def seg_norm(self, in_prefix=''): def_tpms = np.zeros((3,1), dtype=np.object) spm_path = spm_info.spm_path def_tpms[0] = pjoin(spm_path, 'tpm', 'grey.nii'), def_tpms[1] = pjoin(spm_path, 'tpm', 'white.nii'), def_tpms[2] = pjoin(spm_path, 'tpm', 'csf.nii') data = np.zeros((1,), dtype=object) data[0] = self.data_def['anatomical'] sninfo = make_job('spatial', 'preproc', { 'data': data, 'output':{ 'GM':fltcols([0,0,1]), 'WM':fltcols([0,0,1]), 'CSF':fltcols([0,0,0]), 'biascor':1.0, 'cleanup':False, }, 'opts':{ 'tpm':def_tpms, 'ngaus':fltcols([2,2,2,4]), 'regtype':'mni', 'warpreg':1.0, 'warpco':25.0, 'biasreg':0.0001, 'biasfwhm':60.0, 'samp':3.0, 'msk':np.array([], dtype=object), } }) run_jobdef(sninfo) return in_prefix
def segnorm(data_def): def_tpms = np.zeros((3,1), dtype=np.object) spm_path = spm_info.spm_path def_tpms[0] = pjoin(spm_path, 'tpm', 'grey.nii'), def_tpms[1] = pjoin(spm_path, 'tpm', 'white.nii'), def_tpms[2] = pjoin(spm_path, 'tpm', 'csf.nii') data = np.zeros((1,), dtype=object) data[0] = data_def['anatomical'] sninfo = make_job('spatial', 'preproc', { 'data': data, 'output':{ 'GM':fltcols([0,0,1]), 'WM':fltcols([0,0,1]), 'CSF':fltcols([0,0,0]), 'biascor':1.0, 'cleanup':False, }, 'opts':{ 'tpm':def_tpms, 'ngaus':fltcols([2,2,2,4]), 'regtype':'mni', 'warpreg':1.0, 'warpco':25.0, 'biasreg':0.0001, 'biasfwhm':60.0, 'samp':3.0, 'msk':np.array([], dtype=object), } }) run_jobdef(sninfo)
def seg_norm(self, in_prefix=""): def_tpms = np.zeros((3, 1), dtype=np.object) spm_path = spm_info.spm_path def_tpms[0] = (pjoin(spm_path, "tpm", "grey.nii"),) def_tpms[1] = (pjoin(spm_path, "tpm", "white.nii"),) def_tpms[2] = pjoin(spm_path, "tpm", "csf.nii") data = np.zeros((1,), dtype=object) data[0] = self.data_def["anatomical"] sninfo = make_job( "spatial", "preproc", { "data": data, "output": { "GM": fltcols([0, 0, 1]), "WM": fltcols([0, 0, 1]), "CSF": fltcols([0, 0, 0]), "biascor": 1.0, "cleanup": False, }, "opts": { "tpm": def_tpms, "ngaus": fltcols([2, 2, 2, 4]), "regtype": "mni", "warpreg": 1.0, "warpco": 25.0, "biasreg": 0.0001, "biasfwhm": 60.0, "samp": 3.0, "msk": np.array([], dtype=object), }, }, ) run_jobdef(sninfo) return in_prefix
def norm_write(self, in_prefix='', out_prefix='w'): sess_scans = scans_for_fnames( fnames_presuffix(self.data_def['functionals'], in_prefix)) matname = fname_presuffix(self.data_def['anatomical'], suffix='_seg_sn.mat', use_ext=False) subj = { 'matname': np.zeros((1,), dtype=object), 'resample': np.vstack(sess_scans.flat), } subj['matname'][0] = matname roptions = { 'preserve':False, 'bb':np.array([[-78,-112, -50],[78,76,85.0]]), 'vox':fltcols([2.0,2.0,2.0]), 'interp':1.0, 'wrap':[0.0,0.0,0.0], 'prefix': out_prefix, } nwinfo = make_job('spatial', 'normalise', [{ 'write':{ 'subj': subj, 'roptions': roptions, } }]) run_jobdef(nwinfo) # knock out the list of images, replacing with only one subj['resample'] = np.zeros((1,), dtype=object) subj['resample'][0] = self.data_def['anatomical'] roptions['interp'] = 4.0 run_jobdef(nwinfo) return out_prefix + in_prefix
def norm_write(data_def): sess_scans = scans_for_fnames(fnames_presuffix(data_def['functionals'], 'a')) matname = fname_presuffix(data_def['anatomical'], suffix='_seg_sn.mat', use_ext=False) subj = { 'matname': np.zeros((1,), dtype=object), 'resample': np.vstack(sess_scans.flat), } subj['matname'][0] = matname roptions = { 'preserve':False, 'bb':np.array([[-78,-112, -50],[78,76,85.0]]), 'vox':fltcols([2.0,2.0,2.0]), 'interp':1.0, 'wrap':[0.0,0.0,0.0], } nwinfo = make_job('spatial', 'normalise', [{ 'write':{ 'subj': subj, 'roptions': roptions, } }]) run_jobdef(nwinfo) # knock out the list of images, replacing with only one subj['resample'] = np.zeros((1,), dtype=object) subj['resample'][0] = data_def['anatomical'] roptions['interp'] = 4.0 run_jobdef(nwinfo)
def norm_write(self, in_prefix="", out_prefix="w"): sess_scans = scans_for_fnames(fnames_presuffix(self.data_def["functionals"], in_prefix)) matname = fname_presuffix(self.data_def["anatomical"], suffix="_seg_sn.mat", use_ext=False) subj = {"matname": np.zeros((1,), dtype=object), "resample": np.vstack(sess_scans.flat)} subj["matname"][0] = matname roptions = { "preserve": False, "bb": np.array([[-78, -112, -50], [78, 76, 85.0]]), "vox": fltcols([2.0, 2.0, 2.0]), "interp": 1.0, "wrap": [0.0, 0.0, 0.0], "prefix": out_prefix, } nwinfo = make_job("spatial", "normalise", [{"write": {"subj": subj, "roptions": roptions}}]) run_jobdef(nwinfo) # knock out the list of images, replacing with only one subj["resample"] = np.zeros((1,), dtype=object) subj["resample"][0] = self.data_def["anatomical"] roptions["interp"] = 4.0 run_jobdef(nwinfo) return out_prefix + in_prefix