def test_TCorrMap_outputs(): output_map = dict(absolute_threshold=dict(), zmean=dict(), var_absolute_threshold_normalize=dict(), correlation_maps_masked=dict(), var_absolute_threshold=dict(), mean_file=dict(), pmean=dict(), histogram=dict(), sum_expr=dict(), average_expr_nonzero=dict(), average_expr=dict(), correlation_maps=dict(), qmean=dict(), ) outputs = TCorrMap.output_spec() for key, metadata in output_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(outputs.traits()[key], metakey), value
def test_TCorrMap_outputs(): output_map = dict(absolute_threshold=dict(), average_expr=dict(), average_expr_nonzero=dict(), correlation_maps=dict(), correlation_maps_masked=dict(), histogram=dict(), mean_file=dict(), pmean=dict(), qmean=dict(), sum_expr=dict(), var_absolute_threshold=dict(), var_absolute_threshold_normalize=dict(), zmean=dict(), ) outputs = TCorrMap.output_spec() for key, metadata in output_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(outputs.traits()[key], metakey), value
def test_TCorrMap_inputs(): input_map = dict( absolute_threshold=dict( argstr='-Thresh %f %s', name_source='in_file', suffix='_thresh', xor=('absolute_threshold', 'var_absolute_threshold', 'var_absolute_threshold_normalize'), ), args=dict(argstr='%s', ), automask=dict(argstr='-automask', ), average_expr=dict( argstr='-Aexpr %s %s', name_source='in_file', suffix='_aexpr', xor=('average_expr', 'average_expr_nonzero', 'sum_expr'), ), average_expr_nonzero=dict( argstr='-Cexpr %s %s', name_source='in_file', suffix='_cexpr', xor=('average_expr', 'average_expr_nonzero', 'sum_expr'), ), bandpass=dict(argstr='-bpass %f %f', ), blur_fwhm=dict(argstr='-Gblur %f', ), correlation_maps=dict( argstr='-CorrMap %s', name_source='in_file', ), correlation_maps_masked=dict( argstr='-CorrMask %s', name_source='in_file', ), environ=dict( nohash=True, usedefault=True, ), expr=dict(), histogram=dict( argstr='-Hist %d %s', name_source='in_file', suffix='_hist', ), histogram_bin_numbers=dict(), ignore_exception=dict( nohash=True, usedefault=True, ), in_file=dict( argstr='-input %s', copyfile=False, mandatory=True, ), mask=dict(argstr='-mask %s', ), mean_file=dict( argstr='-Mean %s', name_source='in_file', suffix='_mean', ), out_file=dict( argstr='-prefix %s', name_source=['in_file'], name_template='%s_afni', ), outputtype=dict(), pmean=dict( argstr='-Pmean %s', name_source='in_file', suffix='_pmean', ), polort=dict(argstr='-polort %d', ), qmean=dict( argstr='-Qmean %s', name_source='in_file', suffix='_qmean', ), regress_out_timeseries=dict(argstr='-ort %s', ), seeds=dict( argstr='-seed %s', xor='seeds_width', ), seeds_width=dict( argstr='-Mseed %f', xor='seeds', ), sum_expr=dict( argstr='-Sexpr %s %s', name_source='in_file', suffix='_sexpr', xor=('average_expr', 'average_expr_nonzero', 'sum_expr'), ), terminal_output=dict( mandatory=True, nohash=True, ), thresholds=dict(), var_absolute_threshold=dict( argstr='-VarThresh %f %f %f %s', name_source='in_file', suffix='_varthresh', xor=('absolute_threshold', 'var_absolute_threshold', 'var_absolute_threshold_normalize'), ), var_absolute_threshold_normalize=dict( argstr='-VarThreshN %f %f %f %s', name_source='in_file', suffix='_varthreshn', xor=('absolute_threshold', 'var_absolute_threshold', 'var_absolute_threshold_normalize'), ), zmean=dict( argstr='-Zmean %s', name_source='in_file', suffix='_zmean', ), ) inputs = TCorrMap.input_spec() for key, metadata in input_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(inputs.traits()[key], metakey), value
def test_TCorrMap_inputs(): input_map = dict( polort=dict(argstr="-polort %d"), zmean=dict(name_source="in_file", suffix="_zmean", argstr="-Zmean %s"), correlation_maps_masked=dict(name_source="in_file", argstr="-CorrMask %s"), thresholds=dict(), outputtype=dict(), average_expr_nonzero=dict( name_source="in_file", xor=("average_expr", "average_expr_nonzero", "sum_expr"), suffix="_cexpr", argstr="-Cexpr %s %s", ), seeds_width=dict(xor="seeds", argstr="-Mseed %f"), qmean=dict(name_source="in_file", suffix="_qmean", argstr="-Qmean %s"), pmean=dict(name_source="in_file", suffix="_pmean", argstr="-Pmean %s"), in_file=dict(copyfile=False, mandatory=True, argstr="-input %s"), ignore_exception=dict(nohash=True, usedefault=True), var_absolute_threshold=dict( name_source="in_file", xor=("absolute_threshold", "var_absolute_threshold", "var_absolute_threshold_normalize"), suffix="_varthresh", argstr="-VarThresh %f %f %f %s", ), absolute_threshold=dict( name_source="in_file", xor=("absolute_threshold", "var_absolute_threshold", "var_absolute_threshold_normalize"), suffix="_thresh", argstr="-Thresh %f %s", ), automask=dict(argstr="-automask"), args=dict(argstr="%s"), histogram=dict(name_source="in_file", suffix="_hist", argstr="-Hist %d %s"), terminal_output=dict(mandatory=True, nohash=True), average_expr=dict( name_source="in_file", xor=("average_expr", "average_expr_nonzero", "sum_expr"), suffix="_aexpr", argstr="-Aexpr %s %s", ), blur_fwhm=dict(argstr="-Gblur %f"), var_absolute_threshold_normalize=dict( name_source="in_file", xor=("absolute_threshold", "var_absolute_threshold", "var_absolute_threshold_normalize"), suffix="_varthreshn", argstr="-VarThreshN %f %f %f %s", ), out_file=dict(name_source=["in_file"], name_template="%s_afni", argstr="-prefix %s"), expr=dict(), mask=dict(argstr="-mask %s"), mean_file=dict(name_source="in_file", suffix="_mean", argstr="-Mean %s"), sum_expr=dict( name_source="in_file", xor=("average_expr", "average_expr_nonzero", "sum_expr"), suffix="_sexpr", argstr="-Sexpr %s %s", ), regress_out_timeseries=dict(argstr="-ort %s"), seeds=dict(xor="seeds_width", argstr="-seed %s"), environ=dict(nohash=True, usedefault=True), correlation_maps=dict(name_source="in_file", argstr="-CorrMap %s"), histogram_bin_numbers=dict(), bandpass=dict(argstr="-bpass %f %f"), ) inputs = TCorrMap.input_spec() for key, metadata in input_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(inputs.traits()[key], metakey), value
def test_TCorrMap_inputs(): input_map = dict(polort=dict(argstr='-polort %d', ), zmean=dict(name_source='in_file', suffix='_zmean', argstr='-Zmean %s', ), correlation_maps_masked=dict(name_source='in_file', argstr='-CorrMask %s', ), thresholds=dict(), outputtype=dict(), average_expr_nonzero=dict(name_source='in_file', xor=('average_expr', 'average_expr_nonzero', 'sum_expr'), suffix='_cexpr', argstr='-Cexpr %s %s', ), seeds_width=dict(xor='seeds', argstr='-Mseed %f', ), qmean=dict(name_source='in_file', suffix='_qmean', argstr='-Qmean %s', ), pmean=dict(name_source='in_file', suffix='_pmean', argstr='-Pmean %s', ), in_file=dict(mandatory=True, argstr='-input %s', ), ignore_exception=dict(nohash=True, usedefault=True, ), var_absolute_threshold=dict(name_source='in_file', xor=('absolute_threshold', 'var_absolute_threshold', 'var_absolute_threshold_normalize'), suffix='_varthresh', argstr='-VarThresh %f %f %f %s', ), absolute_threshold=dict(name_source='in_file', xor=('absolute_threshold', 'var_absolute_threshold', 'var_absolute_threshold_normalize'), suffix='_thresh', argstr='-Thresh %f %s', ), automask=dict(argstr='-automask', ), args=dict(argstr='%s', ), histogram=dict(name_source='in_file', suffix='_hist', argstr='-Hist %d %s', ), terminal_output=dict(mandatory=True, nohash=True, ), average_expr=dict(name_source='in_file', xor=('average_expr', 'average_expr_nonzero', 'sum_expr'), suffix='_aexpr', argstr='-Aexpr %s %s', ), blur_fwhm=dict(argstr='-Gblur %f', ), var_absolute_threshold_normalize=dict(name_source='in_file', xor=('absolute_threshold', 'var_absolute_threshold', 'var_absolute_threshold_normalize'), suffix='_varthreshn', argstr='-VarThreshN %f %f %f %s', ), out_file=dict(name_source=['in_file'], name_template='%s_afni', argstr='-prefix %s', ), expr=dict(), mask=dict(argstr='-mask %s', ), mean_file=dict(name_source='in_file', suffix='_mean', argstr='-Mean %s', ), sum_expr=dict(name_source='in_file', xor=('average_expr', 'average_expr_nonzero', 'sum_expr'), suffix='_sexpr', argstr='-Sexpr %s %s', ), regress_out_timeseries=dict(argstr='-ort %s', ), seeds=dict(xor='seeds_width', argstr='-seed %s', ), environ=dict(nohash=True, usedefault=True, ), correlation_maps=dict(name_source='in_file', argstr='-CorrMap %s', ), histogram_bin_numbers=dict(), bandpass=dict(argstr='-bpass %f %f', ), ) inputs = TCorrMap.input_spec() for key, metadata in input_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(inputs.traits()[key], metakey), value