, spatial_axes)
        channel_axes = in_obj.axes.get_by_names(channel_axes)
        spatial_axes = in_obj.axes.get_by_names(*spatial_axes)

        filter_axes = self._filter_axes(channel_axes, spatial_axes)

        # mark 'K' as a shadow axis for the initializers.
        axes_map = shadow_axes_map(filter_axes.find_by_name('K'))
        filter_axes = ng.make_axes([
            axis if axis.name != 'K' else list(axes_map.keys())[0]
            for axis in filter_axes
        ])

        if not self.initialized:
            if not self.weight_norm:
                self.W = ng.variable(axes=filter_axes,
                                     initial_value=self.init,
                                     metadata={
                                         "label": LABELS["weight"]
                                     }).named("W")
            else:
                self.v = ng.variable(axes=filter_axes,
                                     initial_value=self.init,
                                     metadata={
                                         "label": LABELS["weight"]
                                     }).named("v")
                out_axes = ng.make_axes(
                    [filter_axes.get_by_names("K__NG_SHADOW")])
                v_norm = ng.mean(ng.square(self.v), out_axes=out_axes)
                self.g = ng.variable(axes=out_axes,
                                     initial_value=self.init,
                                     metadata={
                                         "label": LABELS["weight"]
                                     }).named("g")
                self.W = self.g * self.v * ng.reciprocal(
                    ng.sqrt(v_norm + 1e-3))
        else:
            if filter_axes != self.W.axes:
                raise ValueError(
                    ("{layer_name} layer has already been initialized with an "
                     "input object which has resulted in filter axes: "
                     "{existing_filter_axes}. This new input object has axes: "
                     "{input_axes}, which implies the need for filter axes: "
                     "{new_filter_axes} which are different than the existing "
                     "filter axes.").format(
                         layer_name=self.name,
                         existing_filter_axes=self.W.axes,
                         input_axes=in_obj.axes,
                         new_filter_axes=filter_axes,
                     ))

        output = ng.map_roles(
            self._conv_op(in_obj, channel_axes, spatial_axes), axes_map)
        # Reorder the output to match the input order
        output_axis_order = ng.make_axes(
            [output.axes.find_by_name(ax.name)[0] for ax in orig_axes])
        # Remove introduced axes. If their length is > 1, then perhaps they should be kept
        slices = [
            0 if (ax not in orig_axes) and ax.length == 1 else slice(None)
            for ax in output.axes
        ]
        output = ng.tensor_slice(output, slices)
        # New axes with length > 1 may have been introduced. Add them to the end.
        output_axis_order = output_axis_order | output.axes
        return ng.axes_with_order(output, output_axis_order)