示例#1
0
def pltMethods(plumePath, plume, plm, modelStats, saveMethod=True):
    ''' Methods grabbed from postMINX for an individual plume.

    Cycles through imageMethods and numMethods for the MINX retrieved plume,
    has the option to use imageMethods for the model retrieved plume as well.
    Defaults to saveMethod = True to save the images and number methods.

    To view the results without saving, set saveMethod = False and run:
    plt.show()
    Note that this is unadvised as all plots will show up at once.

    To view individual methods, please use postMINX directly.
    '''

    import pandas as pd
    saveDir = os.path.join(currentDir, 'postAltOutputs', plume[7:-4])
    nu.makeDir(saveDir)
    os.chdir(saveDir)
    for im in imageMethods:
        saveName = plume[7:-4] + im + '.png'
        try:
            eval('plm.{}(save={},filename="{}")'.format(
                im, saveMethod, saveName))
            plt.close('all')
        except:
            plt.close('all')
            continue
        print('Save {} success!'.format(saveName))

    # number methods for minx plume only
    numSave = plume[7:-4] + '.txt'
    option = 'filtered_height'
    numList = []
    for nu in numMethods:
        numVal = eval('plm.{}(option="{}")'.format(nu, option))
        numRow = [nu, numVal]
        numList += [numRow]

    numDF = pd.DataFrame(numList, columns=('method', option))
    numDF.to_csv(numSave, sep=',', index=False)

    if modelStats:
        options = ['filtered_height', 'model_height']
        for im in imageMethods:
            try:
                saveName = 'Mod_{}{}.png'.format(plume[7:-4], im)
                eval('plm.{}(save={}, option={}, filename="{}")'.format(
                    im, saveMethod, options, saveName))
                plt.close('all')
                print('Save {} success!'.format(saveName))
            except:
                plt.close('all')
                continue
        numSave = 'Mod_{}.txt'.format(plume[7:-4])
        numList = []
        option1 = 'filtered_height'
        option2 = 'model_height'  # note that this won't actually get the model
        opt2 = plm.Model.height

    os.chdir(currentDir)
示例#2
0
def plotFuels(fuelDir, plmFuels, threshVal, pt, modifier=''):
    ''' Get results by fuel type. '''

    nu.makeDir(fuelDir)
    distRanges = [[0, 10], [10, 30], [30, 60], [60, 500]]
    distDir = os.path.join(fuelDir, 'distances')
    for fuel in plmFuels:
        try:
            plmHeights = plmFuels[fuel]['plmHeights']
            plmModHeights = plmFuels[fuel]['plmModHeights']
            plmDists = plmFuels[fuel]['plmDists']
            plmCount = plmFuels[fuel]['plmCount']
            cleanPlm, cleanMod, cleanDist = clean_inv(plmHeights,
                                                      plmModHeights, plmDists)
            overallImages(plmDists,
                          plmHeights,
                          plmModHeights,
                          saveDir=fuelDir,
                          modifier=modifier + '_fuel{}'.format(fuel))
            saveStatsLite(fuelDir,
                          plmCount,
                          plmHeights,
                          plmModHeights,
                          modifier=modifier + '_fuel{}'.format(fuel))
            for dRange in distRanges:
                try:
                    dPlmHeights, dPlmModHeights, dPlmDists = filterPlmRange(
                        dRange, plmHeights, plmModHeights, plmDists)
                    overallImages(
                        dPlmDists,
                        dPlmHeights,
                        dPlmModHeights,
                        distDir,
                        modifier=modifier +
                        '_{}_dist{}-{}'.format(fuel, dRange[0], dRange[1]))
                    saveStatsLite(
                        distDir,
                        'N/A',
                        dPlmHeights,
                        dPlmModHeights,
                        modifier=modifier +
                        '{}_dist{}-{}'.format(fuel, dRange[0], dRange[1]))
                except:
                    pass
            cleanModPlmRatio = []
            for pInd, (plm, modPlm) in enumerate(zip(cleanPlm, cleanMod)):
                modPlmRatio = modPlm / plm
                cleanModPlmRatio += [modPlmRatio]
            pltDistRatio(cleanDist,
                         cleanModPlmRatio,
                         fuelDir,
                         modifier=modifier + '_fuel{}'.format(fuel))
            pltPlmHeightComp('fuel', fuel, cleanPlm, cleanMod, fuelDir,
                             modifier)
            nu.plotFuelMap(fuelDir,
                           plmOrigins=plmFuels[fuel]['plmXYOrigins'],
                           modifier=modifier + '_{}'.format(fuel))
            print('Fuel {} map plotted'.format(fuel))
        except:
            pass
示例#3
0
def scatter_3D(lons,
               lats,
               calHeights,
               modHeights,
               fireBoundaries,
               savePath=os.getcwd(),
               title='',
               showPlot=showPlot):
    from mpl_toolkits.mplot3d import Axes3D
    import copy

    #fireBoundaries is a polygon
    if os.path.exists(savePath) == False:
        nu.makeDir(savePath)
        print('Adding new save path {}'.format(savePath))
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.autoscale()
    ax.plot(lons, lats, calHeights, 'o', label='CALIOP')
    ax.plot(lons, lats, modHeights, 'o', label='Model')
    x, y = fireBoundaries.exterior.xy
    ax.plot(x, y, color='r', label='FireBound')
    ax.legend()
    ax.set_title(title)
    try:
        plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
    except:
        pass

    if showPlot == True:
        plt.show()
    #name and save the image to png and pkl file
    filename = "".join(title.split())
    filename = '_'.join(filename.split(':'))
    pklfig = copy.copy(fig)
    fig.savefig(os.path.join(savePath, filename + '.png'))
    pklfile = '{}.pkl'.format(filename)
    with open(os.path.join(savePath, pklfile), 'wb') as f:
        pickle.dump(pklfig, f, protocol=2)
    return
示例#4
0
def plotBiomes(biomeDir, plmBiomes, modifier=''):
    ''' Get results by biome. '''

    nu.makeDir(biomeDir)
    for biome in plmBiomes:
        try:
            cleanPlm, cleanMod, cleanDist = clean_inv(
                plmBiomes[biome]['plmHeights'],
                plmBiomes[biome]['plmModHeights'],
                plmBiomes[biome]['plmDists'])
            cleanModPlmRatio = []
            for pInd, (plm, modPlm) in enumerate(zip(cleanPlm, cleanMod)):
                modPlmRatio = modPlm / plm  # is this proper division?
                cleanModPlmRatio += [modPlmRatio]
            pltDistRatio(cleanDist,
                         cleanModPlmRatio,
                         biomeDir,
                         modifier=modifier + '_biome{}'.format(biome))
            pltPlmHeightComp('biome', biome, cleanPlm, cleanMod, biomeDir,
                             modifier)
        except:
            pass
示例#5
0
def plotFSTs(season=season, spcs=spcs, spcsFiles=spcsFiles, outputName = outputName, saveDir=saveDir):
    # print minimum outputs
    rmn.fstopt(rmn.FSTOP_MSGLVL,rmn.FSTOPI_MSG_CATAST)

    mInds = []
    for m in season:
        mInds += [monthList.index(m)]

    if os.path.exists(saveDir) == False:
        nu.makeDir(saveDir)

    for spcInd, nomvar in enumerate(spcs):
        try:
            filename = os.path.join(saveDir, 'output_file_{0}_{1}.fst'.format(outputName, nomvar))
            print('Creating and saving to {}'.format(filename))
            tmp = open(filename, 'w+'); tmp.close()

            output_file = filename
            file_id = rmn.fnom(output_file)
            open_fst = rmn.fstouv(file_id, rmn.FST_RW)
            open_file = spcsFiles[spcInd]
            print "Parameter: " + nomvar
            seaSpcData = get_var(pyg.open(open_file), nomvar, mInds)
            nc_lnsp = pyg.open(lnsp_file)
            pressures = get_pressures(nc_lnsp, mInds)

            timelen, levlen, latlen, lonlen = seaSpcData.shape
            #NOTE: uncomment the following three lines to prep data for basemap use
            #lonShiftSSData = shift_lon(seaSpcData)
            #vertInterpSSData = vert_interp(pressures, lonShiftSSData)
            #meanSSData = np.mean(vertInterpSSData, axis=0)
            #NOTE: uncommment the following four liness to use for fst plotting
            vertInterpSSData = vert_interp(pressures, seaSpcData)
            meanSSData = np.mean(vertInterpSSData, axis=0)  # temp
            for lvl, ray in enumerate(meanSSData):
                meanSSData[lvl] = np.flipud(ray)
            scaleFac = scaleSpcs[allSpcs.index(nomvar)]
            scaledSSData = meanSSData*scaleFac

            #define grid for this file - note that the MACC grid in the file is
            #defined for lons -180 to 180, but the python defGrid_L can't deal
            #with that and defines the grid from 0 to 360 so will have to reorder
            #the MACC fields a bit, or they end up 180 deg out of phase
            # Also necessary to add one more longitude to wrap around
            dlatlon = 360./lonlen   # this is equal to the resolution of the grid

            params0 = {
                    'grtyp' : 'Z',
                    'grref' : 'L',
                    'nj'    : latlen,
                    'ni'    : lonlen,
                    'lat0'  : -90.,
                    'lon0'  : 0.,
                    'dlat'  : dlatlon,
                    'dlon'  : dlatlon
                    }

            MACC_grid= rmn.encodeGrid(params0)
            print("Grids created.")
            print 'Grid Shape:' + str(MACC_grid['shape'])

            # copies the default record
            new_record = rmn.FST_RDE_META_DEFAULT.copy()
            tic_record = rmn.FST_RDE_META_DEFAULT.copy()
            tac_record = rmn.FST_RDE_META_DEFAULT.copy()

            try:
                rmn.writeGrid(file_id, MACC_grid)

                tac = rmn.fstinl(file_id, nomvar='>>')[0]
                tic = rmn.fstinl(file_id, nomvar='^^')[0]

                tic_record.update(rmn.fstprm(tic))
                tac_record.update(rmn.fstprm(tac))

                tic_record.update({'datyp' : rmn.FST_DATYP_LIST['float']})
                tac_record.update({'datyp' : rmn.FST_DATYP_LIST['float']})

                rmn.fsteff(tic)
                rmn.fsteff(tac)

                tic_record.update({'d': MACC_grid['ay']})
                tac_record.update({'d': MACC_grid['ax']})
                toc_record = vgd.vgd_new_pres(const_pressure, ip1=MACC_grid['ig1'], ip2=MACC_grid['ig2'])

                rmn.fstecr(file_id, tic_record)  # write the dictionary record to the file as a new record
                rmn.fstecr(file_id, tac_record)  # write the dictionary record to the file as a new record
                vgd.vgd_write(toc_record, file_id)

            except:
                raise

            for rp1 in xrange(len(const_pressure)):  # writes a record for every level (as a different ip1)
                try:
                    # converts rp1 into a ip1 with pressure kind
                    ip1 = rmn.convertIp(rmn.CONVIP_ENCODE, const_pressure[rp1], rmn.KIND_PRESSURE)
                    new_record.update(MACC_grid)
                    new_record.update({  # Update with specific meta
                        'nomvar': nomvar,
                        'typvar': 'C',
                        'etiket': 'MACCRean',
                        'ni'    : MACC_grid['ni'],
                        'nj'    : MACC_grid['nj'],
                        'ig1'   : tic_record['ip1'],
                        'ig2'   : tic_record['ip2'],
                        'ig3'   : tic_record['ip3'],
                        'ig4'   : tic_record['ig4'],
                        'dateo' : rmn.newdate(rmn.NEWDATE_PRINT2STAMP, 20120101, 0000000),
                        'deet'  : 0,  # Timestep in sec
                        'ip1'   : ip1
                        })

                    #tmp_nparray = np.asfortranarray(monthly_mean[rp1])
                    tmp = scaledSSData[rp1]
                    tmp = np.transpose(tmp)
                    # data array is structured as tmp = monthly_mean[level] where monthly_mean is [level, lat, lon]
                    new_record.update({'d': tmp.astype(np.float32)}) # Updates with data array in the form (lon x lat)

                    print "Defined a new record with dimensions ({0}, {1})".format(new_record['ni'], new_record['nj'])
                    rmn.fstecr(file_id, new_record)  # write the dictionary record to the file as a new record

                except:
                    #rmn.closeall(file_id)
                    rmn.fstfrm(file_id)
                    rmn.fclos(file_id)
                    raise
            rmn.fstfrm(file_id)
            rmn.fclos(file_id)
            print('{} complete~'.format(filename))
        except:
            rmn.fstfrm(file_id)
            rmn.fclos(file_id)
            raise
    print('Finished plotting all FSTs. ')
示例#6
0
def pltPlume(plumePath,
             plume,
             minFRP,
             mod_fire,
             mod_nofire=None,
             threshVal=0,
             startTime=12,
             toSave=savePlumePlts,
             modelStats=True,
             picklePath=picklePath):
    '''
    pltPlume() returns a plume object with FRP, filtered_height, model height, model values(AF at height), and distance from plume origin.

    Additional plotting methods and stats can be turned on by setting toSave=True and modelStats=True.
    See postMINX.py documentation for other parameters.
    '''
    nu.makeDir(picklePath)

    try:
        # check to see if the pickle file exists first
        plm = pickle.load(
            open(os.path.join(picklePath, plume[0:5] + plume[6:-3] + 'pkl'),
                 'rb'))
        if plm['frp'] >= minFRP:
            if toSave == True:
                try:
                    pltMethods(path, plume, plm, modelStats=True)
                except:
                    pass
            return plm
        else:
            #print('{} FRP too low, plume will not be used.'.format(plume))
            return None
    except:
        plm = pm.Plume.from_filename(os.path.join(plumePath, plume))
        if plm['frp'] >= minFRP:
            try:
                plm.get_model(fst_dir=fireDir,
                              ctrl_dir=noFireDir,
                              threshold=threshVal,
                              filestart=startTime)
                plm.save_plume(
                    os.path.join(picklePath,
                                 'Plume_{}.pkl'.format(plume[7:26])))
                print('{} has been pickled.'.format(plume))
                if toSave == True:
                    try:
                        pltMethods(plumePath, plume, plm, modelStats=True)
                    except:
                        pass
                try:
                    return plm
                except:
                    #print('Plume and Model height were not returned.')
                    return None
            except:
                return None
        else:

            print('{} FRP too low, plume will not be used.'.format(plume))
            return None
示例#7
0
import postMINX as pm
import datetime
import niceUtilities as nu

try:
    import cPickle as pickle
except ImportError:
    import pickle
# for now do the september cases

picklePath = "/fs/site2/dev/eccc/aq/r1/eld001/MINX/Working/apr_oct/FW-GM_start00_pklPlmsOps/"
savePklPath = './FW-GM_CAL_start00_pklPlmsOps'
plumeList = os.listdir(picklePath)

septInts = "/fs/site2/dev/eccc/aq/r1/eld001/MINX/CALIOP/intercepts_s20170901_e20170930.p"
nu.makeDir(savePklPath)
septArray = []
for p in  plumeList:
    plm=pickle.load(open(os.path.join(picklePath, p), 'rb'))
    print(plm)
    plmDate =plm['datetime']
    mnth = plmDate.month
    if mnth == 9:
        septArray +=[plm]

firePath = '/fs/site2/dev/eccc/aq/r1/eld001/MINX/CALIOP/intercepts_s20170901_e20170930.p'
fires = pickle.load(open(firePath,'rb'))
firePasses = []
fireBounds = []
keptFires = []
fDays = []
示例#8
0
            plmBandList += 'B'
        else:
            plmBandList += 'R'

# get the FRPS from all of the retrieved firePixels.
# NOTE: did not factor in confidence level here
pwrInd = 5
pixList = os.listdir(pixDir)
pwrs = []
for t in pixList:
    tLines = nu.readFile(os.path.join(pixDir, t))
    for rowInd, row in enumerate(tLines, 4):
        if rowInd < len(tLines):
            pwrs += [nu.toFloats(tLines[rowInd])[pwrInd]]

nu.makeDir(saveDir)
percentiles = [50, 95, 98]
distRanges = [[0, 10], [10, 30], [30, 50], [50, 500]]
distBins = [0, 5, 10, 20, 30, 50, 100]

# pass percentiles as the modifier
for pt in percentiles:
    savePtDir = os.path.join(saveDir, '{}_percentile'.format(pt))
    nu.makeDir(savePtDir)
    biomeDir = os.path.join(savePtDir, 'biomeBreakdown')
    fuelDir = os.path.join(savePtDir, 'fuelBreakdown')
    pwrMin = np.percentile(pwrs, pt)
    print('minFRP: {}'.format(pwrMin))
    plumes, plmHeights, plmModHeights, plmDists, plmBiomes, plmFuels, threshVal = pa.processPlumes(
        plumeDir,
        list(plumeList),