示例#1
0
 def __init__(self,
              model_dir,
              initial_iter=0,
              is_training_action=True,
              **_unused):
     self.initial_iter = initial_iter
     self.file_name_prefix = make_model_name(model_dir)
     # randomly initialise or restoring model
     if is_training_action and initial_iter == 0:
         SESS_STARTED.connect(self.rand_init_model)
     else:
         SESS_STARTED.connect(self.restore_model)
示例#2
0
    def __init__(self,
                 model_dir,
                 save_every_n=0,
                 max_checkpoints=1,
                 is_training_action=True,
                 **_unused):

        self.save_every_n = save_every_n
        self.max_checkpoints = max_checkpoints
        self.file_name_prefix = make_model_name(model_dir)
        self.saver = None

        # initialise the saver after the graph finalised
        SESS_STARTED.connect(self.init_saver)
        # save the training model at a positive frequency
        if self.save_every_n > 0:
            ITER_FINISHED.connect(self.save_model_interval)
        # always save the final training model before exiting
        if is_training_action:
            SESS_FINISHED.connect(self.save_model)