def setNodeDatum(cls, node, value): """ Sets the numeric datum value, creating the attribute if not already defined. """ if not cmds.attributeQuery('datum', node=node, exists=True): cmds.addAttr( node, longName='cadence_datum', shortName='datum', niceName='Datum') cmds.setAttr(node + '.datum', value)
def build(cls): prints = cls.getTargets(2) if not prints or len(prints) < 2: return False prev = prints[0] for p in prints[1:]: if not cmds.attributeQuery(cls._PREVIOUS_PRINT_ATTR, node=p, exists=True): cmds.addAttr(longName=cls._PREVIOUS_PRINT_ATTR, attributeType='message') prevs = cls.getPrevious(p) if not prevs or prev not in prevs: cmds.connectAttr(prev + '.message', p + '.' + cls._PREVIOUS_PRINT_ATTR, force=True) prev = p return True
def setNodeLinks(cls, node, prev, next): """ Sets up two attributes, prev and next, that directly link the given node to its previous and next nodes. """ if not cmds.attributeQuery('prevNode', node=node, exists=True): cmds.addAttr( node, longName='cadence_prevNode', shortName='prevNode', dataType='string', niceName='PrevNode') if not cmds.attributeQuery('nextNode', node=node, exists=True): cmds.addAttr( node, longName='cadence_nextNode', shortName='nextNode', dataType='string', niceName='NextNode') if prev: cmds.setAttr(node + '.prevNode', prev, type='string') if next: cmds.setAttr(node + '.nextNode', next, type='string')
def createToken(cls, uid, props, trackSetNode =None): """ A token is created, provided with some additional Maya attributes, and placed in the scene. Tokens are functtionally similar to TrackNodes, but with different shapes and attributes. """ cylinderHeight = 5.0 coneHeight = 10.0 if not trackSetNode: trackSetNode = TrackSceneUtils.getTrackSetNode() if not trackSetNode: return None node = cls.getTrackNode(uid, trackSetNode=trackSetNode) if node: return node # determine whether left or right, and manus or pes, from name name = props['name'] if props else None if not name: print('createToken: No properties specified') return # remove '_proxy' or '_token' if present (as in S6_LP3_proxy) nameFields = cls.decomposeName(name.split('_')[0]) isLeft = nameFields['left'] isPes = nameFields['pes'] # make a cone for the token of an proxy else a cylinder if uid.endswith('_proxy'): node = cmds.polyCone( radius=0.5, height=coneHeight, subdivisionsX=10, subdivisionsY=1, subdivisionsZ=1, axis=(0, 1, 0), createUVs=0, constructionHistory=0, name='Token_0')[0] cmds.move(0, 0.5 * coneHeight, 0) else: node = cmds.polyCylinder( radius=0.5, height=cylinderHeight, subdivisionsX=10, subdivisionsY=1, subdivisionsZ=1, subdivisionsCaps=0, axis=(0, 1, 0), createUVs=0, constructionHistory=0, name='Token_0')[0] cmds.move(0, 0.5 * cylinderHeight, 0) # Set up the basic cadence attributes cmds.addAttr(longName='cadence_dx', shortName='dx', niceName='DX') cmds.addAttr(longName='cadence_dy', shortName='dy', niceName='DY') cmds.addAttr( longName='cadence_uniqueId', shortName='track_uid', dataType='string', niceName='UID') cmds.addAttr( longName='cadence_name', shortName='token_name', dataType='string', niceName='Name') # Disable some transform attributes cmds.setAttr(node + '.rotateX', lock=True) cmds.setAttr(node + '.rotateZ', lock=True) cmds.setAttr(node + '.scaleY', lock=True) cmds.setAttr(node + '.translateY', lock=True) # Scale the cylinder/cone in x and z to represent 'dy' and 'dx' in # centimeters. There is a change of coordinates between Maya (X, Z) and # the simulator (X, Y) space. For example, for the right manus: # x = int(100*float(entry['rm_y'])) # z = int(100*float(entry['rm_x'])) # and likewise for dx and dy. # the DX and DY attributes affect scaleZ and scaleX in the node cmds.connectAttr(node + '.dx', node + '.scaleZ') cmds.connectAttr(node + '.dy', node + '.scaleX') # add a short annotation based on the name annotation = cmds.annotate(node, text=cls.shortName(props['name'])) cmds.select(annotation) aTransform = cmds.pickWalk(direction='up')[0] # control it's position by that of the node, so that it stays 15 cm # above the pes and 10 cm above the manus if isPes: cmds.move(0.0, 15.0, 0.0, aTransform) else: cmds.move(0.0, 10.0, 0.0, aTransform) cmds.connectAttr(node + '.translateX', aTransform + '.translateX') cmds.connectAttr(node + '.translateZ', aTransform + '.translateZ') # and make it non-selectable cmds.setAttr(aTransform + '.overrideEnabled', 1) cmds.setAttr(aTransform + '.overrideDisplayType', 2) cmds.rename(aTransform, "TokenAnnotation_0") if isPes: if isLeft: color = TrackwayShaderConfig.LEFT_PES_TOKEN_COLOR else: color = TrackwayShaderConfig.RIGHT_PES_TOKEN_COLOR else: if isLeft: color = TrackwayShaderConfig.LEFT_MANUS_TOKEN_COLOR else: color = TrackwayShaderConfig.RIGHT_MANUS_TOKEN_COLOR ShadingUtils.applyShader(color, node) cmds.select(node) # add the new node to the Cadence track set cmds.sets(node, add=trackSetNode) # finally, initialize all the properties from the dictionary props cls.setTokenProps(node, props) return node
def createTrackNode(cls, uid, trackSetNode =None, props =None): """ A track node consists of a triangular pointer (left = red, right = green) which is selectable but only allows rotateY, translateX, and translateZ. The node has a child, a transform called inverter, which serves to counteract the scaling in x and z that is applied to the triangular node. There are two orthogonal rulers (width and length). Width and length uncertainty is represented by rectangular bars at the ends of the rulers. In Maya one can directly adjust track position (translateX and translateZ) and orientation (rotationY); other attributes are adjusted only through the UI. """ if not trackSetNode: trackSetNode = TrackSceneUtils.getTrackSetNode() if not trackSetNode: return None node = cls.getTrackNode(uid, trackSetNode=trackSetNode) if node: return node # Set up dimensional constants for the track node nodeThickness = 1.0 thetaBreadth = 0.1 thetaThickness = 0.5 barBreadth = 2.0 barThickness = 0.5 rulerBreadth = 1.0 rulerThickness = 0.25 epsilon = 1.0 # Create an isoceles triangle pointer, with base aligned with X, and # scaled by node.width. The midpoint of the base is centered on the # 'track center' and the altitude extends from that center of the track # 'anteriorly' to the perimeter of the track's profile (if present, else # estimated). The node is scaled longitudinally (in z) based on the # distance zN (the 'anterior' length of the track, in cm). The triangle # is initially 1 cm on a side. sideLength = 1.0 node = cmds.polyPrism( length=nodeThickness, sideLength=sideLength, numberOfSides=3, subdivisionsHeight=1, subdivisionsCaps=0, axis=(0, 1, 0), createUVs=0, constructionHistory=0, name='Track0')[0] # Point the triangle down the +Z axis cmds.rotate(0.0, -90.0, 0.0) # push it down below ground level so that the two rulers are just # submerged, and scale the triangle in Z to match its width (1 cm) so it # is ready to be scaled cmds.move(0, -(nodeThickness/2.0 + rulerThickness), math.sqrt(3.0)/6.0) # move the node's pivot to the 'base' of the triangle so it scales # outward from that point cmds.move( 0, 0, 0, node + ".scalePivot", node + ".rotatePivot", absolute=True) cmds.scale(2.0/math.sqrt(3.0), 1.0, 100.0) cmds.makeIdentity( apply=True, translate=True, rotate=True, scale=True, normal=False) # Set up the cadence attributes cmds.addAttr( longName='cadence_width', shortName=TrackPropEnum.WIDTH.maya, niceName='Width') cmds.addAttr( longName='cadence_widthUncertainty', shortName=TrackPropEnum.WIDTH_UNCERTAINTY.maya, niceName='Width Uncertainty') cmds.addAttr( longName='cadence_length', shortName=TrackPropEnum.LENGTH.maya, niceName='Length') cmds.addAttr( longName='cadence_lengthUncertainty', shortName=TrackPropEnum.LENGTH_UNCERTAINTY.maya, niceName='Length Uncertainty') cmds.addAttr( longName='cadence_lengthRatio', shortName=TrackPropEnum.LENGTH_RATIO.maya, niceName='Length Ratio') cmds.addAttr( longName='cadence_rotationUncertainty', shortName=TrackPropEnum.ROTATION_UNCERTAINTY.maya, niceName='Rotation Uncertainty') cmds.addAttr( longName='cadence_uniqueId', shortName=TrackPropEnum.UID.maya, dataType='string', niceName='Unique ID') # Construct a ruler representing track width, then push it down just # below ground level, and ake it non-selectable. Drive its scale by the # node's width attribute. widthRuler = cmds.polyCube( axis=(0, 1, 0), width=100.0, height=rulerThickness, depth=rulerBreadth, subdivisionsX=1, subdivisionsY=1, createUVs=0, constructionHistory=0, name='WidthRuler')[0] # Push it down to just rest on the triangular node (which is already # submerged by the thickness of the ruler and half the node thickness. cmds.move(0.0, -rulerThickness/2.0, 0.0) cmds.setAttr(widthRuler + '.overrideEnabled', 1) cmds.setAttr(widthRuler + '.overrideDisplayType', 2) # Construct a ruler representing track length and push it down the same # as the width ruler, and make it non-selectable. Its length will be # driven by the node's length attribute. lengthRuler = cmds.polyCube( axis=(0, 1, 0), width=rulerBreadth, height=rulerThickness, depth=100.0, subdivisionsX=1, subdivisionsY=1, createUVs=0, constructionHistory=0, name='LengthRuler')[0] cmds.move(0.0, -rulerThickness/2.0, 0.0) cmds.setAttr(lengthRuler + '.overrideEnabled', 1) cmds.setAttr(lengthRuler + '.overrideDisplayType', 2) # Now construct 'error bars' to the North, South, West, and East of the # node, to visualize uncertainty in width (West and East bars) and # length (North and South bars), and push them just below ground level, # and make them non-selectable. barN = cmds.polyCube( axis=(0,1,0), width=barBreadth, height=barThickness, depth=100.0, subdivisionsX=1, subdivisionsY=1, createUVs=0, constructionHistory=0, name='BarN')[0] cmds.move(0, -(barThickness/2 + rulerThickness), 0) cmds.setAttr(barN + '.overrideEnabled', 1) cmds.setAttr(barN + '.overrideDisplayType', 2) barS = cmds.polyCube( axis=(0, 1, 0), width=barBreadth, height=barThickness, depth=100.0, subdivisionsX=1, subdivisionsY=1, createUVs=0, constructionHistory=0, name='BarS')[0] cmds.move(0, -(barThickness/2 + rulerThickness), 0) cmds.setAttr(barS + '.overrideEnabled', 1) cmds.setAttr(barS + '.overrideDisplayType', 2) barW = cmds.polyCube( axis=(0, 1, 0), width=100.0, height=barThickness, depth=barBreadth, subdivisionsX=1, subdivisionsY=1, createUVs=0, constructionHistory=0, name='BarW')[0] cmds.move(0, -(barThickness/2 + rulerThickness), 0) cmds.setAttr(barW + '.overrideEnabled', 1) cmds.setAttr(barW + '.overrideDisplayType', 2) barE = cmds.polyCube( axis=(0, 1, 0), width=100.0, height=barThickness, depth=barBreadth, subdivisionsX=1, subdivisionsY=1, createUVs=0, constructionHistory=0, name='BarE')[0] cmds.move(0, -(barThickness/2 + rulerThickness), 0) cmds.setAttr(barE + '.overrideEnabled', 1) cmds.setAttr(barE + '.overrideDisplayType', 2) # Create two diverging lines that indicate rotation uncertainty (plus # and minus), with their pivots placed so they extend from the node # center, and each is made non-selectable. First make the indicator of # maximum (counterclockwise) estimated track rotation thetaPlus = cmds.polyCube( axis=(0, 1, 0), width=thetaBreadth, height=thetaThickness, depth=1.0, subdivisionsX=1, subdivisionsY=1, createUVs=0, constructionHistory=0, name='ThetaPlus')[0] cmds.setAttr(thetaPlus + '.overrideEnabled', 1) cmds.setAttr(thetaPlus + '.overrideDisplayType', 2) # Next, construct the indicator of the minimum (clockwise) estimate of # track rotation thetaMinus = cmds.polyCube( axis=(0, 1, 0), width=thetaBreadth, height=thetaThickness, depth=1.0, subdivisionsX=1, subdivisionsY=1, createUVs=0, constructionHistory=0, name='ThetaMinus')[0] cmds.setAttr(thetaMinus + '.overrideEnabled', 1) cmds.setAttr(thetaMinus + '.overrideDisplayType', 2) # The two width 'error bars' will be translated outward from the node # center. First, the width attribute is converted from meters (as it # comes from the database) to centimeters; the computation is available # in the output of the node 'width'. width = cmds.createNode('multiplyDivide', name='width') cmds.setAttr(width + '.operation', 1) cmds.setAttr(width + '.input1X', 100.0) cmds.connectAttr( node + '.' + TrackPropEnum.WIDTH.maya, width + '.input2X') # Translate barW in x by width/2.0; output is in xW.outputX xW = cmds.createNode('multiplyDivide', name = 'xW') cmds.setAttr(xW + '.operation', 2) cmds.connectAttr(width + '.outputX', xW + '.input1X') cmds.setAttr(xW + '.input2X', 2.0) cmds.connectAttr(xW + '.outputX', barW + '.translateX') # Translate barE in x by -width/2.0; output is in xE.outputX xE = cmds.createNode('multiplyDivide', name = 'xE') cmds.setAttr(xE + '.operation', 2) # division operation cmds.connectAttr(width + '.outputX', xE + '.input1X') cmds.setAttr(xE + '.input2X', -2.0) cmds.connectAttr(xE + '.outputX', barE + '.translateX') # Now regarding length, first convert the node.length attribute from # meters to centimeters. This computation is available in the output of # the node 'length' length = cmds.createNode('multiplyDivide', name='length') cmds.setAttr(length + '.operation', 1) cmds.setAttr(length + '.input1X', 100.0) cmds.connectAttr( node + '.' + TrackPropEnum.LENGTH.maya, length + '.input2X') # scale thetaPlus and thetaMinus by length (since they are 1 cm, # multiply by length in cm) cmds.connectAttr(length + '.outputX', thetaPlus + '.scaleZ') cmds.connectAttr(length + '.outputX', thetaMinus + '.scaleZ') # Then barN is translated forward in z by zN = lengthRatio*length # (centimeters) zN = cmds.createNode('multiplyDivide', name='zN') cmds.setAttr(zN + '.operation', 1) cmds.connectAttr( node + '.' + TrackPropEnum.LENGTH_RATIO.maya, zN + '.input1X') cmds.connectAttr(length + '.outputX', zN + '.input2X') cmds.connectAttr(zN + '.outputX', barN + '.translateZ') # Next, translate barS backward in z by (zN - length); output is in # zS.output1D zS = cmds.createNode('plusMinusAverage', name='sZ') cmds.setAttr(zS + '.operation', 2) cmds.connectAttr(zN + '.outputX', zS + '.input1D[0]') cmds.connectAttr(length + '.outputX', zS + '.input1D[1]') cmds.connectAttr(zS + '.output1D', barS + '.translateZ') # Next, compute the half length, hl = length/2.0 (centimeters) hl = cmds.createNode('multiplyDivide', name='hl') cmds.setAttr(hl + '.operation', 2) cmds.connectAttr(length + '.outputX', hl + '.input1X') cmds.setAttr(hl + '.input2X', 2.0) # Translate lengthRuler along z by zL = (zN - hl) (centimeters) zL = cmds.createNode('plusMinusAverage', name='zL') cmds.setAttr(zL + '.operation', 2) cmds.connectAttr(zN + '.outputX', zL + '.input1D[0]') cmds.connectAttr(hl + '.outputX', zL + '.input1D[1]') cmds.connectAttr(zL + '.output1D', lengthRuler + '.translateZ') # Scale the four 'error bars' to represent the width and length # uncertainties (centimeters) cmds.connectAttr( node + "." + TrackPropEnum.WIDTH_UNCERTAINTY.maya, barW + '.scaleX') cmds.connectAttr( node + "." + TrackPropEnum.WIDTH_UNCERTAINTY.maya, barE + '.scaleX') cmds.connectAttr( node + "." + TrackPropEnum.LENGTH_UNCERTAINTY.maya, barN + '.scaleZ') cmds.connectAttr( node + "." + TrackPropEnum.LENGTH_UNCERTAINTY.maya, barS + '.scaleZ') # Create an 'inverter' transform under which all the other parts are # hung as children, which counteracts scaling applied to its parent # triangular node. inverter = cmds.createNode('transform', name='inverter') # drive the inverter's .scaleX and .scaleZ as the inverse of the parent # node's scale values sx = cmds.createNode('multiplyDivide', name='sx') cmds.setAttr(sx + '.operation', 2) cmds.setAttr(sx + '.input1X', 1.0) cmds.connectAttr(node + '.scaleX', sx + '.input2X') cmds.connectAttr(sx + '.outputX', inverter + '.scaleX') sz = cmds.createNode('multiplyDivide', name='sz') cmds.setAttr(sz + '.operation', 2) cmds.setAttr(sz + '.input1X', 1.0) cmds.connectAttr(node + '.scaleZ', sz + '.input2X') cmds.connectAttr(sz + '.outputX', inverter + '.scaleZ') # Assemble the parts as children under the scale inverter node cmds.parent(lengthRuler, inverter) cmds.parent(widthRuler, inverter) cmds.parent(barN, inverter) cmds.parent(barS, inverter) cmds.parent(barW, inverter) cmds.parent(barE, inverter) cmds.parent(thetaPlus, inverter) cmds.parent(thetaMinus, inverter) cmds.parent(inverter, node) # Rotate thetaPlus and thetaMinus about the Y axis to indicate # rotational uncertainty cmds.connectAttr( node + '.' + TrackPropEnum.ROTATION_UNCERTAINTY.maya, node + '|' + inverter + '|' + thetaPlus + '.rotateY') neg = cmds.createNode('multiplyDivide', name='negative') cmds.setAttr(neg + '.operation', 1) cmds.setAttr(neg + '.input1X', -1.0) cmds.connectAttr( node + '.' + TrackPropEnum.ROTATION_UNCERTAINTY.maya, neg + '.input2X') cmds.connectAttr( neg + '.outputX', node + '|' + inverter + '|' + thetaMinus + '.rotateY') # Disable some transforms of the node cmds.setAttr(node + '.rotateX', lock=True) cmds.setAttr(node + '.rotateZ', lock=True) cmds.setAttr(node + '.scaleY', lock=True) cmds.setAttr(node + '.translateY', lock=True) # Now, the width of the triangle will be driven by its width attribute # (driving .scaleX) cmds.connectAttr(node + '.width', node + '.scaleX') # The quantity zN is used to scale length of the triangle cmds.connectAttr(zN + '.outputX', node + '.scaleZ') # Scale the 'length' (in x) of the width ruler cmds.connectAttr( node + '.width', node + '|' + inverter + '|WidthRuler.scaleX') # Scale the length of the length ruler cmds.connectAttr( node + '.length', node + '|' + inverter + '|LengthRuler.scaleZ') # Translate the track node epsilon below ground level (to reveal the # overlaid track siteMap) cmds.move(0, -epsilon, 0, node) # Initialize all the properties from the dictionary if props: cls.setTrackProps(node, props) else: print('in createTrackNode: properties not provided') return node # Add the new nodeName to the Cadence track scene set, color it, and # we're done cmds.sets(node, add=trackSetNode) cls.colorTrackNode(node, props) return node
def buildScene(self): """Doc...""" groupItems = [] hinds = [] fores = [] for c in self._data.getChannelsByKind(ChannelsEnum.POSITION): isHind = c.target in [TargetsEnum.LEFT_HIND, TargetsEnum.RIGHT_HIND] radius = 20 if isHind else 15 res = cmds.polySphere(radius=radius, name=c.target) groupItems.append(res[0]) if isHind: hinds.append(res[0]) else: fores.append(res[0]) if c.target == TargetsEnum.LEFT_HIND: self._leftHind = res[0] elif c.target == TargetsEnum.RIGHT_HIND: self._rightHind = res[0] elif c.target == TargetsEnum.RIGHT_FORE: self._rightFore = res[0] elif c.target == TargetsEnum.LEFT_FORE: self._leftFore = res[0] for k in c.keys: frames = [ ['translateX', k.value.x, k.inTangentMaya[0], k.outTangentMaya[0]], ['translateY', k.value.y, k.inTangentMaya[1], k.outTangentMaya[1]], ['translateZ', k.value.z, k.inTangentMaya[2], k.outTangentMaya[2]] ] for f in frames: cmds.setKeyframe( res[0], attribute=f[0], time=k.time, value=f[1], inTangentType=f[2], outTangentType=f[3] ) if k.event == 'land': printResult = cmds.polyCylinder( name=c.target + '_print1', radius=radius, height=(1.0 if isHind else 5.0) ) cmds.move(k.value.x, k.value.y, k.value.z, printResult[0]) groupItems.append(printResult[0]) cfg = self._data.configs name = 'cyc' + str(int(cfg.get(GaitConfigEnum.CYCLES))) + \ '_ph' + str(int(cfg.get(GaitConfigEnum.PHASE))) + \ '_gad' + str(int(cfg.get(SkeletonConfigEnum.FORE_OFFSET).z)) + \ '_step' + str(int(cfg.get(SkeletonConfigEnum.STRIDE_LENGTH))) cube = cmds.polyCube(name='pelvic_reference', width=20, height=20, depth=20) self._hips = cube[0] groupItems.append(cube[0]) cmds.move(0, 100, 0, cube[0]) backLength = self._data.configs.get(SkeletonConfigEnum.FORE_OFFSET).z - \ self._data.configs.get(SkeletonConfigEnum.HIND_OFFSET).z cube2 = cmds.polyCube(name='pectoral_comparator', width=15, height=15, depth=15) cmds.move(0, 115, backLength, cube2[0]) cmds.parent(cube2[0], cube[0], absolute=True) cmds.expression( string="%s.translateZ = 0.5*abs(%s.translateZ - %s.translateZ) + min(%s.translateZ, %s.translateZ)" % (cube[0], hinds[0], hinds[1], hinds[0], hinds[1]) ) cube = cmds.polyCube(name='pectoral_reference', width=15, height=15, depth=15) self._pecs = cube[0] groupItems.append(cube[0]) cmds.move(0, 100, 0, cube[0]) cmds.expression( string="%s.translateZ = 0.5*abs(%s.translateZ - %s.translateZ) + min(%s.translateZ, %s.translateZ)" % (cube[0], fores[0], fores[1], fores[0], fores[1]) ) self._group = cmds.group(*groupItems, world=True, name=name) cfg = self._data.configs info = 'Gait Phase: ' + \ str(cfg.get(GaitConfigEnum.PHASE)) + \ '\nGleno-Acetabular Distance (GAD): ' + \ str(cfg.get(SkeletonConfigEnum.FORE_OFFSET).z) + \ '\nStep Length: ' + \ str(cfg.get(SkeletonConfigEnum.STRIDE_LENGTH)) + \ '\nHind Duty Factor: ' + \ str(cfg.get(GaitConfigEnum.DUTY_FACTOR_HIND)) + \ '\nFore Duty Factor: ' + \ str(cfg.get(GaitConfigEnum.DUTY_FACTOR_FORE)) + \ '\nCycles: ' + \ str(cfg.get(GaitConfigEnum.CYCLES)) cmds.select(self._group) if not cmds.attributeQuery('notes', node=self._group, exists=True): cmds.addAttr(longName='notes', dataType='string') cmds.setAttr(self._group + '.notes', info, type='string') self.createShaders() self.createRenderEnvironment() minTime = min(0, int(cmds.playbackOptions(query=True, minTime=True))) deltaTime = cfg.get(GeneralConfigEnum.STOP_TIME) - cfg.get(GeneralConfigEnum.START_TIME) maxTime = max( int(float(cfg.get(GaitConfigEnum.CYCLES))*float(deltaTime)), int(cmds.playbackOptions(query=True, maxTime=True)) ) cmds.playbackOptions( minTime=minTime, animationStartTime=minTime, maxTime= maxTime, animationEndTime=maxTime ) cmds.currentTime(0, update=True) cmds.select(self._group)
def _handleSetup(self): #----Set up dictionary for later use. Numbers are creation order from my modeling (important for NURBS naming)- direction = {"Left":2, "Middle":1, "Right":3} BLINK_LENGTH =6 EYE_TARGET_LOW_BOUND = -11.038498 EYE_TARGET_UPPER_BOUND = 16.118241 EYE_START_POS = 137 #----Add attrs for each eyelid for dir in direction: #------Put in "blink" attributes on the eye target------ cmds.select("eyeTargets") #---Add the attribute "blink" for each eye onto the target cmds.addAttr(ln="blink"+dir, at="double", min=0, max=6, dv=0 ) cmds.setAttr("eyeTargets.blink"+dir, keyable=True) #----Key the blinks---- cmds.select("eyelid"+dir, r=True) cmds.select("makeNurbSphere"+str(direction[dir]), addFirst=True) #---Make sure the eyelid is in the correct start position---- cmds.setAttr("makeNurbSphere"+str(direction[dir])+".startSweep", 10) cmds.setAttr("makeNurbSphere"+str(direction[dir])+".endSweep", 300) #---Set init key cmds.setDrivenKeyframe("makeNurbSphere"+str(direction[dir])+".startSweep", cd="eyeTargets.blink"+dir) cmds.setDrivenKeyframe("makeNurbSphere"+str(direction[dir])+".endSweep", cd="eyeTargets.blink"+dir) #----Clear selection and move driver for next key cmds.select(cl=True) cmds.setAttr("eyeTargets.blink"+dir, BLINK_LENGTH) #~~~move eyelid cmds.setAttr("makeNurbSphere"+str(direction[dir])+".startSweep", 0) cmds.setAttr("makeNurbSphere"+str(direction[dir])+".endSweep", 360) #---Set key cmds.setDrivenKeyframe("makeNurbSphere"+str(direction[dir])+".startSweep", cd="eyeTargets.blink"+dir) cmds.setDrivenKeyframe("makeNurbSphere"+str(direction[dir])+".endSweep", cd="eyeTargets.blink"+dir) #---reset our blink value, so it starts back at 0 once we set up cmds.setAttr("eyeTargets.blink"+dir, 0) #----Key the eyelid movement---- #---Set key cmds.setAttr("eyeTargets.translateY", EYE_START_POS) cmds.setDrivenKeyframe("makeNurbSphere"+str(direction[dir])+".startSweep", cd="eyeTargets.translateY") cmds.setDrivenKeyframe("makeNurbSphere"+str(direction[dir])+".endSweep", cd="eyeTargets.translateY") #~~~Move eye target down cmds.setAttr("eyeTargets.translateY", EYE_START_POS+EYE_TARGET_LOW_BOUND) #---adjust eyelid sweep cmds.setAttr("makeNurbSphere"+str(direction[dir])+".startSweep", 35) cmds.setAttr("makeNurbSphere"+str(direction[dir])+".endSweep", 340) #---Set key cmds.setDrivenKeyframe("makeNurbSphere"+str(direction[dir])+".startSweep", cd="eyeTargets.translateY") cmds.setDrivenKeyframe("makeNurbSphere"+str(direction[dir])+".endSweep", cd="eyeTargets.translateY") #------ #----- #~~~~Move Eye target up cmds.setAttr("eyeTargets.translateY", EYE_START_POS+EYE_TARGET_UPPER_BOUND) #---adjust eyelid sweep cmds.setAttr("makeNurbSphere"+str(direction[dir])+".startSweep", -20) cmds.setAttr("makeNurbSphere"+str(direction[dir])+".endSweep", 260) #---Set key cmds.setDrivenKeyframe("makeNurbSphere"+str(direction[dir])+".startSweep", cd="eyeTargets.translateY") cmds.setDrivenKeyframe("makeNurbSphere"+str(direction[dir])+".endSweep", cd="eyeTargets.translateY") #------Reset target cmds.setAttr("eyeTargets.translateY", EYE_START_POS)
def _handleSetup(self): #----Set up dictionary for later use. Numbers are creation order from my modeling (important for NURBS naming)- direction = {"Left": 2, "Middle": 1, "Right": 3} BLINK_LENGTH = 6 EYE_TARGET_LOW_BOUND = -11.038498 EYE_TARGET_UPPER_BOUND = 16.118241 EYE_START_POS = 137 #----Add attrs for each eyelid for dir in direction: #------Put in "blink" attributes on the eye target------ cmds.select("eyeTargets") #---Add the attribute "blink" for each eye onto the target cmds.addAttr(ln="blink" + dir, at="double", min=0, max=6, dv=0) cmds.setAttr("eyeTargets.blink" + dir, keyable=True) #----Key the blinks---- cmds.select("eyelid" + dir, r=True) cmds.select("makeNurbSphere" + str(direction[dir]), addFirst=True) #---Make sure the eyelid is in the correct start position---- cmds.setAttr( "makeNurbSphere" + str(direction[dir]) + ".startSweep", 10) cmds.setAttr("makeNurbSphere" + str(direction[dir]) + ".endSweep", 300) #---Set init key cmds.setDrivenKeyframe("makeNurbSphere" + str(direction[dir]) + ".startSweep", cd="eyeTargets.blink" + dir) cmds.setDrivenKeyframe("makeNurbSphere" + str(direction[dir]) + ".endSweep", cd="eyeTargets.blink" + dir) #----Clear selection and move driver for next key cmds.select(cl=True) cmds.setAttr("eyeTargets.blink" + dir, BLINK_LENGTH) #~~~move eyelid cmds.setAttr( "makeNurbSphere" + str(direction[dir]) + ".startSweep", 0) cmds.setAttr("makeNurbSphere" + str(direction[dir]) + ".endSweep", 360) #---Set key cmds.setDrivenKeyframe("makeNurbSphere" + str(direction[dir]) + ".startSweep", cd="eyeTargets.blink" + dir) cmds.setDrivenKeyframe("makeNurbSphere" + str(direction[dir]) + ".endSweep", cd="eyeTargets.blink" + dir) #---reset our blink value, so it starts back at 0 once we set up cmds.setAttr("eyeTargets.blink" + dir, 0) #----Key the eyelid movement---- #---Set key cmds.setAttr("eyeTargets.translateY", EYE_START_POS) cmds.setDrivenKeyframe("makeNurbSphere" + str(direction[dir]) + ".startSweep", cd="eyeTargets.translateY") cmds.setDrivenKeyframe("makeNurbSphere" + str(direction[dir]) + ".endSweep", cd="eyeTargets.translateY") #~~~Move eye target down cmds.setAttr("eyeTargets.translateY", EYE_START_POS + EYE_TARGET_LOW_BOUND) #---adjust eyelid sweep cmds.setAttr( "makeNurbSphere" + str(direction[dir]) + ".startSweep", 35) cmds.setAttr("makeNurbSphere" + str(direction[dir]) + ".endSweep", 340) #---Set key cmds.setDrivenKeyframe("makeNurbSphere" + str(direction[dir]) + ".startSweep", cd="eyeTargets.translateY") cmds.setDrivenKeyframe("makeNurbSphere" + str(direction[dir]) + ".endSweep", cd="eyeTargets.translateY") #------ #----- #~~~~Move Eye target up cmds.setAttr("eyeTargets.translateY", EYE_START_POS + EYE_TARGET_UPPER_BOUND) #---adjust eyelid sweep cmds.setAttr( "makeNurbSphere" + str(direction[dir]) + ".startSweep", -20) cmds.setAttr("makeNurbSphere" + str(direction[dir]) + ".endSweep", 260) #---Set key cmds.setDrivenKeyframe("makeNurbSphere" + str(direction[dir]) + ".startSweep", cd="eyeTargets.translateY") cmds.setDrivenKeyframe("makeNurbSphere" + str(direction[dir]) + ".endSweep", cd="eyeTargets.translateY") #------Reset target cmds.setAttr("eyeTargets.translateY", EYE_START_POS)