示例#1
0
def test_cast_axes(transformer_factory):
    C = ng.make_axis(name='C')
    D = ng.make_axis(name='D')

    ex = ExecutorFactory()

    C.length = 2
    D.length = 3

    x = ng.placeholder((C, D))

    x_slice = x[1, :]
    # Cast back to known axes
    x_cast = ng.cast_axes(x_slice, [D])

    # Verfiy that the tensor broadcasts along ax.D
    y = x + x_cast
    y_fun = ex.executor(y, x)
    num_deriv_fun = ex.numeric_derivative(y, x, delta)
    sym_deriv_fun = ex.derivative(y, x)

    x_np = np.array([[10, 20, 30], [1, 2, 3]], dtype='float32')
    assert np.allclose(y_fun(x_np),
                       np.array([[11, 22, 33], [2, 4, 6]], dtype='float32'))

    assert np.allclose(num_deriv_fun(x_np),
                       sym_deriv_fun(x_np),
                       rtol=rtol,
                       atol=atol)
示例#2
0
def test_cross_entropy_binary(transformer_factory):
    """TODO."""
    N = ng.make_axis(name='N')
    W = ng.make_axis(name='W')

    delta = .001
    W.length = 20
    N.length = 128
    axes = ng.make_axes([W, N])
    p_u = ng.placeholder(axes)
    u = rng.uniform(-3.0, 3.0, p_u.axes)
    p_v = ng.placeholder(axes)
    v = rng.uniform(-3.0, 3.0, p_u.axes)

    y = ng.sigmoid(p_u)
    t = ng.softmax(p_v)
    val_u = ng.cross_entropy_binary_inner(y, t)

    ex = ExecutorFactory()
    dval_u_num_fun = ex.numeric_derivative(val_u, p_u, delta, p_v)
    dval_u_graph_fun = ex.derivative(val_u, p_u, p_v)

    dval_u_num = dval_u_num_fun(u, v)
    dval_u_graph = dval_u_graph_fun(u, v)
    np.testing.assert_allclose(dval_u_graph, dval_u_num, atol=1e-2, rtol=1e-2)
示例#3
0
def check_derivative(f,
                     x,
                     delta,
                     x_value,
                     parameters=[],
                     parameter_values=[],
                     **kwargs):
    """
    Check that the numeric and symbol derivatives of f with respect to x are
    the same when x has value x_value.

    Arguments:
        f: function to take the derivative of
        x: variable to take the derivative with respect to
        delta: distance to perturn x in numeric derivative
        x_value: the value of x we are going to compute the derivate of f at
        parameters: extra parameters to f
        parameter_values: value of extra parameters to f
        kwargs: passed to assert_allclose.  Useful for atol/rtol.
    """

    ex = ExecutorFactory()

    dfdx_numeric = ex.numeric_derivative(f, x, delta, *parameters)
    dfdx_symbolic = ex.derivative(f, x, *parameters)

    np.testing.assert_allclose(dfdx_numeric(x_value, *parameter_values),
                               dfdx_symbolic(x_value, *parameter_values),
                               **kwargs)
示例#4
0
def test_stack(transformer_factory):
    ax = ng.make_name_scope(name="ax")
    ax.W = ng.make_axis(length=4)
    ax.H = ng.make_axis(length=5)
    ax.I = ng.make_axis(length=3)

    axes = ng.make_axes([ax.W, ax.H])

    rng = RandomTensorGenerator(0, np.float32)

    a_v = [rng.uniform(0, 1, axes) for i in range(ax.I.length)]

    for pos in range(len(axes) + 1):
        a = [ng.placeholder(axes, initial_value=_) for _ in a_v]

        s = ng.stack(a, ax.I, pos)

        ex = ExecutorFactory()

        num_funs = [ex.numeric_derivative(s, _, delta) for _ in a]
        sym_funs = [ex.derivative(s, _) for _ in a]

        ex.transformer.initialize()

        for n_fun, s_fun, a_i in zip(num_funs, sym_funs, a_v):
            d_n = n_fun(a_i)
            d_s = s_fun(a_i)
            np.allclose(d_n, d_s, rtol=rtol, atol=atol)
示例#5
0
def test_elementwise_unary_ops_matched_args(transformer_factory):
    """TODO."""
    delta = .001
    axes = ng.make_axes([ng.make_axis(20), ng.make_axis(20)])

    for np_op, be_op in ELEMENTWISE_UNARY_OPS:
        p_u = ng.placeholder(axes)
        u = rng.uniform(1.0, 2.0, p_u.axes)
        u_np = np_op(u)
        result_op = be_op(p_u)

        ex = ExecutorFactory()
        fun = ex.executor(result_op, p_u)
        dudunum_fun = ex.numeric_derivative(result_op, p_u, delta)
        dudut_fun = ex.derivative(result_op, p_u)

        u_t = fun(u)
        np.testing.assert_allclose(u_np, u_t, atol=1e-4, rtol=1e-4)
        dudunum = dudunum_fun(u)
        dudut = dudut_fun(u)
        np.testing.assert_allclose(dudunum, dudut, atol=1e-3, rtol=1e-3)
示例#6
0
def test_dot_sum_backprop(transformer_factory):
    delta = 1e-3
    rtol = atol = 1e-2

    C = ng.make_axis(name='C', length=2)
    N = ng.make_axis(name='N', length=3, batch=True)

    x_axes = ng.make_axes((C - 1, N))
    y_axes = ng.make_axes((C, ))
    x_np = np.random.random(x_axes.lengths).astype('float32')
    y_np = np.random.random(y_axes.lengths).astype('float32')

    # x_np[...] = [[1.0, 0.0,1.0], [2.0, 0.0, 3.0]]
    # y_np[...] = [-1.0, 1.0]

    x = ng.placeholder(x_axes)
    y = ng.placeholder(y_axes)
    d = ng.dot(x, y)
    s = ng.sum(d, out_axes=())

    ex = ExecutorFactory()
    s_fun = ex.executor(s, x, y)
    d_fun = ex.executor(d, x, y)

    dd_dx_fun_num = ex.numeric_derivative(d, x, delta, y)
    dd_dx_fun_sym = ex.derivative(d, x, y)

    dd_dy_fun_num = ex.numeric_derivative(d, y, delta, x)
    dd_dy_fun_sym = ex.derivative(d, y, x)

    ds_dx_fun_num = ex.numeric_derivative(s, x, delta, y)
    ds_dx_fun_sym = ex.derivative(s, x, y)

    ds_dy_fun_num = ex.numeric_derivative(s, y, delta, x)
    ds_dy_fun_sym = ex.derivative(s, y, x)

    # assert outputs are equal
    d_np = x_np.T.dot(y_np)
    d_val = d_fun(x_np, y_np)
    np.testing.assert_allclose(d_np, d_val, rtol=rtol, atol=atol)

    dd_dx_val_num = dd_dx_fun_num(x_np, y_np)
    dd_dx_val_sym = dd_dx_fun_sym(x_np, y_np)
    np.testing.assert_allclose(dd_dx_val_num,
                               dd_dx_val_sym,
                               rtol=rtol,
                               atol=atol)

    dd_dy_val_num = dd_dy_fun_num(y_np, x_np)
    dd_dy_val_sym = dd_dy_fun_sym(y_np, x_np)
    np.testing.assert_allclose(dd_dy_val_num,
                               dd_dy_val_sym,
                               rtol=rtol,
                               atol=atol)

    s_np = np.sum(d_np)
    s_val = s_fun(x_np, y_np)
    np.testing.assert_allclose(s_val, s_np, rtol=rtol, atol=atol)

    # assert derivative wrt to both tensors is the same when computed
    # symbolically by ngraph and numerically
    ds_dx_val_num = ds_dx_fun_num(x_np, y_np)
    ds_dx_val_sym = ds_dx_fun_sym(x_np, y_np)
    np.testing.assert_allclose(ds_dx_val_num,
                               ds_dx_val_sym,
                               rtol=rtol,
                               atol=atol)

    ds_dy_val_num = ds_dy_fun_num(y_np, x_np)
    ds_dy_val_sym = ds_dy_fun_sym(y_np, x_np)
    np.testing.assert_allclose(ds_dy_val_num,
                               ds_dy_val_sym,
                               rtol=rtol,
                               atol=atol)
示例#7
0
def test_tensor_dot_tensor(transformer_factory):
    """TODO."""
    C = ng.make_axis(name='C')
    D = ng.make_axis(name='D')
    H = ng.make_axis(name='H')
    N = ng.make_axis(name='N')

    tests = [{
        'tensor1': [[1, 2], [4, 5], [3, 4]],
        'tensor1_axes': (C, D - 1),
        'tensor2': [2, 5],
        'tensor2_axes': (D, ),
        'expected_output': [12, 33, 26],
        'axes_lengths': {
            C: 3,
            D: 2
        }
    }, {
        'tensor1': [[1, 4, 3], [2, 5, 4]],
        'tensor1_axes': (D - 1, C),
        'tensor2': [2, 5],
        'tensor2_axes': (D, ),
        'expected_output': [12, 33, 26],
        'axes_lengths': {
            C: 3,
            D: 2
        }
    }, {
        'tensor1': [[[1, 4], [2, 5]], [[7, 12], [13, 2]]],
        'tensor1_axes': (N, D - 1, C - 1),
        'tensor2': [[[3, 6], [7, 2]], [[9, 8], [10, 4]]],
        'tensor2_axes': (H, D, C),
        'expected_output': [[51, 81], [188, 297]],
        'axes_lengths': {
            N: 2,
            D: 2,
            C: 2,
            H: 2
        }
    }, {
        'tensor1': [1, 2],
        'tensor1_axes': (C, ),
        'tensor2': [7, 11, 13],
        'tensor2_axes': (D, ),
        'expected_output': [[7, 11, 13], [14, 22, 26]],
        'axes_lengths': {
            C: 2,
            D: 3
        }
    }, {
        'tensor1': [[1, 4], [6, 2]],
        'tensor1_axes': (C - 1, D - 1),
        'tensor2': [[1, 4], [6, 2]],
        'tensor2_axes': (C, D),
        'expected_output': 57,
        'axes_lengths': {
            C: 2,
            D: 2
        }
    }]

    for test in tests:
        # set up axis
        for axis, length in test['axes_lengths'].items():
            axis.length = length

        # set up tensors
        tensor1 = ng.placeholder(test['tensor1_axes'])
        value1 = np.array(test['tensor1'], dtype=np.float32)

        tensor2 = ng.placeholder(test['tensor2_axes'])
        value2 = np.array(test['tensor2'], dtype=np.float32)

        # compute outputs
        expected_output = np.array(test['expected_output'], dtype=np.float32)

        ex = ExecutorFactory()
        dot = ng.dot(tensor1, tensor2)
        evaluated_fun = ex.executor(dot, tensor1, tensor2)

        deriv1_fun_num = ex.numeric_derivative(dot, tensor1, 1e-3, tensor2)
        deriv1_fun_sym = ex.derivative(dot, tensor1, tensor2)

        deriv2_fun_num = ex.numeric_derivative(dot, tensor2, 1e-3, tensor1)
        deriv2_fun_sym = ex.derivative(dot, tensor2, tensor1)

        # assert outputs are equal
        evaluated = evaluated_fun(value1, value2)
        np.testing.assert_equal(evaluated, expected_output)

        # assert derivative wrt to both tensors is the same when computed
        # symbolically by ngraph and numerically
        deriv1_val_num = deriv1_fun_num(value1, value2)
        deriv1_val_sym = deriv1_fun_sym(value1, value2)
        np.testing.assert_allclose(deriv1_val_num,
                                   deriv1_val_sym,
                                   rtol=1e-2,
                                   atol=1e-2)

        deriv2_val_num = deriv2_fun_num(value2, value1)
        deriv2_val_sym = deriv2_fun_sym(value2, value1)
        np.testing.assert_allclose(deriv2_val_num,
                                   deriv2_val_sym,
                                   rtol=1e-2,
                                   atol=1e-2)
示例#8
0
def check_rnn(seq_len,
              input_size,
              hidden_size,
              batch_size,
              init_func,
              return_seq=True):
    # init_func is the initializer for the model params
    assert batch_size == 1, "the recurrent reference implementation only support batch size 1"

    # ========== neon model ==========
    Cin = ng.make_axis(input_size)
    REC = ng.make_axis(seq_len, recurrent=True)
    N = ng.make_axis(batch_size, batch=True)
    H = ng.make_axis(hidden_size)
    ax_s = ng.make_axes([H, N])

    ex = ExecutorFactory()
    np.random.seed(0)

    rnn_ng = Recurrent(hidden_size,
                       init_func,
                       activation=Tanh(),
                       reset_cells=True,
                       return_sequence=return_seq)

    inp_ng = ng.placeholder([Cin, REC, N])
    init_state_ng = ng.placeholder(ax_s)

    # fprop graph
    out_ng = rnn_ng.train_outputs(inp_ng, init_state=init_state_ng)
    out_ng.input = True

    rnn_W_input = rnn_ng.W_input
    rnn_W_input.input = True
    rnn_W_recur = rnn_ng.W_recur
    rnn_W_recur.input = True
    rnn_b = rnn_ng.b
    rnn_b.input = True

    fprop_neon_fun = ex.executor(out_ng, inp_ng, init_state_ng)

    dWrecur_s_fun = ex.derivative(out_ng, rnn_W_recur, inp_ng, rnn_W_input,
                                  rnn_b)
    dWrecur_n_fun = ex.numeric_derivative(out_ng, rnn_W_recur, delta, inp_ng,
                                          rnn_W_input, rnn_b)
    dWinput_s_fun = ex.derivative(out_ng, rnn_W_input, inp_ng, rnn_W_recur,
                                  rnn_b)
    dWinput_n_fun = ex.numeric_derivative(out_ng, rnn_W_input, delta, inp_ng,
                                          rnn_W_recur, rnn_b)
    dWb_s_fun = ex.derivative(out_ng, rnn_b, inp_ng, rnn_W_input, rnn_W_recur)
    dWb_n_fun = ex.numeric_derivative(out_ng, rnn_b, delta, inp_ng,
                                      rnn_W_input, rnn_W_recur)

    # fprop on random inputs
    input_value = rng.uniform(-1, 1, inp_ng.axes)
    init_state_value = rng.uniform(-1, 1, init_state_ng.axes)
    fprop_neon = fprop_neon_fun(input_value, init_state_value).copy()

    # after the rnn graph has been executed, can get the W values. Get copies so
    # shared values don't confuse derivatives
    Wxh_neon = rnn_ng.W_input.value.get(None).copy()
    Whh_neon = rnn_ng.W_recur.value.get(None).copy()
    bh_neon = rnn_ng.b.value.get(None).copy()

    # bprop derivs
    dWrecur_s = dWrecur_s_fun(Whh_neon, input_value, Wxh_neon, bh_neon)
    dWrecur_n = dWrecur_n_fun(Whh_neon, input_value, Wxh_neon, bh_neon)
    np.testing.assert_allclose(dWrecur_s, dWrecur_n, rtol=rtol, atol=atol)

    dWb_s = dWb_s_fun(bh_neon, input_value, Wxh_neon, Whh_neon)
    dWb_n = dWb_n_fun(bh_neon, input_value, Wxh_neon, Whh_neon)
    np.testing.assert_allclose(dWb_s, dWb_n, rtol=rtol, atol=atol)

    dWinput_s = dWinput_s_fun(Wxh_neon, input_value, Whh_neon, bh_neon)
    dWinput_n = dWinput_n_fun(Wxh_neon, input_value, Whh_neon, bh_neon)
    np.testing.assert_allclose(dWinput_s, dWinput_n, rtol=rtol, atol=atol)

    # ========= reference model ==========
    output_shape = (hidden_size, seq_len * batch_size)

    # generate random deltas tensor
    deltas = np.random.randn(*output_shape)

    # the reference code expects these shapes:
    # input_shape: (seq_len, input_size, batch_size)
    # output_shape: (seq_len, hidden_size, batch_size)
    deltas_ref = deltas.copy().T.reshape(seq_len, batch_size,
                                         hidden_size).swapaxes(1, 2)

    inp_ref = input_value.transpose([1, 0, 2])

    # reference numpy RNN
    rnn_ref = RefRecurrent(input_size, hidden_size)
    rnn_ref.Wxh[:] = Wxh_neon
    rnn_ref.Whh[:] = Whh_neon
    rnn_ref.bh[:] = bh_neon.reshape(rnn_ref.bh.shape)

    (dWxh_ref, dWhh_ref, db_ref, h_ref_list, dh_ref_list,
     d_out_ref) = rnn_ref.lossFun(inp_ref,
                                  deltas_ref,
                                  init_states=init_state_value)

    # comparing outputs
    if return_seq is False:
        h_ref_list = h_ref_list[:, -1].reshape(-1, 1)
    else:
        fprop_neon = fprop_neon[:, :, 0]
    np.testing.assert_allclose(fprop_neon, h_ref_list, rtol=0.0, atol=1.0e-5)

    return
示例#9
0
def test_slice(transformer_factory):
    """TODO."""

    C = ng.make_axis(name='C')
    D = ng.make_axis(name='D')

    tests = [{
        'tensor': [[1, 3], [2, 5]],
        'tensor_axes': (C, D),
        'slice': [0, 1],
        'sliced_axes': (),
        'axes_lengths': {
            C: 2,
            D: 2
        },
        'expected': 3
    }, {
        'tensor': [[1, 3], [2, 5]],
        'tensor_axes': (C, D),
        'slice': [slice(None), 0],
        'sliced_axes': (C, ),
        'axes_lengths': {
            C: 2,
            D: 2
        },
        'expected': [1, 2]
    }, {
        'tensor': [[1, 3], [2, 5]],
        'tensor_axes': (C, D),
        'slice': [1, slice(None)],
        'sliced_axes': (D, ),
        'axes_lengths': {
            C: 2,
            D: 2
        },
        'expected': [2, 5]
    }, {
        'tensor': [[1, 4, 5], [2, 5, 6]],
        'tensor_axes': (C, D),
        'slice': [1, slice(1, 3)],
        'sliced_axes': None,
        'axes_lengths': {
            C: 2,
            D: 3
        },
        'expected': [5, 6]
    }, {
        'tensor': [[1, 4, 5], [2, 5, 6]],
        'tensor_axes': (C, D),
        'slice': [1, slice(None, None, -1)],
        'sliced_axes': None,
        'axes_lengths': {
            C: 2,
            D: 3
        },
        'expected': [6, 5, 2]
    }, {
        'tensor': [[1, 4, 5], [2, 5, 6]],
        'tensor_axes': (C, D),
        'slice': [slice(None, None, -1),
                  slice(None, None, -1)],
        'sliced_axes': None,
        'axes_lengths': {
            C: 2,
            D: 3
        },
        'expected': [[6, 5, 2], [5, 4, 1]]
    }]

    for test in tests:
        ex = ExecutorFactory()
        for axis, length in test['axes_lengths'].items():
            axis.length = length
        tensor_axes = test['tensor_axes']

        tensor_np = np.array(test['tensor'], dtype='float32')
        tensor = ng.placeholder(tensor_axes)
        expected = np.array(test['expected'], dtype='float32')

        s = test['slice']
        s_axes = test['sliced_axes']

        sliced = ng.Slice(tensor, s, s_axes)
        sliced_val_fun = ex.executor(sliced, tensor)

        num_deriv_fun = ex.numeric_derivative(sliced, tensor, delta)
        # Test backpropagation
        sym_deriv_fun = ex.derivative(sliced, tensor)

        sliced_val = sliced_val_fun(tensor_np)
        assert np.array_equal(sliced_val, expected)

        numeric_deriv = num_deriv_fun(tensor_np)
        sym_deriv = sym_deriv_fun(tensor_np)

        assert np.allclose(numeric_deriv, sym_deriv, rtol=rtol, atol=atol)
示例#10
0
def test_expand_dims(transformer_factory):
    """TODO."""
    C = ng.make_axis(name='C')
    D = ng.make_axis(name='D')
    N = ng.make_axis(name='N')

    max_new_axis_length = 4

    tests = [{
        'tensor': [[2, 5], [13, 5]],
        'tensor_axes': (N, D),
        'tensor_axes_lengths': (2, 2),
        'new_axis': C,
    }, {
        'tensor': 2,
        'tensor_axes': (),
        'tensor_axes_lengths': (),
        'new_axis': D
    }]

    for test in tests:
        for new_axis_length in range(1, max_new_axis_length + 1):
            tensor_axes = test['tensor_axes']
            tensor_axes_lengths = test['tensor_axes_lengths']

            for dim in range(len(tensor_axes) + 1):
                ex = ExecutorFactory()
                for axis, length in zip(tensor_axes, tensor_axes_lengths):
                    axis.length = length

                new_axis = test['new_axis']
                new_axis.length = new_axis_length

                tensor_np = np.array(test['tensor'], dtype=np.float32)
                tensor = ng.placeholder(tensor_axes)

                expanded = ng.ExpandDims(tensor, new_axis, dim)
                expander_fun = ex.executor(expanded, tensor)

                num_deriv_fun = ex.numeric_derivative(expanded, tensor, delta)
                sym_deriv_fun = ex.derivative(expanded, tensor)

                expanded_shape = tensor_np.shape[:dim] \
                    + (new_axis.length,) + tensor_np.shape[dim:]
                expanded_strides = tensor_np.strides[:dim] \
                    + (0,) + tensor_np.strides[dim:]
                expanded_np = np.ndarray(buffer=tensor_np,
                                         shape=expanded_shape,
                                         strides=expanded_strides,
                                         dtype=tensor_np.dtype)

                expanded_result = expander_fun(tensor_np)
                assert np.array_equal(expanded_np, expanded_result)

                # Test backpropagation
                numeric_deriv = num_deriv_fun(tensor_np)
                sym_deriv = sym_deriv_fun(tensor_np)
                assert np.allclose(numeric_deriv,
                                   sym_deriv,
                                   rtol=rtol,
                                   atol=atol)
示例#11
0
def test_padding(transformer_factory):
    """TODO."""
    C = ng.make_axis(name='C')
    D = ng.make_axis(name='D')
    M = ng.make_axis(name='M')
    N = ng.make_axis(name='N')

    tests = [{
        'tensor': [[1, 3], [2, 5]],
        'tensor_axes': (C, D),
        'padding': [(0, 1), (1, 0)],
        'padded_axes': (M, N),
        'axes_lengths': {
            C: 2,
            D: 2,
            M: 3,
            N: 3
        }
    }, {
        'tensor': [[1, 4, 5], [1, 4, 6]],
        'tensor_axes': (C, D),
        'padding': [(0, 1), 1],
        'padded_axes': None,
        'axes_lengths': {
            C: 2,
            D: 3
        }
    }]

    for test in tests:
        ex = ExecutorFactory()
        for axis, length in test['axes_lengths'].items():
            axis.length = length
        tensor_axes = test['tensor_axes']
        tensor_np = np.array(test['tensor'], dtype='float32')
        tensor = ng.placeholder(tensor_axes)
        padding = test['padding']
        padded_axes = test['padded_axes']
        padded = ng.pad(tensor, padding, padded_axes)
        computed_val_fun = ex.executor(padded, tensor)

        # Test backpropagation
        numeric_deriv_fun = ex.numeric_derivative(padded, tensor, delta)
        sym_deriv_fun = ex.derivative(padded, tensor)

        def to_tuple(p):
            """
            TODO.

            Arguments:
              p: TODO

            Returns:

            """
            return (p, p) if isinstance(p, int) else p

        np_padding = tuple(to_tuple(p) for p in padding)
        expected_val = np.pad(tensor_np, np_padding, mode='constant')

        computed_val = computed_val_fun(tensor_np)
        assert np.array_equal(expected_val, computed_val)

        numeric_deriv = numeric_deriv_fun(tensor_np)
        sym_deriv = sym_deriv_fun(tensor_np)

        assert np.allclose(numeric_deriv, sym_deriv, rtol=rtol, atol=atol)
示例#12
0
def test_elementwise_ops_unmatched_args(transformer_factory):
    """TODO."""
    # delta = .001
    N = ng.make_axis(name='N')
    H = ng.make_axis(name='H')
    W = ng.make_axis(name='W')

    W.length = 5
    H.length = 5
    N.length = 32
    sample_axes = [W, H]
    batch_axes = [W, H, N]
    broadcast_dims = (W.length, H.length, 1)

    for np_op, be_op in ELEMENTWISE_BINARY_OPS:
        # Matched sizes
        p_u = ng.placeholder(sample_axes)
        p_v = ng.placeholder(batch_axes)
        u = rng.uniform(1.0, 2.0, p_u.axes)
        v = rng.uniform(1.0, 2.0, p_v.axes)

        # u op v
        uv_np = np_op(u.reshape(broadcast_dims), v)
        uv_op = be_op(p_u, p_v)

        ex = ExecutorFactory()

        # fun(u, v)
        uv_fun = ex.executor(uv_op, p_u, p_v)
        duvdunum_fun = ex.numeric_derivative(uv_op, p_u, .001, p_v)
        duvdut_fun = ex.derivative(uv_op, p_u, p_v)
        duvdvnum_fun = ex.numeric_derivative(uv_op, p_v, .001, p_u)
        duvdvt_fun = ex.derivative(uv_op, p_v, p_u)

        # fun(v, u)
        vu_np = np_op(v, u.reshape(broadcast_dims))
        vu_op = be_op(p_v, p_u)

        vu_fun = ex.executor(vu_op, p_u, p_v)
        dvudunum_fun = ex.numeric_derivative(vu_op, p_u, .001, p_v)
        dvudut_fun = ex.derivative(vu_op, p_u, p_v)
        dvudvnum_fun = ex.numeric_derivative(vu_op, p_v, .001, p_u)
        dvudvt_fun = ex.derivative(vu_op, p_v, p_u)

        # u op v
        result_be = uv_fun(u, v)
        np.testing.assert_allclose(uv_np, result_be, atol=1e-4, rtol=1e-4)
        duvdunum = duvdunum_fun(u, v)
        duvdut = duvdut_fun(u, v)
        np.testing.assert_allclose(duvdunum, duvdut, atol=1e-3, rtol=1e-3)

        duvdvnum = duvdvnum_fun(v, u)
        duvdvt = duvdvt_fun(v, u)
        np.testing.assert_allclose(duvdvnum, duvdvt, atol=1e-3, rtol=1e-3)

        # v op u

        result_be = vu_fun(u, v)
        np.testing.assert_allclose(vu_np, result_be, atol=1e-4, rtol=1e-4)
        dvudunum = dvudunum_fun(u, v)
        dvudut = dvudut_fun(u, v)
        np.testing.assert_allclose(dvudunum, dvudut, atol=1e-3, rtol=1e-3)

        dvudvnum = dvudvnum_fun(v, u)
        dvudvt = dvudvt_fun(v, u)
        np.testing.assert_allclose(dvudvnum, dvudvt, atol=1e-3, rtol=1e-3)