示例#1
0
def test_design_warnings():
    """
    test that warnings are correctly raised upon weird design specification
    """
    condition = ([-25, 20, 36.5], [0, 0, 0], [1, 1, 1])
    frame_times = np.linspace(0, 69, 70)
    hrf_model = 'spm'
    with warnings.catch_warnings(record=True):
        warnings.simplefilter("always")
        with pytest.warns(UserWarning):
            compute_regressor(condition, hrf_model, frame_times)
    condition = ([-25, -25, 36.5], [0, 0, 0], [1, 1, 1])
    with warnings.catch_warnings(record=True):
        warnings.simplefilter("always")
        with pytest.warns(UserWarning):
            compute_regressor(condition, hrf_model, frame_times)
示例#2
0
def test_make_regressor_3():
    """ test the generated regressor
    """
    condition = ([1, 20, 36.5], [2, 2, 2], [1, 1, 1])
    frame_times = np.linspace(0, 138, 70)
    hrf_model = 'fir'
    reg, reg_names = compute_regressor(condition,
                                       hrf_model,
                                       frame_times,
                                       fir_delays=np.arange(4))
    assert_array_equal(np.sum(reg, 0), np.array([3, 3, 3, 3]))
    assert len(reg_names) == 4
    reg_, reg_names_ = compute_regressor(condition,
                                         hrf_model,
                                         frame_times,
                                         fir_delays=np.arange(4),
                                         oversampling=50.)
    assert_array_equal(reg, reg_)
示例#3
0
def test_make_regressor_2():
    """ test the generated regressor
    """
    condition = ([1, 20, 36.5], [0, 0, 0], [1, 1, 1])
    frame_times = np.linspace(0, 69, 70)
    hrf_model = 'spm'
    reg, reg_names = compute_regressor(condition, hrf_model, frame_times)
    assert_almost_equal(reg.sum() * 50, 3, 1)
    assert reg_names[0] == 'cond'
示例#4
0
def _convolve_regressors(events,
                         hrf_model,
                         frame_times,
                         fir_delays=[0],
                         min_onset=-24,
                         oversampling=50):
    """ Creation of  a matrix that comprises
    the convolution of the conditions onset with a certain hrf model

    Parameters
    ----------
    events : DataFrame instance,
        Events data describing the experimental paradigm
        see nistats.experimental_paradigm to check the specification
        for these to be valid paradigm descriptors

    hrf_model : {'spm', 'spm + derivative', 'spm + derivative + dispersion',
        'glover', 'glover + derivative', 'glover + derivative + dispersion',
        'fir', None}
        String that specifies the hemodynamic response function

    frame_times : array of shape (n_scans,)
        The targeted timing for the design matrix.

    fir_delays : array-like of shape (n_onsets,), optional,
        In case of FIR design, yields the array of delays
        used in the FIR model (in scans).

    min_onset : float, optional (default: -24),
        Minimal onset relative to frame_times[0] (in seconds) events
        that start before frame_times[0] + min_onset are not considered.

    oversampling: int optional, default:50,
        Oversampling factor used in temporal convolutions.

    Returns
    -------
    regressor_matrix : array of shape (n_scans, n_regressors),
        Contains the convolved regressors associated with the
        experimental conditions.

    regressor_names : list of strings,
        The regressor names, that depend on the hrf model used
        if 'glover' or 'spm' then this is identical to the input names
        if 'glover + derivative' or 'spm + derivative', a second name is output
            i.e. '#name_derivative'
        if 'spm + derivative + dispersion' or
            'glover + derivative + dispersion',
            a third name is used, i.e. '#name_dispersion'
        if 'fir', the regressos are numbered accoding to '#name_#delay'
    """
    regressor_names = []
    regressor_matrix = None
    trial_type, onset, duration, modulation = check_events(events)
    for condition in np.unique(trial_type):
        condition_mask = (trial_type == condition)
        exp_condition = (onset[condition_mask], duration[condition_mask],
                         modulation[condition_mask])
        reg, names = compute_regressor(exp_condition,
                                       hrf_model,
                                       frame_times,
                                       con_id=condition,
                                       fir_delays=fir_delays,
                                       oversampling=oversampling,
                                       min_onset=min_onset)

        regressor_names += names
        if regressor_matrix is None:
            regressor_matrix = reg
        else:
            regressor_matrix = np.hstack((regressor_matrix, reg))
    return regressor_matrix, regressor_names