def __call__(self, *input_values: NumericData) -> List[NumericData]: """Run computation on input values and return result.""" input_values = [np.array(input_value) for input_value in input_values] input_shapes = [get_shape(input_value) for input_value in input_values] param_names = [param.friendly_name for param in self.parameters] if self.network_cache.get(str(input_shapes)) is None: capsule = Function.to_capsule(self.function) cnn_network = IENetwork(capsule) if self.function.is_dynamic(): cnn_network.reshape(dict(zip(param_names, input_shapes))) # Convert unsupported inputs of the network _convert_inputs(cnn_network) self.network_cache[str(input_shapes)] = cnn_network else: cnn_network = self.network_cache[str(input_shapes)] executable_network = self.runtime.backend.load_network( cnn_network, self.runtime.backend_name) # Input validation if len(input_values) != len(self.parameters): raise UserInputError("Expected %s parameters, received %s.", len(self.parameters), len(input_values)) for parameter, input in zip(self.parameters, input_values): parameter_shape = parameter.get_output_partial_shape(0) input_shape = PartialShape(input.shape) if len(input.shape) > 0 and not parameter_shape.compatible( input_shape): raise UserInputError( "Provided tensor's shape: %s does not match the expected: %s.", input_shape, parameter_shape, ) request = executable_network.requests[0] request.infer(dict(zip(param_names, input_values))) # Set order of output blobs compatible with nG Function result_buffers = [ self.__get_ie_output_blob_buffer(request.output_blobs, result) for result in self.results ] # Since OV overwrite result data type we have to convert results to the original one. original_dtypes = [ get_dtype(result.get_output_element_type(0)) for result in self.results ] converted_buffers = [ buffer.astype(original_dtype) for buffer, original_dtype in zip(result_buffers, original_dtypes) ] return converted_buffers
def __call__(self, *input_values: NumericData) -> List[NumericData]: """Run computation on input values and return result.""" input_values = [np.array(input_value) for input_value in input_values] input_shapes = [get_shape(input_value) for input_value in input_values] if self.network_cache.get(str(input_shapes)) is None: capsule = Function.to_capsule(self.function) cnn_network = IENetwork(capsule) if self.function.is_dynamic(): param_names = [ param.friendly_name for param in self.parameters ] cnn_network.reshape(dict(zip(param_names, input_shapes))) self.network_cache[str(input_shapes)] = cnn_network else: cnn_network = self.network_cache[str(input_shapes)] executable_network = self.runtime.backend.load_network( cnn_network, self.runtime.backend_name) # Input validation if len(input_values) != len(self.parameters): raise UserInputError("Expected %s parameters, received %s.", len(self.parameters), len(input_values)) for parameter, input in zip(self.parameters, input_values): parameter_shape = parameter.get_output_partial_shape(0) input_shape = PartialShape(input.shape) if len(input.shape) > 0 and not parameter_shape.compatible( input_shape): raise UserInputError( "Provided tensor's shape: %s does not match the expected: %s.", input_shape, parameter_shape, ) request = executable_network.requests[0] request.infer(dict(zip(request._inputs_list, input_values))) return [blob.buffer for blob in request.output_blobs.values()]