示例#1
0
def hmc_afni(name='fMRI_HMC_afni', st_correct=False):
    """A head motion correction (HMC) workflow for functional scans"""

    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(
        fields=['in_file', 'fd_radius', 'start_idx', 'stop_idx']),
                        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(fields=['out_file', 'out_movpar']),
        name='outputnode')

    drop_trs = pe.Node(afp.Calc(expr='a', outputtype='NIFTI_GZ'),
                       name='drop_trs')
    deoblique = pe.Node(afp.Refit(deoblique=True), name='deoblique')
    reorient = pe.Node(afp.Resample(orientation='RPI', outputtype='NIFTI_GZ'),
                       name='reorient')
    get_mean_RPI = pe.Node(afp.TStat(options='-mean', outputtype='NIFTI_GZ'),
                           name='get_mean_RPI')

    # calculate hmc parameters
    hmc = pe.Node(afp.Volreg(args='-Fourier -twopass',
                             zpad=4,
                             outputtype='NIFTI_GZ'),
                  name='motion_correct')

    get_mean_motion = get_mean_RPI.clone('get_mean_motion')
    hmc_A = hmc.clone('motion_correct_A')
    hmc_A.inputs.md1d_file = 'max_displacement.1D'

    movpar = pe.Node(niu.Function(function=fd_jenkinson,
                                  input_names=['in_file', 'rmax'],
                                  output_names=['out_file']),
                     name='Mat2Movpar')

    workflow.connect([(inputnode, drop_trs, [('in_file', 'in_file_a'),
                                             ('start_idx', 'start_idx'),
                                             ('stop_idx', 'stop_idx')]),
                      (inputnode, movpar, [('fd_radius', 'rmax')]),
                      (deoblique, reorient, [('out_file', 'in_file')]),
                      (reorient, get_mean_RPI, [('out_file', 'in_file')]),
                      (reorient, hmc, [('out_file', 'in_file')]),
                      (get_mean_RPI, hmc, [('out_file', 'basefile')]),
                      (hmc, get_mean_motion, [('out_file', 'in_file')]),
                      (reorient, hmc_A, [('out_file', 'in_file')]),
                      (get_mean_motion, hmc_A, [('out_file', 'basefile')]),
                      (hmc_A, outputnode, [('out_file', 'out_file')]),
                      (hmc_A, movpar, [('oned_matrix_save', 'in_file')]),
                      (movpar, outputnode, [('out_file', 'out_movpar')])])

    if st_correct:
        st_corr = pe.Node(afp.TShift(outputtype='NIFTI_GZ'), name='TimeShifts')
        workflow.connect([(drop_trs, st_corr, [('out_file', 'in_file')]),
                          (st_corr, deoblique, [('out_file', 'in_file')])])
    else:
        workflow.connect([(drop_trs, deoblique, [('out_file', 'in_file')])])

    return workflow
def mri_reorient_wf(name='ReorientWorkflow'):
    """A workflow to reorient images to 'RPI' orientation"""
    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(fields=['in_file']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=['out_file']),
                         name='outputnode')

    deoblique = pe.Node(afp.Refit(deoblique=True), name='deoblique')
    reorient = pe.Node(afp.Resample(orientation='RPI', outputtype='NIFTI_GZ'),
                       name='reorient')
    workflow.connect([(inputnode, deoblique, [('in_file', 'in_file')]),
                      (deoblique, reorient, [('out_file', 'in_file')]),
                      (reorient, outputnode, [('out_file', 'out_file')])])
    return workflow
示例#3
0
def anatomical_reorient_workflow(workflow, resource_pool, config):

    # resource pool should have:
    #     anatomical_scan

    import os
    import sys

    import nipype.interfaces.io as nio
    import nipype.pipeline.engine as pe

    import nipype.interfaces.utility as util
    import nipype.interfaces.fsl.maths as fsl

    from nipype.interfaces.afni import preprocess

    from workflow_utils import check_input_resources

    check_input_resources(resource_pool, "anatomical_scan")

    anat_deoblique = pe.Node(interface=preprocess.Refit(),
                             name='anat_deoblique')

    anat_deoblique.inputs.in_file = resource_pool["anatomical_scan"]
    anat_deoblique.inputs.deoblique = True

    anat_reorient = pe.Node(interface=preprocess.Resample(),
                            name='anat_reorient')

    anat_reorient.inputs.orientation = 'RPI'
    anat_reorient.inputs.outputtype = 'NIFTI_GZ'

    workflow.connect(anat_deoblique, 'out_file', anat_reorient, 'in_file')

    resource_pool["anatomical_reorient"] = (anat_reorient, 'out_file')

    return workflow, resource_pool
示例#4
0
def create_bo_func_preproc(slice_timing_correction = False, wf_name = 'bo_func_preproc'):
    """
    
    The main purpose of this workflow is to process functional data. Raw rest file is deobliqued and reoriented 
    into RPI. Then take the mean intensity values over all time points for each voxel and use this image 
    to calculate motion parameters. The image is then skullstripped, normalized and a processed mask is 
    obtained to use it further in Image analysis.
    
    Parameters
    ----------
    
    slice_timing_correction : boolean
        Slice timing Correction option
    wf_name : string
        Workflow name
    
    Returns 
    -------
    func_preproc : workflow object
        Functional Preprocessing workflow object
    
    Notes
    -----
    
    `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/func_preproc/func_preproc.py>`_
    
    Workflow Inputs::
    
        inputspec.rest : func/rest file or a list of func/rest nifti file 
            User input functional(T2) Image, in any of the 8 orientations
            
        inputspec.start_idx : string 
            Starting volume/slice of the functional image (optional)
            
        inputspec.stop_idx : string
            Last volume/slice of the functional image (optional)
            
        scan_params.tr : string
            Subject TR
        
        scan_params.acquistion : string
            Acquisition pattern (interleaved/sequential, ascending/descending)
    
        scan_params.ref_slice : integer
            Reference slice for slice timing correction
            
    Workflow Outputs::
    
        outputspec.drop_tr : string (nifti file)
            Path to Output image with the initial few slices dropped
          
        outputspec.slice_time_corrected : string (nifti file)
            Path to Slice time corrected image
          
        outputspec.refit : string (nifti file)
            Path to deobliqued anatomical data 
        
        outputspec.reorient : string (nifti file)
            Path to RPI oriented anatomical data 
        
        outputspec.motion_correct_ref : string (nifti file)
             Path to Mean intensity Motion corrected image 
             (base reference image for the second motion correction run)
        
        outputspec.motion_correct : string (nifti file)
            Path to motion corrected output file
        
        outputspec.max_displacement : string (Mat file)
            Path to maximum displacement (in mm) for brain voxels in each volume
        
        outputspec.movement_parameters : string (Mat file)
            Path to 1D file containing six movement/motion parameters(3 Translation, 3 Rotations) 
            in different columns (roll pitch yaw dS  dL  dP)
        
        outputspec.skullstrip : string (nifti file)
            Path to skull stripped Motion Corrected Image 
        
        outputspec.mask : string (nifti file)
            Path to brain-only mask
            
        outputspec.example_func : string (nifti file)
            Mean, Skull Stripped, Motion Corrected output T2 Image path
            (Image with mean intensity values across voxels) 
        
        outputpsec.preprocessed : string (nifti file)
            output skull stripped, motion corrected T2 image 
            with normalized intensity values 

        outputspec.preprocessed_mask : string (nifti file)
           Mask obtained from normalized preprocessed image
           
    
    Order of commands:
    
    - Get the start and the end volume index of the functional run. If not defined by the user, return the first and last volume.
    
        get_idx(in_files, stop_idx, start_idx)
        
    - Dropping the initial TRs. For details see `3dcalc <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dcalc.html>`_::
        
        3dcalc -a rest.nii.gz[4..299] 
               -expr 'a' 
               -prefix rest_3dc.nii.gz
               
    - Slice timing correction. For details see `3dshift <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTshift.html>`_::
    
        3dTshift -TR 2.1s 
                 -slice 18 
                 -tpattern alt+z 
                 -prefix rest_3dc_shift.nii.gz rest_3dc.nii.gz

    - Deobliqing the scans.  For details see `3drefit <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3drefit.html>`_::
    
        3drefit -deoblique rest_3dc.nii.gz
        
    - Re-orienting the Image into Right-to-Left Posterior-to-Anterior Inferior-to-Superior (RPI) orientation. For details see `3dresample <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dresample.html>`_::
    
        3dresample -orient RPI 
                   -prefix rest_3dc_RPI.nii.gz 
                   -inset rest_3dc.nii.gz
        
    - Calculate voxel wise statistics. Get the RPI Image with mean intensity values over all timepoints for each voxel. For details see `3dTstat <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTstat.html>`_::
    
        3dTstat -mean 
                -prefix rest_3dc_RPI_3dT.nii.gz 
                rest_3dc_RPI.nii.gz
    
    - Motion Correction. For details see `3dvolreg <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dvolreg.html>`_::  
       
        3dvolreg -Fourier 
                 -twopass 
                 -base rest_3dc_RPI_3dT.nii.gz/
                 -zpad 4 
                 -maxdisp1D rest_3dc_RPI_3dvmd1D.1D 
                 -1Dfile rest_3dc_RPI_3dv1D.1D 
                 -prefix rest_3dc_RPI_3dv.nii.gz 
                 rest_3dc_RPI.nii.gz
                 
      The base image or the reference image is the mean intensity RPI image obtained in the above the step.For each volume 
      in RPI-oriented T2 image, the command, aligns the image with the base mean image and calculates the motion, displacement 
      and movement parameters. It also outputs the aligned 4D volume and movement and displacement parameters for each volume.
                 
    - Calculate voxel wise statistics. Get the motion corrected output Image from the above step, with mean intensity values over all timepoints for each voxel. 
      For details see `3dTstat <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTstat.html>`_::
    
        3dTstat -mean 
                -prefix rest_3dc_RPI_3dv_3dT.nii.gz 
                rest_3dc_RPI_3dv.nii.gz
    
    - Motion Correction and get motion, movement and displacement parameters. For details see `3dvolreg <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dvolreg.html>`_::   

        3dvolreg -Fourier 
                 -twopass 
                 -base rest_3dc_RPI_3dv_3dT.nii.gz 
                 -zpad 4 
                 -maxdisp1D rest_3dc_RPI_3dvmd1D.1D 
                 -1Dfile rest_3dc_RPI_3dv1D.1D 
                 -prefix rest_3dc_RPI_3dv.nii.gz 
                 rest_3dc_RPI.nii.gz
        
      The base image or the reference image is the mean intensity motion corrected image obtained from the above the step (first 3dvolreg run). 
      For each volume in RPI-oriented T2 image, the command, aligns the image with the base mean image and calculates the motion, displacement 
      and movement parameters. It also outputs the aligned 4D volume and movement and displacement parameters for each volume.
    
    - Unwarp the motion corrected using a regularized B0 field map that is in RPI space, one of the outputs from the calib_preproc using FSL FUGUE
    
    	fugue --nocheck=on 
		-i rest_3dc_RPI_3dv.nii.gz 
		--loadfmap=cal_reg_bo_RPI 
		--unwarpdir=x 
		--dwell=1 
		-u rest_3dc_RPI_3dv_unwarped.nii.gz
    
    
    - Create a  brain-only mask. For details see `3dautomask <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dAutomask.html>`_::
    
        3dAutomask  
                   -prefix rest_3dc_RPI_3dv_unwarped_automask.nii.gz 
                   rest_3dc_RPI_3dv_unwarped.nii.gz

    - Edge Detect(remove skull) and get the brain only. For details see `3dcalc <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dcalc.html>`_::
    
        3dcalc -a rest_3dc_RPI_3dv_unwarped.nii.gz 
               -b rest_3dc_RPI_3dv_unwarped_automask.nii.gz 
               -expr 'a*b' 
               -prefix rest_3dc_RPI_3dv_unwarped_3dc.nii.gz
    
    - Normalizing the image intensity values. For details see `fslmaths <http://www.fmrib.ox.ac.uk/fsl/avwutils/index.html>`_::
      
        fslmaths rest_3dc_RPI_3dv_unwarped_3dc.nii.gz 
                 -ing 10000 rest_3dc_RPI_3dv_unwarped_3dc_maths.nii.gz 
                 -odt float
                 
      Normalized intensity = (TrueValue*10000)/global4Dmean
                 
    - Calculate mean of skull stripped image. For details see `3dTstat <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTstat.html>`_::
        
        3dTstat -mean -prefix rest_3dc_RPI_3dv_unwarped_3dc_3dT.nii.gz rest_3dc_RPI_3dv_unwarped_3dc.nii.gz
        
    - Create Mask (Generate mask from Normalized data). For details see `fslmaths <http://www.fmrib.ox.ac.uk/fsl/avwutils/index.html>`_::
        
        fslmaths rest_3dc_RPI_3dv_unwarped_3dc_maths.nii.gz 
               -Tmin -bin rest_3dc_RPI_3dv_unwarped_3dc_maths_maths.nii.gz 
               -odt char

    High Level Workflow Graph:
    
    .. image:: ../images/func_preproc.dot.png
       :width: 1000
    
    
    Detailed Workflow Graph:
    
    .. image:: ../images/func_preproc_detailed.dot.png
       :width: 1000

    Examples
    --------
    
    >>> from func_preproc import *
    >>> preproc = create_func_preproc(slice_timing_correction=True)
    >>> preproc.inputs.inputspec.func='sub1/func/rest.nii.gz'
    >>> preproc.inputs.scan_params.TR = '2.0'
    >>> preproc.inputs.scan_params.ref_slice = 19
    >>> preproc.inputs.scan_params.acquisition = 'alt+z2'
    >>> preproc.run() #doctest: +SKIP


    >>> from func_preproc import *
    >>> preproc = create_func_preproc(slice_timing_correction=False)
    >>> preproc.inputs.inputspec.func='sub1/func/rest.nii.gz'
    >>> preproc.inputs.inputspec.start_idx = 4
    >>> preproc.inputs.inputspec.stop_idx = 250
    >>> preproc.run() #doctest: +SKIP
    
    """

    preproc = pe.Workflow(name=wf_name)
    inputNode = pe.Node(util.IdentityInterface(fields=['rest',
						       'calib_reg_bo_RPI',
                                                       'start_idx',
                                                       'stop_idx']),
                        name='inputspec')
    
    scan_params = pe.Node(util.IdentityInterface(fields=['tr',
                                                         'acquisition',
                                                         'ref_slice']),
                          name = 'scan_params')

    outputNode = pe.Node(util.IdentityInterface(fields=['drop_tr',
                                                        'refit',
                                                        'reorient',
                                                        'reorient_mean',
                                                        'motion_correct',
                                                        'motion_correct_ref',
                                                        'movement_parameters',
                                                        'max_displacement',
                                                        'bo_unwarped',
                                                        'mask',
							'mask_preunwarp',
                                                        'skullstrip',
                                                        'example_func',
                                                        'preprocessed',
                                                        'preprocessed_mask',
                                                        'slice_time_corrected']),

                          name='outputspec')

    func_get_idx = pe.Node(util.Function(input_names=['in_files', 
                                                      'stop_idx', 
                                                      'start_idx'],
                               output_names=['stopidx', 
                                             'startidx'],
                 function=get_idx), name='func_get_idx')
    
    preproc.connect(inputNode, 'rest',
                    func_get_idx, 'in_files')
		    		    
    preproc.connect(inputNode, 'start_idx',
                    func_get_idx, 'start_idx')
    preproc.connect(inputNode, 'stop_idx',
                    func_get_idx, 'stop_idx')
    
    
    func_drop_trs = pe.Node(interface=preprocess.Calc(),
                           name='func_drop_trs')
    func_drop_trs.inputs.expr = 'a'
    func_drop_trs.inputs.outputtype = 'NIFTI_GZ'
    
    preproc.connect(inputNode, 'rest',
                    func_drop_trs, 'in_file_a')
    preproc.connect(func_get_idx, 'startidx',
                    func_drop_trs, 'start_idx')
    preproc.connect(func_get_idx, 'stopidx',
                    func_drop_trs, 'stop_idx')
    
    preproc.connect(func_drop_trs, 'out_file',
                    outputNode, 'drop_tr')
    
    
    func_slice_timing_correction = pe.Node(interface=preprocess.TShift(),
                                           name = 'func_slice_timing_correction')
    func_slice_timing_correction.inputs.outputtype = 'NIFTI_GZ'
    
    func_deoblique = pe.Node(interface=preprocess.Refit(),
                            name='func_deoblique')
    func_deoblique.inputs.deoblique = True
    
    
    if slice_timing_correction:
        preproc.connect(func_drop_trs, 'out_file',
                        func_slice_timing_correction,'in_file')
        preproc.connect(scan_params, 'tr',
                        func_slice_timing_correction, 'tr')
        preproc.connect(scan_params, 'acquisition',
                        func_slice_timing_correction, 'tpattern')
        preproc.connect(scan_params, 'ref_slice',
                        func_slice_timing_correction, 'tslice')
        
        preproc.connect(func_slice_timing_correction, 'out_file',
                        func_deoblique, 'in_file')
        
        preproc.connect(func_slice_timing_correction, 'out_file',
                        outputNode, 'slice_time_corrected')
    else:
        preproc.connect(func_drop_trs, 'out_file',
                        func_deoblique, 'in_file')
    
    preproc.connect(func_deoblique, 'out_file',
                    outputNode, 'refit')

    func_reorient = pe.Node(interface=preprocess.Resample(),
                               name='func_reorient')
    func_reorient.inputs.orientation = 'RPI'
    func_reorient.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_deoblique, 'out_file',
                    func_reorient, 'in_file')
    
    preproc.connect(func_reorient, 'out_file',
                    outputNode, 'reorient')
    
    func_get_mean_RPI = pe.Node(interface=preprocess.TStat(),
                            name='func_get_mean_RPI')
    func_get_mean_RPI.inputs.options = '-mean'
    func_get_mean_RPI.inputs.outputtype = 'NIFTI_GZ'
    
    preproc.connect(func_reorient, 'out_file',
                    func_get_mean_RPI, 'in_file')
        
    #calculate motion parameters
    func_motion_correct = pe.Node(interface=preprocess.Volreg(),
                             name='func_motion_correct')
    func_motion_correct.inputs.args = '-Fourier -twopass'
    func_motion_correct.inputs.zpad = 4
    func_motion_correct.inputs.outputtype = 'NIFTI_GZ'
    
    preproc.connect(func_reorient, 'out_file',
                    func_motion_correct, 'in_file')
    preproc.connect(func_get_mean_RPI, 'out_file',
                    func_motion_correct, 'basefile')

    
    func_get_mean_motion = func_get_mean_RPI.clone('func_get_mean_motion')
    preproc.connect(func_motion_correct, 'out_file',
                    func_get_mean_motion, 'in_file')
    
    preproc.connect(func_get_mean_motion, 'out_file',
                    outputNode, 'motion_correct_ref')
    
    
    func_motion_correct_A = func_motion_correct.clone('func_motion_correct_A')
    func_motion_correct_A.inputs.md1d_file = 'max_displacement.1D'
    
    preproc.connect(func_reorient, 'out_file',
                    func_motion_correct_A, 'in_file')
    preproc.connect(func_get_mean_motion, 'out_file',
                    func_motion_correct_A, 'basefile')
    
    
    
    
    
    preproc.connect(func_motion_correct_A, 'out_file',
                    outputNode, 'motion_correct')
    preproc.connect(func_motion_correct_A, 'md1d_file',
                    outputNode, 'max_displacement')
    preproc.connect(func_motion_correct_A, 'oned_file',
                    outputNode, 'movement_parameters')


    
    func_get_brain_mask = pe.Node(interface=preprocess.Automask(),
                               name='func_get_brain_mask')
#    func_get_brain_mask.inputs.dilate = 1
    func_get_brain_mask.inputs.outputtype = 'NIFTI_GZ'

#-------------------------

    func_bo_unwarp = pe.Node(interface=fsl.FUGUE(),name='bo_unwarp')
    #func_bo_unwarp.inputs.in_file='lfo_mc'
    func_bo_unwarp.inputs.args='--nocheck=on'
    #func_bo_unwarp.inputs.fmap_in_file='calib'
    func_bo_unwarp.inputs.dwell_time=1.0
    func_bo_unwarp.inputs.unwarp_direction='x'
    
    preproc.connect(inputNode, 'calib_reg_bo_RPI',
                    func_bo_unwarp, 'fmap_in_file')
    
        
    preproc.connect(func_motion_correct_A, 'out_file',
                    func_bo_unwarp, 'in_file')
    
    preproc.connect(func_bo_unwarp, 'unwarped_file',
                    outputNode, 'bo_unwarped')
    
    
    preproc.connect(func_bo_unwarp, 'unwarped_file',
                    func_get_brain_mask, 'in_file')
    

#--------------------------

    preproc.connect(func_get_brain_mask, 'out_file',
                    outputNode, 'mask')
        
#------------ ALSO give the example_func_preunwarp

    func_get_brain_mask_A = func_get_brain_mask.clone('func_get_brain_mask_A')
    
    preproc.connect(func_motion_correct_A, 'out_file',
                    func_get_brain_mask_A, 'in_file')
    	    
    preproc.connect(func_get_brain_mask_A, 'out_file',
                    outputNode, 'mask_preunwarp')
    
    
    
    
    
    
    
    func_edge_detect = pe.Node(interface=preprocess.Calc(),
                            name='func_edge_detect')
    func_edge_detect.inputs.expr = 'a*b'
    func_edge_detect.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_bo_unwarp, 'unwarped_file',
                    func_edge_detect, 'in_file_a')
    preproc.connect(func_get_brain_mask, 'out_file',
                    func_edge_detect, 'in_file_b')

    preproc.connect(func_edge_detect, 'out_file',
                    outputNode, 'skullstrip')

    
    func_mean_skullstrip = pe.Node(interface=preprocess.TStat(),
                           name='func_mean_skullstrip')
    func_mean_skullstrip.inputs.options = '-mean'
    func_mean_skullstrip.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_edge_detect, 'out_file',
                    func_mean_skullstrip, 'in_file')
    
    preproc.connect(func_mean_skullstrip, 'out_file',
                    outputNode, 'example_func')
    
    
    func_normalize = pe.Node(interface=fsl.ImageMaths(),
                            name='func_normalize')
    func_normalize.inputs.op_string = '-ing 10000'
    func_normalize.inputs.out_data_type = 'float'

    preproc.connect(func_edge_detect, 'out_file',
                    func_normalize, 'in_file')
    
    preproc.connect(func_normalize, 'out_file',
                    outputNode, 'preprocessed')
    
    
    func_mask_normalize = pe.Node(interface=fsl.ImageMaths(),
                           name='func_mask_normalize')
    func_mask_normalize.inputs.op_string = '-Tmin -bin'
    func_mask_normalize.inputs.out_data_type = 'char'

    preproc.connect(func_normalize, 'out_file',
                    func_mask_normalize, 'in_file')
    
    preproc.connect(func_mask_normalize, 'out_file',
                    outputNode, 'preprocessed_mask')

    return preproc
def anatomical_reorient_workflow(workflow, resource_pool, config, name="_"):
    """Build a Nipype workflow to deoblique and reorient an anatomical scan
    from a NIFTI file.

    - This is a seminal workflow that can only take an input directly from
      disk (i.e. no Nipype workflow connections/pointers, and this is where
      the pipeline will actually begin). For the sake of building the
      pipeine in reverse, if this workflow is called when there is no input
      file available, this function will return the unmodified workflow and
      resource pool directly back.
    - In conjunction with the other workflow-building functions, if this
      function returns the workflow and resource pool unmodified, each
      function up will do the same until it reaches the top level, allowing
      the pipeline builder to continue "searching" for a base-level input
      without crashing at this one.

    Expected Resources in Resource Pool
      - anatomical_scan: The raw anatomical scan in a NIFTI image.

    New Resources Added to Resource Pool
      - anatomical_reorient: The deobliqued, reoriented anatomical scan.

    Workflow Steps
      1. AFNI's 3drefit to deoblique the anatomical scan.
      2. AFNI's 3dresample to reorient the deobliqued anatomical scan to RPI.

    :type workflow: Nipype workflow object
    :param workflow: A Nipype workflow object which can already contain other
                     connected nodes; this function will insert the following
                     workflow into this one provided.
    :type resource_pool: dict
    :param resource_pool: A dictionary defining input files and pointers to
                          Nipype node outputs / workflow connections; the keys
                          are the resource names.
    :type config: dict
    :param config: A dictionary defining the configuration settings for the
                   workflow, such as directory paths or toggled options.
    :type name: str
    :param name: (default: "_") A string to append to the end of each node
                 name.
    :rtype: Nipype workflow object
    :return: The Nipype workflow originally provided, but with this function's
              sub-workflow connected into it.
    :rtype: dict
    :return: The resource pool originally provided, but updated (if
             applicable) with the newest outputs and connections.
    """

    import nipype.pipeline.engine as pe
    from nipype.interfaces.afni import preprocess

    if "anatomical_scan" not in resource_pool.keys():
        return workflow, resource_pool

    anat_deoblique = pe.Node(interface=preprocess.Refit(),
                                name='anat_deoblique%s' % name)

    anat_deoblique.inputs.in_file = resource_pool["anatomical_scan"]
    anat_deoblique.inputs.deoblique = True

    anat_reorient = pe.Node(interface=preprocess.Resample(),
                            name='anat_reorient%s' % name)

    anat_reorient.inputs.orientation = 'RPI'
    anat_reorient.inputs.outputtype = 'NIFTI_GZ'

    workflow.connect(anat_deoblique, 'out_file', anat_reorient, 'in_file')

    resource_pool["anatomical_reorient"] = (anat_reorient, 'out_file')

    return workflow, resource_pool
示例#6
0
def func_motion_correct_workflow(workflow, resource_pool, config):

    # resource pool should have:
    #     functional_scan

    import os
    import sys

    import nipype.interfaces.io as nio
    import nipype.pipeline.engine as pe

    import nipype.interfaces.utility as util
    import nipype.interfaces.fsl.maths as fsl

    from nipype.interfaces.afni import preprocess

    from workflow_utils import check_input_resources, \
                               check_config_settings

    check_input_resources(resource_pool, "functional_scan")
    check_config_settings(config, "start_idx")
    check_config_settings(config, "stop_idx")
    check_config_settings(config, "slice_timing_correction")

    func_get_idx = pe.Node(util.Function(
        input_names=['in_files', 'stop_idx', 'start_idx'],
        output_names=['stopidx', 'startidx'],
        function=get_idx),
                           name='func_get_idx')

    func_get_idx.inputs.in_files = resource_pool["functional_scan"]
    func_get_idx.inputs.start_idx = config["start_idx"]
    func_get_idx.inputs.stop_idx = config["stop_idx"]

    func_drop_trs = pe.Node(interface=preprocess.Calc(), name='func_drop_trs')

    func_drop_trs.inputs.in_file_a = resource_pool["functional_scan"]
    func_drop_trs.inputs.expr = 'a'
    func_drop_trs.inputs.outputtype = 'NIFTI_GZ'

    workflow.connect(func_get_idx, 'startidx', func_drop_trs, 'start_idx')

    workflow.connect(func_get_idx, 'stopidx', func_drop_trs, 'stop_idx')

    #workflow.connect(func_drop_trs, 'out_file',
    #                outputNode, 'drop_tr')

    func_slice_timing_correction = pe.Node(interface=preprocess.TShift(),
                                           name='func_slice_time_correction')

    func_slice_timing_correction.inputs.outputtype = 'NIFTI_GZ'

    func_deoblique = pe.Node(interface=preprocess.Refit(),
                             name='func_deoblique')

    func_deoblique.inputs.deoblique = True

    if config["slice_timing_correction"] == True:

        workflow.connect(func_drop_trs, 'out_file',
                         func_slice_timing_correction, 'in_file')

        workflow.connect(func_slice_timing_correction, 'out_file',
                         func_deoblique, 'in_file')

    else:

        workflow.connect(func_drop_trs, 'out_file', func_deoblique, 'in_file')

    func_reorient = pe.Node(interface=preprocess.Resample(),
                            name='func_reorient')
    func_reorient.inputs.orientation = 'RPI'
    func_reorient.inputs.outputtype = 'NIFTI_GZ'

    workflow.connect(func_deoblique, 'out_file', func_reorient, 'in_file')

    func_get_mean_RPI = pe.Node(interface=preprocess.TStat(),
                                name='func_get_mean_RPI')
    func_get_mean_RPI.inputs.options = '-mean'
    func_get_mean_RPI.inputs.outputtype = 'NIFTI_GZ'

    workflow.connect(func_reorient, 'out_file', func_get_mean_RPI, 'in_file')

    # calculate motion parameters
    func_motion_correct = pe.Node(interface=preprocess.Volreg(),
                                  name='func_motion_correct')

    func_motion_correct.inputs.args = '-Fourier -twopass'
    func_motion_correct.inputs.zpad = 4
    func_motion_correct.inputs.outputtype = 'NIFTI_GZ'

    workflow.connect(func_reorient, 'out_file', func_motion_correct, 'in_file')

    workflow.connect(func_get_mean_RPI, 'out_file', func_motion_correct,
                     'basefile')

    func_get_mean_motion = func_get_mean_RPI.clone('func_get_mean_motion')

    workflow.connect(func_motion_correct, 'out_file', func_get_mean_motion,
                     'in_file')

    func_motion_correct_A = func_motion_correct.clone('func_motion_correct_A')
    func_motion_correct_A.inputs.md1d_file = 'max_displacement.1D'

    workflow.connect(func_reorient, 'out_file', func_motion_correct_A,
                     'in_file')

    workflow.connect(func_get_mean_motion, 'out_file', func_motion_correct_A,
                     'basefile')

    resource_pool["func_motion_correct"] = (func_motion_correct_A, 'out_file')
    resource_pool["coordinate_transformation"] = \
        (func_motion_correct_A, 'oned_matrix_save')

    return workflow, resource_pool
示例#7
0
def create_calib_preproc(wf_name='calib_preproc'):
    """
    
    The main purpose of this workflow is to process functional data. Raw rest file is deobliqued and reoriented 
    into RPI. Then take the mean intensity values over all time points for each voxel and use this image 
    to calculate motion parameters. The image is then skullstripped, normalized and a processed mask is 
    obtained to use it further in Image analysis.
    
    Parameters
    ----------
    
    wf_name : string
        Workflow name
    
    Returns 
    -------
    calib_preproc : workflow object
        Functional Preprocessing workflow object
    
    Notes
    -----
    
    
    Workflow Inputs::
    
        inputspec.bo_name : cal_bo nifti filepath 
            B0 field map from CBI calibration scan

        inputspec.rho_name : cal_rho nifti filepath 
            spin density image CBI calibration scan

        inputspec.rs_name : cal_rs nifti filepath 
            R2* image CBI calibration scan

        inputspec.reg_bo_name : regularized cal_bo nifti filepath 
            smoothed B0 field map from CBI calibration scan for unwarping
            
        inputspec.echo_spacing : string - default 30
            Echo Time in units of echo spacing
            
        inputspec.readout_dir : string - default 1
            Last volume/slice of the functional image (optional)

        inputspec.synth_name : cal_synth nifti NAME only MUST end in '.nii.gz' - default cal_synth.nii.gz
            synthetic image simulation the  conditions of B0 dropout and other epi distortions

            
    Workflow Outputs::
    
        outputspec.cal_bo_RPI : string (nifti file)
            deobliqued reoriented B0 field map from CBI calibration scan
          
        outputspec.cal_rho_RPI : string (nifti file) 
            deobliqued reoriented spin density image CBI calibration scan

        outputspec.cal_rs_RPI : string (nifti file) 
            deobliqued reoriented R2* image CBI calibration scan

        outputspec.cal_reg_bo_RPI : regularized cal_bo nifti filepath 
            deobliqued reoriented smoothed B0 field map from CBI calibration scan for unwarping

        outputspec.cal_synth_RPI : string (nifti file) 
            deobliqued reoriented synthetic image


    Order of commands:
    
	1. Deoblique bo image
	2. Deoblique rho Image
	3. Deoblique rs image
	4. Use 1,2,3 in cbiCalibSynthEPI program with TE=30, readout_dir=1 and cal_synth as defaults
	
	5. Reorient to RPI, 1,2,3 and output
	6. Reorient to RPI 4 and output
	7. Deoblique cal_reg_bo image
	8. Reorient 7 and output
	
    High Level Workflow Graph:
    
    .. image:: ../images/calib_preproc.dot.png
       :width: 1000
    
    
    Detailed Workflow Graph:
    
    .. image:: ../images/calib_preproc_detailed.dot.png
       :width: 1000

    Examples
    --------
    
    >>> from calib_preproc import *
    >>> preproc = create_calib_preproc()
    >>> preproc.inputs.inputspec.bo_name='/sam/wave1/sub4974/calib_1/cal_bo.nii.gz'
    >>> preproc.inputs.inputspec.rho_name='/sam/wave1/sub4974/calib_1/cal_rho.nii.gz'
    >>> preproc.inputs.inputspec.rs_name='/sam/wave1/sub4974/calib_1/cal_rs.nii.gz'
    >>> preproc.inputs.inputspec.reg_bo_name='/sam/wave1/sub4974/calib_1/cal_reg_bo.nii.gz'
    >>> preproc.base_dir='./'
    >>> preproc.run()
    
    >>> from calib_preproc import *
    >>> preproc = create_calib_preproc()
    >>> preproc.inputs.inputspec.bo_name='/sam/wave1/sub4974/calib_1/cal_bo.nii.gz'
    >>> preproc.inputs.inputspec.rho_name='/sam/wave1/sub4974/calib_1/cal_rho.nii.gz'
    >>> preproc.inputs.inputspec.rs_name='/sam/wave1/sub4974/calib_1/cal_rs.nii.gz'
    >>> preproc.inputs.inputspec.reg_bo_name='/sam/wave1/sub4974/calib_1/cal_reg_bo.nii.gz'
    >>> preproc.inputs.inputspec.reg_bo_name='/sam/wave1/sub4974/calib_1/cal_reg_bo.nii.gz'
    >>> preproc.inputs.inputspec.synth_name='cal_epi_synth.nii.gz'
    >>> preproc.inputs.inputspec.echo_spacing='30'
    >>> preproc.inputs.inputspec.readout_dir='1'

    >>> preproc.base_dir='./'
    >>> preproc.run()

    """

    preproc = pe.Workflow(name=wf_name)
    inputNode = pe.Node(util.IdentityInterface(fields=[
        'bo_name', 'rho_name', 'rs_name', 'reg_bo_name', 'echo_spacing',
        'readout_dir', 'synth_name'
    ]),
                        name='inputspec')

    outputNode = pe.Node(util.IdentityInterface(fields=[
        'cal_bo_RPI', 'cal_rho_RPI', 'cal_rs_RPI', 'cal_reg_bo_RPI',
        'cal_synth_RPI'
    ]),
                         name='outputspec')

    func_create_synth = pe.Node(util.Function(input_names=[
        'boName', 'rhoName', 'rsName', 'TE', 'kyDir', 'synthName'
    ],
                                              output_names=['epi_synth_path'],
                                              function=cbiCalibSynthEPI),
                                name='func_create_synth')

    bo_deoblique = pe.Node(interface=preprocess.Refit(), name='bo_deoblique')
    bo_deoblique.inputs.deoblique = True

    rho_deoblique = bo_deoblique.clone('rho_deoblique')

    rs_deoblique = bo_deoblique.clone('rs_deoblique')

    reg_bo_deoblique = bo_deoblique.clone('reg_bo_deoblique')

    preproc.connect(inputNode, 'echo_spacing', func_create_synth, 'TE')

    preproc.connect(inputNode, 'readout_dir', func_create_synth, 'kyDir')

    preproc.connect(inputNode, 'synth_name', func_create_synth, 'synthName')

    preproc.connect(inputNode, 'bo_name', bo_deoblique, 'in_file')

    preproc.connect(bo_deoblique, 'out_file', func_create_synth, 'boName')

    preproc.connect(inputNode, 'rho_name', rho_deoblique, 'in_file')

    preproc.connect(rho_deoblique, 'out_file', func_create_synth, 'rhoName')

    preproc.connect(inputNode, 'rs_name', rs_deoblique, 'in_file')

    preproc.connect(rs_deoblique, 'out_file', func_create_synth, 'rsName')

    synth_reorient = pe.Node(interface=preprocess.Resample(),
                             name='synth_reorient')
    synth_reorient.inputs.orientation = 'RPI'
    synth_reorient.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_create_synth, 'epi_synth_path', synth_reorient,
                    'in_file')

    preproc.connect(synth_reorient, 'out_file', outputNode, 'cal_synth_RPI')

    bo_reorient = synth_reorient.clone('bo_reorient')

    rho_reorient = synth_reorient.clone('rho_reorient')

    rs_reorient = synth_reorient.clone('rs_reorient')

    reg_bo_reorient = synth_reorient.clone('reg_bo_reorient')

    preproc.connect(bo_deoblique, 'out_file', bo_reorient, 'in_file')

    preproc.connect(bo_reorient, 'out_file', outputNode, 'cal_bo_RPI')

    preproc.connect(rho_deoblique, 'out_file', rho_reorient, 'in_file')

    preproc.connect(rho_reorient, 'out_file', outputNode, 'cal_rho_RPI')

    preproc.connect(rs_deoblique, 'out_file', rs_reorient, 'in_file')

    preproc.connect(rs_reorient, 'out_file', outputNode, 'cal_rs_RPI')

    preproc.connect(inputNode, 'reg_bo_name', reg_bo_deoblique, 'in_file')

    preproc.connect(reg_bo_deoblique, 'out_file', reg_bo_reorient, 'in_file')

    preproc.connect(reg_bo_reorient, 'out_file', outputNode, 'cal_reg_bo_RPI')

    return preproc
示例#8
0
def create_anat_preproc(already_skullstripped=False):
    """ 
    
    The main purpose of this workflow is to process T1 scans. Raw mprage file is deobliqued, reoriented 
    into RPI and skullstripped. Also, a whole brain only mask is generated from the skull stripped image 
    for later use in registration.
    
    Returns 
    -------
    anat_preproc : workflow
        Anatomical Preprocessing Workflow
    
    Notes
    -----
    
    `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/anat_preproc/anat_preproc.py>`_
    
    Workflow Inputs::
    
        inputspec.anat : mprage file or a list of mprage nifti file 
            User input anatomical(T1) Image, in any of the 8 orientations
    
    Workflow Outputs::
    
        outputspec.refit : nifti file
            Deobliqued anatomical data 
        outputspec.reorient : nifti file
            RPI oriented anatomical data 
        outputspec.skullstrip : nifti file
            Skull Stripped RPI oriented mprage file with normalized intensities.
        outputspec.brain : nifti file
            Skull Stripped RPI Brain Image with original intensity values and not normalized or scaled.
    
    Order of commands:

    - Deobliqing the scans.  For details see `3drefit <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3drefit.html>`_::
    
        3drefit -deoblique mprage.nii.gz
        
    - Re-orienting the Image into Right-to-Left Posterior-to-Anterior Inferior-to-Superior  (RPI) orientation.  For details see `3dresample <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dresample.html>`_::
    
        3dresample -orient RPI -prefix mprage_RPI.nii.gz -inset mprage.nii.gz 
    
    - SkullStripping the image.  For details see `3dSkullStrip <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dSkullStrip.html>`_::
    
        3dSkullStrip -input mprage_RPI.nii.gz -o_ply mprage_RPI_3dT.nii.gz
    
    - The skull stripping step modifies the intensity values. To get back the original intensity values, we do an element wise product of RPI data with step function of skull Stripped data.  For details see `3dcalc <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dcalc.html>`_::
    
        3dcalc -a mprage_RPI.nii.gz -b mprage_RPI_3dT.nii.gz -expr 'a*step(b)' -prefix mprage_RPI_3dc.nii.gz
    
    High Level Workflow Graph:
    
    .. image:: ../images/anatpreproc_graph.dot.png
       :width: 500
    
    
    Detailed Workflow Graph:
    
    .. image:: ../images/anatpreproc_graph_detailed.dot.png
       :width: 500

    Examples
    --------
    
    >>> import anat
    >>> preproc = create_anat_preproc()
    >>> preproc.inputs.inputspec.anat='sub1/anat/mprage.nii.gz'
    >>> preproc.run() #doctest: +SKIP
            
    """
    preproc = pe.Workflow(name='anat_preproc')
    inputNode = pe.Node(util.IdentityInterface(fields=['anat']),
                        name='inputspec')
    outputNode = pe.Node(util.IdentityInterface(
        fields=['refit', 'reorient', 'skullstrip', 'brain']),
                         name='outputspec')
    anat_deoblique = pe.Node(interface=preprocess.Refit(),
                             name='anat_deoblique')
    anat_deoblique.inputs.deoblique = True
    anat_reorient = pe.Node(interface=preprocess.Resample(),
                            name='anat_reorient')
    anat_reorient.inputs.orientation = 'RPI'
    anat_reorient.inputs.outputtype = 'NIFTI_GZ'
    if not already_skullstripped:
        anat_skullstrip = pe.Node(interface=preprocess.SkullStrip(),
                                  name='anat_skullstrip')
        #anat_skullstrip.inputs.options = '-o_ply'
        anat_skullstrip.inputs.outputtype = 'NIFTI_GZ'
    anat_skullstrip_orig_vol = pe.Node(interface=preprocess.Calc(),
                                       name='anat_skullstrip_orig_vol')
    anat_skullstrip_orig_vol.inputs.expr = 'a*step(b)'
    anat_skullstrip_orig_vol.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(inputNode, 'anat', anat_deoblique, 'in_file')
    preproc.connect(anat_deoblique, 'out_file', anat_reorient, 'in_file')
    if not already_skullstripped:
        preproc.connect(anat_reorient, 'out_file', anat_skullstrip, 'in_file')
        preproc.connect(anat_skullstrip, 'out_file', anat_skullstrip_orig_vol,
                        'in_file_b')
    else:
        preproc.connect(anat_reorient, 'out_file', anat_skullstrip_orig_vol,
                        'in_file_b')
    preproc.connect(anat_reorient, 'out_file', anat_skullstrip_orig_vol,
                    'in_file_a')

    preproc.connect(anat_deoblique, 'out_file', outputNode, 'refit')
    preproc.connect(anat_reorient, 'out_file', outputNode, 'reorient')
    if not already_skullstripped:
        preproc.connect(anat_skullstrip, 'out_file', outputNode, 'skullstrip')
    preproc.connect(anat_skullstrip_orig_vol, 'out_file', outputNode, 'brain')

    return preproc
示例#9
0
def create_func_preproc(use_bet=False, wf_name='func_preproc'):
    """

    The main purpose of this workflow is to process functional data. Raw rest file is deobliqued and reoriented
    into RPI. Then take the mean intensity values over all time points for each voxel and use this image
    to calculate motion parameters. The image is then skullstripped, normalized and a processed mask is
    obtained to use it further in Image analysis.

    Parameters
    ----------

    wf_name : string
        Workflow name

    Returns
    -------
    func_preproc : workflow object
        Functional Preprocessing workflow object

    Notes
    -----

    `Source <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/func_preproc/func_preproc.py>`_

    Workflow Inputs::

        inputspec.rest : func/rest file or a list of func/rest nifti file
            User input functional(T2) Image, in any of the 8 orientations

        scan_params.tr : string
            Subject TR

        scan_params.acquistion : string
            Acquisition pattern (interleaved/sequential, ascending/descending)

        scan_params.ref_slice : integer
            Reference slice for slice timing correction

    Workflow Outputs::

        outputspec.refit : string (nifti file)
            Path to deobliqued anatomical data

        outputspec.reorient : string (nifti file)
            Path to RPI oriented anatomical data

        outputspec.motion_correct_ref : string (nifti file)
             Path to Mean intensity Motion corrected image
             (base reference image for the second motion correction run)

        outputspec.motion_correct : string (nifti file)
            Path to motion corrected output file

        outputspec.max_displacement : string (Mat file)
            Path to maximum displacement (in mm) for brain voxels in each volume

        outputspec.movement_parameters : string (Mat file)
            Path to 1D file containing six movement/motion parameters(3 Translation, 3 Rotations)
            in different columns (roll pitch yaw dS  dL  dP)

        outputspec.skullstrip : string (nifti file)
            Path to skull stripped Motion Corrected Image

        outputspec.mask : string (nifti file)
            Path to brain-only mask

        outputspec.example_func : string (nifti file)
            Mean, Skull Stripped, Motion Corrected output T2 Image path
            (Image with mean intensity values across voxels)

        outputpsec.preprocessed : string (nifti file)
            output skull stripped, motion corrected T2 image
            with normalized intensity values

        outputspec.preprocessed_mask : string (nifti file)
           Mask obtained from normalized preprocessed image

    Order of commands:

    - Deobliqing the scans.  For details see `3drefit <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3drefit.html>`_::

        3drefit -deoblique rest_3dc.nii.gz

    - Re-orienting the Image into Right-to-Left Posterior-to-Anterior Inferior-to-Superior (RPI) orientation. For details see `3dresample <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dresample.html>`_::

        3dresample -orient RPI
                   -prefix rest_3dc_RPI.nii.gz
                   -inset rest_3dc.nii.gz

    - Calculate voxel wise statistics. Get the RPI Image with mean intensity values over all timepoints for each voxel. For details see `3dTstat <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTstat.html>`_::

        3dTstat -mean
                -prefix rest_3dc_RPI_3dT.nii.gz
                rest_3dc_RPI.nii.gz

    - Motion Correction. For details see `3dvolreg <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dvolreg.html>`_::

        3dvolreg -Fourier
                 -twopass
                 -base rest_3dc_RPI_3dT.nii.gz/
                 -zpad 4
                 -maxdisp1D rest_3dc_RPI_3dvmd1D.1D
                 -1Dfile rest_3dc_RPI_3dv1D.1D
                 -prefix rest_3dc_RPI_3dv.nii.gz
                 rest_3dc_RPI.nii.gz

      The base image or the reference image is the mean intensity RPI image obtained in the above the step.For each volume
      in RPI-oriented T2 image, the command, aligns the image with the base mean image and calculates the motion, displacement
      and movement parameters. It also outputs the aligned 4D volume and movement and displacement parameters for each volume.

    - Calculate voxel wise statistics. Get the motion corrected output Image from the above step, with mean intensity values over all timepoints for each voxel.
      For details see `3dTstat <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTstat.html>`_::

        3dTstat -mean
                -prefix rest_3dc_RPI_3dv_3dT.nii.gz
                rest_3dc_RPI_3dv.nii.gz

    - Motion Correction and get motion, movement and displacement parameters. For details see `3dvolreg <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dvolreg.html>`_::

        3dvolreg -Fourier
                 -twopass
                 -base rest_3dc_RPI_3dv_3dT.nii.gz
                 -zpad 4
                 -maxdisp1D rest_3dc_RPI_3dvmd1D.1D
                 -1Dfile rest_3dc_RPI_3dv1D.1D
                 -prefix rest_3dc_RPI_3dv.nii.gz
                 rest_3dc_RPI.nii.gz

      The base image or the reference image is the mean intensity motion corrected image obtained from the above the step (first 3dvolreg run).
      For each volume in RPI-oriented T2 image, the command, aligns the image with the base mean image and calculates the motion, displacement
      and movement parameters. It also outputs the aligned 4D volume and movement and displacement parameters for each volume.

    - Create a brain-only mask. For details see `3dautomask <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dAutomask.html>`_::

        3dAutomask
                   -prefix rest_3dc_RPI_3dv_automask.nii.gz
                   rest_3dc_RPI_3dv.nii.gz

    - Edge Detect(remove skull) and get the brain only. For details see `3dcalc <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dcalc.html>`_::

        3dcalc -a rest_3dc_RPI_3dv.nii.gz
               -b rest_3dc_RPI_3dv_automask.nii.gz
               -expr 'a*b'
               -prefix rest_3dc_RPI_3dv_3dc.nii.gz

    - Normalizing the image intensity values. For details see `fslmaths <http://www.fmrib.ox.ac.uk/fsl/avwutils/index.html>`_::

        fslmaths rest_3dc_RPI_3dv_3dc.nii.gz
                 -ing 10000 rest_3dc_RPI_3dv_3dc_maths.nii.gz
                 -odt float

      Normalized intensity = (TrueValue*10000)/global4Dmean

    - Calculate mean of skull stripped image. For details see `3dTstat <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dTstat.html>`_::

        3dTstat -mean -prefix rest_3dc_RPI_3dv_3dc_3dT.nii.gz rest_3dc_RPI_3dv_3dc.nii.gz

    - Create Mask (Generate mask from Normalized data). For details see `fslmaths <http://www.fmrib.ox.ac.uk/fsl/avwutils/index.html>`_::

        fslmaths rest_3dc_RPI_3dv_3dc_maths.nii.gz
               -Tmin -bin rest_3dc_RPI_3dv_3dc_maths_maths.nii.gz
               -odt char

    High Level Workflow Graph:

    .. image:: ../images/func_preproc.dot.png
       :width: 1000


    Detailed Workflow Graph:

    .. image:: ../images/func_preproc_detailed.dot.png
       :width: 1000

    Examples
    --------

    >>> import func_preproc
    >>> preproc = create_func_preproc(bet=True)
    >>> preproc.inputs.inputspec.func='sub1/func/rest.nii.gz'
    >>> preproc.run() #doctest: +SKIP


    >>> import func_preproc
    >>> preproc = create_func_preproc(bet=False)
    >>> preproc.inputs.inputspec.func='sub1/func/rest.nii.gz'
    >>> preproc.run() #doctest: +SKIP

    """

    preproc = pe.Workflow(name=wf_name)
    inputNode = pe.Node(util.IdentityInterface(fields=['func']),
                        name='inputspec')

    outputNode = pe.Node(
        util.IdentityInterface(fields=[
            'refit',
            'reorient',
            'reorient_mean',
            'motion_correct',
            'motion_correct_ref',
            'movement_parameters',
            'max_displacement',
            # 'xform_matrix',
            'mask',
            'skullstrip',
            'example_func',
            'preprocessed',
            'preprocessed_mask',
            'slice_time_corrected',
            'oned_matrix_save'
        ]),
        name='outputspec')

    try:
        from nipype.interfaces.afni import utils as afni_utils
        func_deoblique = pe.Node(interface=afni_utils.Refit(),
                                 name='func_deoblique')
    except ImportError:
        func_deoblique = pe.Node(interface=preprocess.Refit(),
                                 name='func_deoblique')
    func_deoblique.inputs.deoblique = True

    preproc.connect(inputNode, 'func', func_deoblique, 'in_file')

    try:
        func_reorient = pe.Node(interface=afni_utils.Resample(),
                                name='func_reorient')
    except UnboundLocalError:
        func_reorient = pe.Node(interface=preprocess.Resample(),
                                name='func_reorient')

    func_reorient.inputs.orientation = 'RPI'
    func_reorient.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_deoblique, 'out_file', func_reorient, 'in_file')

    preproc.connect(func_reorient, 'out_file', outputNode, 'reorient')

    try:
        func_get_mean_RPI = pe.Node(interface=afni_utils.TStat(),
                                    name='func_get_mean_RPI')
    except UnboundLocalError:
        func_get_mean_RPI = pe.Node(interface=preprocess.TStat(),
                                    name='func_get_mean_RPI')

    func_get_mean_RPI.inputs.options = '-mean'
    func_get_mean_RPI.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_reorient, 'out_file', func_get_mean_RPI, 'in_file')

    # calculate motion parameters
    func_motion_correct = pe.Node(interface=preprocess.Volreg(),
                                  name='func_motion_correct')
    func_motion_correct.inputs.args = '-Fourier -twopass'
    func_motion_correct.inputs.zpad = 4
    func_motion_correct.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_reorient, 'out_file', func_motion_correct, 'in_file')
    preproc.connect(func_get_mean_RPI, 'out_file', func_motion_correct,
                    'basefile')

    func_get_mean_motion = func_get_mean_RPI.clone('func_get_mean_motion')
    preproc.connect(func_motion_correct, 'out_file', func_get_mean_motion,
                    'in_file')

    preproc.connect(func_get_mean_motion, 'out_file', outputNode,
                    'motion_correct_ref')

    func_motion_correct_A = func_motion_correct.clone('func_motion_correct_A')
    func_motion_correct_A.inputs.md1d_file = 'max_displacement.1D'

    preproc.connect(func_reorient, 'out_file', func_motion_correct_A,
                    'in_file')
    preproc.connect(func_get_mean_motion, 'out_file', func_motion_correct_A,
                    'basefile')

    preproc.connect(func_motion_correct_A, 'out_file', outputNode,
                    'motion_correct')
    preproc.connect(func_motion_correct_A, 'md1d_file', outputNode,
                    'max_displacement')
    preproc.connect(func_motion_correct_A, 'oned_file', outputNode,
                    'movement_parameters')
    preproc.connect(func_motion_correct_A, 'oned_matrix_save', outputNode,
                    'oned_matrix_save')

    if not use_bet:

        func_get_brain_mask = pe.Node(interface=preprocess.Automask(),
                                      name='func_get_brain_mask')

        func_get_brain_mask.inputs.outputtype = 'NIFTI_GZ'

        preproc.connect(func_motion_correct_A, 'out_file', func_get_brain_mask,
                        'in_file')

        preproc.connect(func_get_brain_mask, 'out_file', outputNode, 'mask')

    else:

        func_get_brain_mask = pe.Node(interface=fsl.BET(),
                                      name='func_get_brain_mask_BET')

        func_get_brain_mask.inputs.mask = True
        func_get_brain_mask.inputs.functional = True

        erode_one_voxel = pe.Node(interface=fsl.ErodeImage(),
                                  name='erode_one_voxel')

        erode_one_voxel.inputs.kernel_shape = 'box'
        erode_one_voxel.inputs.kernel_size = 1.0

        preproc.connect(func_motion_correct_A, 'out_file', func_get_brain_mask,
                        'in_file')

        preproc.connect(func_get_brain_mask, 'mask_file', erode_one_voxel,
                        'in_file')

        preproc.connect(erode_one_voxel, 'out_file', outputNode, 'mask')

    try:
        func_edge_detect = pe.Node(interface=afni_utils.Calc(),
                                   name='func_edge_detect')
    except UnboundLocalError:
        func_edge_detect = pe.Node(interface=preprocess.Calc(),
                                   name='func_edge_detect')

    func_edge_detect.inputs.expr = 'a*b'
    func_edge_detect.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_motion_correct_A, 'out_file', func_edge_detect,
                    'in_file_a')

    if not use_bet:
        preproc.connect(func_get_brain_mask, 'out_file', func_edge_detect,
                        'in_file_b')
    else:
        preproc.connect(erode_one_voxel, 'out_file', func_edge_detect,
                        'in_file_b')

    preproc.connect(func_edge_detect, 'out_file', outputNode, 'skullstrip')

    try:
        func_mean_skullstrip = pe.Node(interface=afni_utils.TStat(),
                                       name='func_mean_skullstrip')
    except UnboundLocalError:
        func_mean_skullstrip = pe.Node(interface=preprocess.TStat(),
                                       name='func_mean_skullstrip')

    func_mean_skullstrip.inputs.options = '-mean'
    func_mean_skullstrip.inputs.outputtype = 'NIFTI_GZ'

    preproc.connect(func_edge_detect, 'out_file', func_mean_skullstrip,
                    'in_file')

    preproc.connect(func_mean_skullstrip, 'out_file', outputNode,
                    'example_func')

    func_normalize = pe.Node(interface=fsl.ImageMaths(), name='func_normalize')
    func_normalize.inputs.op_string = '-ing 10000'
    func_normalize.inputs.out_data_type = 'float'

    preproc.connect(func_edge_detect, 'out_file', func_normalize, 'in_file')

    preproc.connect(func_normalize, 'out_file', outputNode, 'preprocessed')

    func_mask_normalize = pe.Node(interface=fsl.ImageMaths(),
                                  name='func_mask_normalize')
    func_mask_normalize.inputs.op_string = '-Tmin -bin'
    func_mask_normalize.inputs.out_data_type = 'char'

    preproc.connect(func_normalize, 'out_file', func_mask_normalize, 'in_file')

    preproc.connect(func_mask_normalize, 'out_file', outputNode,
                    'preprocessed_mask')

    return preproc
示例#10
0
def func_equilibrate():
    '''
    Workflow to get the scanner data ready.
    Anatomical and functional images are deobliqued.
    5 TRs are removed from func data.

    inputs
        inputnode.verio_anat
        inputnode.verio_func
        inputnode.verio_func_se
        inputnode.verio_func_se_inv
    outputs
        outputnode.analyze_anat
        outputnode.analyze_func
        outputnode.analyze_func_se
        outputnode.analyze_func_se_inv
    '''

    flow = Workflow('func_equilibrate')
    inputnode = Node(util.IdentityInterface(
        fields=['verio_func', 'verio_func_se', 'verio_func_seinv']),
                     name='inputnode')
    outputnode = Node(util.IdentityInterface(fields=[
        'analyze_func', 'func_mask', 'analyze_func_se', 'analyze_func_seinv'
    ]),
                      name='outputnode')

    ## functional image

    # 1. remove TRS
    remove_trs = Node(interface=preprocess.Calc(), name='func_drop_trs')
    remove_trs.inputs.start_idx = 5
    remove_trs.inputs.stop_idx = 421
    remove_trs.inputs.expr = 'a'
    remove_trs.inputs.outputtype = 'NIFTI_GZ'

    # 2. to RPI
    func_rpi = Node(interface=preprocess.Resample(), name='func_rpi')
    func_rpi.inputs.orientation = 'RPI'
    func_rpi.inputs.outputtype = 'NIFTI_GZ'

    # 3. func deoblique
    func_deoblique = Node(interface=preprocess.Refit(), name='func_deoblique')
    func_deoblique.inputs.deoblique = True

    flow.connect(inputnode, 'verio_func', remove_trs, 'in_file_a')
    flow.connect(remove_trs, 'out_file', func_rpi, 'in_file')
    flow.connect(func_rpi, 'out_file', func_deoblique, 'in_file')
    flow.connect(func_deoblique, 'out_file', outputnode, 'analyze_func')

    ###########################################################################################################
    ###########################################################################################################
    # se to RPI
    se_rpi = Node(interface=preprocess.Resample(), name='se_rpi')
    se_rpi.inputs.orientation = 'RPI'
    se_rpi.inputs.outputtype = 'NIFTI_GZ'

    # 3. func deoblique
    se_deoblique = Node(interface=preprocess.Refit(), name='se_deoblique')
    se_deoblique.inputs.deoblique = True

    flow.connect(inputnode, 'verio_func_se', se_rpi, 'in_file')
    flow.connect(se_rpi, 'out_file', se_deoblique, 'in_file')

    flow.connect(se_deoblique, 'out_file', outputnode, 'analyze_func_se')

    ###########################################################################################################
    ###########################################################################################################
    ###########################################################################################################

    # se_inv to RPI
    se_inv_rpi = Node(interface=preprocess.Resample(), name='seinv_rpi')
    se_inv_rpi.inputs.orientation = 'RPI'
    se_inv_rpi.inputs.outputtype = 'NIFTI_GZ'

    # 3. func deoblique
    se_inv_deoblique = Node(interface=preprocess.Refit(),
                            name='seinv_deoblique')
    se_inv_deoblique.inputs.deoblique = True

    flow.connect(inputnode, 'verio_func_seinv', se_inv_rpi, 'in_file')
    flow.connect(se_inv_rpi, 'out_file', se_inv_deoblique, 'in_file')
    flow.connect(se_inv_deoblique, 'out_file', outputnode,
                 'analyze_func_seinv')

    return flow
示例#11
0
def create_asl_preproc(c, strat, wf_name='asl_preproc'):
    # resource_pool = strat?
    # print('resource pool asl preproc: ', str(strat.get_resource_pool()))

    # allocate a workflow object
    asl_workflow = pe.Workflow(name=wf_name)
    asl_workflow.base_dir = c.workingDirectory

    # configure the workflow's input spec
    inputNode = pe.Node(util.IdentityInterface(fields=[
        'asl_file', 'anatomical_skull', 'anatomical_brain', 'seg_wm_pve'
    ]),
                        name='inputspec')

    # configure the workflow's output spec
    outputNode = pe.Node(util.IdentityInterface(
        fields=['meanasl', 'perfusion_image', 'diffdata', 'diffdata_mean']),
                         name='outputspec')

    # get segmentation output dir and file stub

    # create nodes for de-obliquing and reorienting
    try:
        from nipype.interfaces.afni import utils as afni_utils
        func_deoblique = pe.Node(interface=afni_utils.Refit(),
                                 name='func_deoblique')
    except ImportError:
        func_deoblique = pe.Node(interface=preprocess.Refit(),
                                 name='func_deoblique')
    func_deoblique.inputs.deoblique = True

    asl_workflow.connect(inputNode, 'asl_file', func_deoblique, 'in_file')

    try:
        func_reorient = pe.Node(interface=afni_utils.Resample(),
                                name='func_reorient')
    except UnboundLocalError:
        func_reorient = pe.Node(interface=preprocess.Resample(),
                                name='func_reorient')

    func_reorient.inputs.orientation = 'RPI'
    func_reorient.inputs.outputtype = 'NIFTI_GZ'

    # connect deoblique to reorient
    asl_workflow.connect(func_deoblique, 'out_file', func_reorient, 'in_file')

    # create node for splitting control and label pairs (unused currently)
    split_pairs_imports = ['import os', 'import subprocess']
    split_ASL_pairs = pe.Node(interface=util.Function(
        input_names=['asl_file'],
        output_names=['control_image', 'label_image'],
        function=split_pairs,
        imports=split_pairs_imports),
                              name='split_pairs')

    # create node for calculating subtracted images
    diffdata_imports = ['import os', 'import subprocess']
    run_diffdata = pe.Node(interface=util.Function(
        input_names=['asl_file'],
        output_names=['diffdata_image', 'diffdata_mean'],
        function=diffdata,
        imports=diffdata_imports),
                           name='diffdata')

    asl_workflow.connect(func_reorient, 'out_file', run_diffdata, 'asl_file')

    asl_workflow.connect(run_diffdata, 'diffdata_image', outputNode,
                         'diffdata')

    asl_workflow.connect(run_diffdata, 'diffdata_mean', outputNode,
                         'diffdata_mean')

    # create node for oxford_asl (perfusion image)

    asl_imports = ['import os', 'import subprocess']
    run_oxford_asl = pe.Node(interface=util.Function(
        input_names=[
            'asl_file', 'anatomical_skull', 'anatomical_brain', 'seg'
        ],
        output_names=['perfusion_image', 'asl2anat_linear_xfm', 'asl2anat'],
        function=oxford_asl,
        imports=asl_imports),
                             name='run_oxford_asl')

    # wire inputs from resource pool to ASL preprocessing FSL script

    # connect output of reorient to run_oxford_asl
    asl_workflow.connect(func_reorient, 'out_file', run_oxford_asl, 'asl_file')

    asl_workflow.connect(inputNode, 'seg_wm_pve', run_oxford_asl, 'seg')

    # pass the anatomical to the workflow
    asl_workflow.connect(inputNode, 'anatomical_skull', run_oxford_asl,
                         'anatomical_skull')

    # pass the anatomical to the workflow
    asl_workflow.connect(inputNode, 'anatomical_brain', run_oxford_asl,
                         'anatomical_brain')

    # connect oxford_asl outputs to outputNode

    asl_workflow.connect(run_oxford_asl, 'asl2anat_linear_xfm', outputNode,
                         'asl2anat_linear_xfm')

    asl_workflow.connect(run_oxford_asl, 'asl2anat', outputNode, 'asl2anat')

    asl_workflow.connect(run_oxford_asl, 'perfusion_image', outputNode,
                         'perfusion_image')

    strat.update_resource_pool({
        'mean_asl_in_anat': (run_oxford_asl, 'anat_asl'),
        'asl_to_anat_linear_xfm': (run_oxford_asl, 'asl2anat_linear_xfm')
    })

    # Take mean of the asl data for registration

    try:
        get_mean_asl = pe.Node(interface=afni_utils.TStat(),
                               name='get_mean_asl')
    except UnboundLocalError:
        get_mean_asl = pe.Node(interface=preprocess.TStat(),
                               name='get_mean_asl')

    get_mean_asl.inputs.options = '-mean'
    get_mean_asl.inputs.outputtype = 'NIFTI_GZ'

    asl_workflow.connect(func_reorient, 'out_file', get_mean_asl, 'in_file')

    asl_workflow.connect(get_mean_asl, 'out_file', outputNode, 'meanasl')

    return asl_workflow
示例#12
0
def create_anat_preproc(already_skullstripped=False):
    """ 
    Generate a workflow to do basic anatomical preprocessing (deoblique, reorient, skull-strip).

    Parameters
    ----------
    already_skullstripped : bool, optional
        True/False depending on if the anatomical files used as input have already been skull stripped.

    Returns 
    -------
    anat_preproc : workflow
     
    Notes
    -----
    Source code for the latest version can be found `on github <https://github.com/FCP-INDI/C-PAC/blob/master/CPAC/anat_preproc/anat_preproc.py>`_
    
    Workflow Inputs::
    
        inputspec.anat : nifti file or list of nifti files
            User specified anatomical (T1) image, in any of the 8 orientations
    
    Workflow Outputs::
    
        outputspec.deoblique : nifti file
            Deobliqued anatomical image. 
        outputspec.reorient : nifti file
            RPI oriented anatomical image. 
        outputspec.brain : nifti file
            Skull-stripped anatomical image.
    
    Order of preprocessing steps and command-line equivalents:

    - Deoblique. For details see `3drefit <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3drefit.html>`_::
    
        3drefit -deoblique mprage.nii.gz
        
    - Re-orient to RPI. For details see `3dresample <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dresample.html>`_::
    
        3dresample -orient RPI -prefix mprage_RPI.nii.gz -inset mprage.nii.gz 
    
    - Skull-strip. For details see `3dSkullStrip <http://afni.nimh.nih.gov/pub/dist/doc/program_help/3dSkullStrip.html>`_::
    
        3dSkullStrip -input mprage_RPI.nii.gz -orig_vol mprage_RPI_3dT.nii.gz
    
    High Level Workflow Graph:
    
    .. image:: ../images/anatpreproc_graph.dot.png
       :width: 500
    
    
    Detailed Workflow Graph:
    
    .. image:: ../images/anatpreproc_graph_detailed.dot.png
       :width: 500

    Examples
    --------
    
    >>> import anat
    >>> preproc = create_anat_preproc()
    >>> preproc.inputs.inputspec.anat='sub1/anat/mprage.nii.gz'
    >>> preproc.run() #doctest: +SKIP
            
    """

    preproc = pe.Workflow(name='anat_preproc')
    """
    Configure Workflow Nodes
    """

    # The input to this workflow is usually the anatomical image specified in the CPAC subject list.
    inputNode = pe.Node(util.IdentityInterface(fields=['anat']),
                        name='inputspec')
    # This workflow outputs deobliqued, reoriented, and skull-stripped versions of the input image.
    outputNode = pe.Node(util.IdentityInterface(
        fields=['deoblique', 'reorient', 'skullstrip', 'brain']),
                         name='outputspec')

    # Set up deoblique function.
    anat_deoblique = pe.Node(interface=preprocess.Refit(),
                             name='anat_deoblique')
    anat_deoblique.inputs.deoblique = True

    # Set up reorient function.
    anat_reorient = pe.Node(interface=preprocess.Resample(),
                            name='anat_reorient')
    anat_reorient.inputs.orientation = 'RPI'
    anat_reorient.inputs.outputtype = 'NIFTI_GZ'

    if not already_skullstripped:
        # Set up Skull Stripping
        anat_skullstrip = pe.Node(interface=preprocess.SkullStrip(),
                                  name='anat_skullstrip')
        # Keep intensity values the same in the output as in the input.
        anat_skullstrip.inputs.options = '-orig_vol'
        anat_skullstrip.inputs.outputtype = 'NIFTI_GZ'
    """
    Connect Workflow Nodes
    """

    # Deoblique takes the 'raw' anatomical image as input.
    preproc.connect(inputNode, 'anat', anat_deoblique, 'in_file')
    # The deobliqued image is used as the input for Reorient.
    preproc.connect(anat_deoblique, 'out_file', anat_reorient, 'in_file')

    if not already_skullstripped:
        # The reoriented image is used as the input for Skullstrip.
        preproc.connect(anat_reorient, 'out_file', anat_skullstrip, 'in_file')

    # Output deobliqued and reoriented images.
    preproc.connect(anat_deoblique, 'out_file', outputNode, 'deoblique')
    preproc.connect(anat_reorient, 'out_file', outputNode, 'reorient')

    # Output skull-stripped image.
    if not already_skullstripped:
        preproc.connect(anat_skullstrip, 'out_file', outputNode, 'brain')
    else:
        preproc.connect(anat_reorient, 'out_file', outputNode, 'brain')

    return preproc
示例#13
0
def func_preproc_workflow(workflow, resource_pool, config, name="_"):
    """Build and run a Nipype workflow to deoblique and reorient a functional
    scan from a NIFTI file.

    - This is a seminal workflow that can only take an input directly from
      disk (i.e. no Nipype workflow connections/pointers, and this is where
      the pipeline will actually begin). For the sake of building the
      pipeine in reverse, if this workflow is called when there is no input
      file available, this function will return the unmodified workflow and
      resource pool directly back.
    - In conjunction with the other workflow-building functions, if this
      function returns the workflow and resource pool unmodified, each
      function up will do the same until it reaches the top level, allowing
      the pipeline builder to continue "searching" for a base-level input
      without crashing at this one.

    Expected Resources in Resource Pool
      - functional_scan: The raw functional 4D timeseries in a NIFTI file.

    New Resources Added to Resource Pool
      - func_reorient: The deobliqued, reoriented functional timeseries.

    Workflow Steps
      1. get_idx function node (if a start_idx and/or stop_idx is set in the
         configuration) to generate the volume range to keep in the timeseries
      2. AFNI 3dcalc to drop volumes not included in the range (if a start_idx
         and/or stop_idx has been set in the configuration only)
      3. AFNI 3drefit to deoblique the file
      4. AFNI 3dresample to reorient the file to RPI

    :type workflow: Nipype workflow object
    :param workflow: A Nipype workflow object which can already contain other
                     connected nodes; this function will insert the following
                     workflow into this one provided.
    :type resource_pool: dict
    :param resource_pool: A dictionary defining input files and pointers to
                          Nipype node outputs / workflow connections; the keys
                          are the resource names.
    :type config: dict
    :param config: A dictionary defining the configuration settings for the
                   workflow, such as directory paths or toggled options.
    :type name: str
    :param name: (default: "_") A string to append to the end of each node
                 name.
    :rtype: Nipype workflow object
    :return: The Nipype workflow originally provided, but with this function's
              sub-workflow connected into it.
    :rtype: dict
    :return: The resource pool originally provided, but updated (if
             applicable) with the newest outputs and connections.
    """

    import nipype.pipeline.engine as pe
    import nipype.interfaces.utility as util
    from nipype.interfaces.afni import preprocess

    if "functional_scan" not in resource_pool.keys():
        return workflow, resource_pool

    if "start_idx" not in config.keys():
        config["start_idx"] = 0

    if "stop_idx" not in config.keys():
        config["stop_idx"] = None

    drop_trs = False
    if (config["start_idx"] != 0) and (config["stop_idx"] != None):
        drop_trs = True

    func_get_idx = pe.Node(util.Function(input_names=['in_files', 
                                                      'stop_idx', 
                                                      'start_idx'],
                                         output_names=['stopidx', 
                                                       'startidx'],
                                         function=get_idx),
                                         name='func_get_idx%s' % name)

    func_get_idx.inputs.in_files = resource_pool["functional_scan"]
    func_get_idx.inputs.start_idx = config["start_idx"]
    func_get_idx.inputs.stop_idx = config["stop_idx"]
    
    if drop_trs:
        func_drop_trs = pe.Node(interface=preprocess.Calc(),
                                name='func_drop_trs%s' % name)

        func_drop_trs.inputs.in_file_a = resource_pool["functional_scan"]
        func_drop_trs.inputs.expr = 'a'
        func_drop_trs.inputs.outputtype = 'NIFTI_GZ'

        workflow.connect(func_get_idx, 'startidx',
                         func_drop_trs, 'start_idx')

        workflow.connect(func_get_idx, 'stopidx',
                         func_drop_trs, 'stop_idx')
    

    func_deoblique = pe.Node(interface=preprocess.Refit(),
                            name='func_deoblique%s' % name)
    func_deoblique.inputs.deoblique = True
    
    if drop_trs:
        workflow.connect(func_drop_trs, 'out_file',
                         func_deoblique, 'in_file')
    else:
        func_deoblique.inputs.in_file = resource_pool["functional_scan"]

    func_reorient = pe.Node(interface=preprocess.Resample(),
                               name='func_reorient%s' % name)
    func_reorient.inputs.orientation = 'RPI'
    func_reorient.inputs.outputtype = 'NIFTI_GZ'

    workflow.connect(func_deoblique, 'out_file',
                    func_reorient, 'in_file')

    resource_pool["func_reorient"] = (func_reorient, 'out_file')

    return workflow, resource_pool