def mod_despike(in_file, do_despike): out_file=in_file if do_despike: from nipype.interfaces.afni import Despike ds = Despike(in_file=in_file) out_file = ds.run().outputs.out_file return out_file
def mod_despike(in_file, do_despike): out_file = in_file if do_despike: from nipype.interfaces.afni import Despike ds = Despike(in_file=in_file) out_file = ds.run().outputs.out_file return out_file
def mod_despike(in_file, do_despike): out_file=in_file if do_despike: from nipype.interfaces.afni import Despike from nipype.utils.filemanip import fname_presuffix ds = Despike(in_file=in_file,out_file=fname_presuffix(in_file,'','_despike')) out_file = ds.run().outputs.out_file return out_file
def mod_despike(in_file, do_despike): out_file = in_file if do_despike: from nipype.interfaces.afni import Despike from nipype.utils.filemanip import fname_presuffix ds = Despike(in_file=in_file, out_file=fname_presuffix(in_file, '', '_despike')) out_file = ds.run().outputs.out_file return out_file
def hmc(name='fMRI_HMC'): """ Create a :abbr:`HMC (head motion correction)` workflow for fMRI. .. workflow:: from mriqc.workflows.functional import hmc from mriqc.testing import mock_config with mock_config(): wf = hmc() """ from nipype.algorithms.confounds import FramewiseDisplacement from nipype.interfaces.afni import Calc, TShift, Refit, Despike, Volreg from niworkflows.interfaces.registration import EstimateReferenceImage mem_gb = config.workflow.biggest_file_gb workflow = pe.Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface( fields=['in_file', 'fd_radius', 'start_idx', 'stop_idx']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=['out_file', 'out_fd']), name='outputnode') if any((config.workflow.start_idx is not None, config.workflow.stop_idx is not None)): drop_trs = pe.Node(Calc(expr='a', outputtype='NIFTI_GZ'), name='drop_trs') workflow.connect([ (inputnode, drop_trs, [('in_file', 'in_file_a'), ('start_idx', 'start_idx'), ('stop_idx', 'stop_idx')]), ]) else: drop_trs = pe.Node(niu.IdentityInterface(fields=['out_file']), name='drop_trs') workflow.connect([ (inputnode, drop_trs, [('in_file', 'out_file')]), ]) gen_ref = pe.Node(EstimateReferenceImage(mc_method="AFNI"), name="gen_ref") # calculate hmc parameters hmc = pe.Node(Volreg(args='-Fourier -twopass', zpad=4, outputtype='NIFTI_GZ'), name='motion_correct', mem_gb=mem_gb * 2.5) # Compute the frame-wise displacement fdnode = pe.Node(FramewiseDisplacement(normalize=False, parameter_source="AFNI"), name='ComputeFD') workflow.connect([ (inputnode, fdnode, [('fd_radius', 'radius')]), (gen_ref, hmc, [('ref_image', 'basefile')]), (hmc, outputnode, [('out_file', 'out_file')]), (hmc, fdnode, [('oned_file', 'in_file')]), (fdnode, outputnode, [('out_file', 'out_fd')]), ]) # Slice timing correction, despiking, and deoblique st_corr = pe.Node(TShift(outputtype='NIFTI_GZ'), name='TimeShifts') deoblique_node = pe.Node(Refit(deoblique=True), name='deoblique') despike_node = pe.Node(Despike(outputtype='NIFTI_GZ'), name='despike') if all((config.workflow.correct_slice_timing, config.workflow.despike, config.workflow.deoblique)): workflow.connect([ (drop_trs, st_corr, [('out_file', 'in_file')]), (st_corr, despike_node, [('out_file', 'in_file')]), (despike_node, deoblique_node, [('out_file', 'in_file')]), (deoblique_node, gen_ref, [('out_file', 'in_file')]), (deoblique_node, hmc, [('out_file', 'in_file')]), ]) elif config.workflow.correct_slice_timing and config.workflow.despike: workflow.connect([ (drop_trs, st_corr, [('out_file', 'in_file')]), (st_corr, despike_node, [('out_file', 'in_file')]), (despike_node, gen_ref, [('out_file', 'in_file')]), (despike_node, hmc, [('out_file', 'in_file')]), ]) elif config.workflow.correct_slice_timing and config.workflow.deoblique: workflow.connect([ (drop_trs, st_corr, [('out_file', 'in_file')]), (st_corr, deoblique_node, [('out_file', 'in_file')]), (deoblique_node, gen_ref, [('out_file', 'in_file')]), (deoblique_node, hmc, [('out_file', 'in_file')]), ]) elif config.workflow.correct_slice_timing: workflow.connect([ (drop_trs, st_corr, [('out_file', 'in_file')]), (st_corr, gen_ref, [('out_file', 'in_file')]), (st_corr, hmc, [('out_file', 'in_file')]), ]) elif config.workflow.despike and config.workflow.deoblique: workflow.connect([ (drop_trs, despike_node, [('out_file', 'in_file')]), (despike_node, deoblique_node, [('out_file', 'in_file')]), (deoblique_node, gen_ref, [('out_file', 'in_file')]), (deoblique_node, hmc, [('out_file', 'in_file')]), ]) elif config.workflow.despike: workflow.connect([ (drop_trs, despike_node, [('out_file', 'in_file')]), (despike_node, gen_ref, [('out_file', 'in_file')]), (despike_node, hmc, [('out_file', 'in_file')]), ]) elif config.workflow.deoblique: workflow.connect([ (drop_trs, deoblique_node, [('out_file', 'in_file')]), (deoblique_node, gen_ref, [('out_file', 'in_file')]), (deoblique_node, hmc, [('out_file', 'in_file')]), ]) else: workflow.connect([ (drop_trs, gen_ref, [('out_file', 'in_file')]), (drop_trs, hmc, [('out_file', 'in_file')]), ]) return workflow
def preproc_workflow(input_dir, output_dir, subject_list, ses_list, anat_file, func_file, scan_size=477, bet_frac=0.37): """ The preprocessing workflow used in the preparation of the psilocybin vs escitalopram rsFMRI scans. Workflows and notes are defined throughout. Inputs are designed to be general and masks/default MNI space is provided :param input_dir: The input file directory containing all scans in BIDS format :param output_dir: The output file directory :param subject_list: a list of subject numbers :param ses_list: a list of scan numbers (session numbers) :param anat_file: The format of the anatomical scan within the input directory :param func_file: The format of the functional scan within the input directory :param scan_size: The length of the scan by number of images, most 10 minutes scans are around 400-500 depending upon scanner defaults and parameters - confirm by looking at your data :param bet_frac: brain extraction fractional intensity threshold :return: the preprocessing workflow """ preproc = Workflow(name='preproc') preproc.base_dir = output_dir # Infosource - a function free node to iterate over the list of subject names infosource = Node(IdentityInterface(fields=['subject_id', 'ses']), name="infosource") infosource.iterables = [('subject_id', subject_list), ('ses', ses_list)] # SelectFiles - to grab the data (alternative to DataGrabber) templates = { 'anat': anat_file, 'func': func_file } # define the template of each file input selectfiles = Node(SelectFiles(templates, base_directory=input_dir), name="selectfiles") # Datasink - creates output folder for important outputs datasink = Node(DataSink(base_directory=output_dir, container=output_dir), name="datasink") preproc.connect([(infosource, selectfiles, [('subject_id', 'subject_id'), ('ses', 'ses')])]) ''' This is your functional processing workflow, used to trim scans, despike the signal, slice-time correct, and motion correct your data ''' fproc = Workflow(name='fproc') # the functional processing workflow # ExtractROI - skip dummy scans at the beginning of the recording by removing the first three trim = Node(ExtractROI(t_min=3, t_size=scan_size, output_type='NIFTI_GZ'), name="trim") # 3dDespike - despike despike = Node(Despike(outputtype='NIFTI_GZ', args='-NEW'), name="despike") fproc.connect([(trim, despike, [('roi_file', 'in_file')])]) preproc.connect([(selectfiles, fproc, [('func', 'trim.in_file')])]) # 3dTshift - slice time correction slicetime = Node(TShift(outputtype='NIFTI_GZ', tpattern='alt+z2'), name="slicetime") fproc.connect([(despike, slicetime, [('out_file', 'in_file')])]) # 3dVolreg - correct motion and output 1d matrix moco = Node(Volreg(outputtype='NIFTI_GZ', interp='Fourier', zpad=4, args='-twopass'), name="moco") fproc.connect([(slicetime, moco, [('out_file', 'in_file')])]) moco_bpfdt = Node( MOCObpfdt(), name='moco_bpfdt' ) # use the matlab function to correct the motion regressor fproc.connect([(moco, moco_bpfdt, [('oned_file', 'in_file')])]) ''' This is the co-registration workflow using FSL and ANTs ''' coreg = Workflow(name='coreg') # BET - structural data brain extraction bet_anat = Node(BET(output_type='NIFTI_GZ', frac=bet_frac, robust=True), name="bet_anat") # FSL segmentation process to get WM map seg = Node(FAST(bias_iters=6, img_type=1, output_biascorrected=True, output_type='NIFTI_GZ'), name="seg") coreg.connect([(bet_anat, seg, [('out_file', 'in_files')])]) # functional to structural registration mean = Node(MCFLIRT(mean_vol=True, output_type='NIFTI_GZ'), name="mean") # BBR using linear methods for initial transform fit func2struc = Node(FLIRT(cost='bbr', dof=6, output_type='NIFTI_GZ'), name='func2struc') coreg.connect([(seg, func2struc, [('restored_image', 'reference')])]) coreg.connect([(mean, func2struc, [('mean_img', 'in_file')])]) coreg.connect([(seg, func2struc, [(('tissue_class_files', pickindex, 2), 'wm_seg')])]) # convert the FSL linear transform into a C3d format for AFNI f2s_c3d = Node(C3dAffineTool(itk_transform=True, fsl2ras=True), name='f2s_c3d') coreg.connect([(func2struc, f2s_c3d, [('out_matrix_file', 'transform_file') ])]) coreg.connect([(mean, f2s_c3d, [('mean_img', 'source_file')])]) coreg.connect([(seg, f2s_c3d, [('restored_image', 'reference_file')])]) # Functional to structural registration via ANTs non-linear registration reg = Node(Registration( fixed_image='default_images/MNI152_T1_2mm_brain.nii.gz', transforms=['Affine', 'SyN'], transform_parameters=[(0.1, ), (0.1, 3.0, 0.0)], number_of_iterations=[[1500, 1000, 1000], [100, 70, 50, 20]], dimension=3, write_composite_transform=True, collapse_output_transforms=True, metric=['MI'] + ['CC'], metric_weight=[1] * 2, radius_or_number_of_bins=[32] + [4], convergence_threshold=[1.e-8, 1.e-9], convergence_window_size=[20] + [10], smoothing_sigmas=[[2, 1, 0], [4, 2, 1, 0]], sigma_units=['vox'] * 2, shrink_factors=[[4, 2, 1], [6, 4, 2, 1]], use_histogram_matching=[False] + [True], use_estimate_learning_rate_once=[True, True], output_warped_image=True), name='reg') coreg.connect([(seg, reg, [('restored_image', 'moving_image')]) ]) # connect segmentation node to registration node merge1 = Node(niu.Merge(2), iterfield=['in2'], name='merge1') # merge the linear and nonlinear transforms coreg.connect([(f2s_c3d, merge1, [('itk_transform', 'in2')])]) coreg.connect([(reg, merge1, [('composite_transform', 'in1')])]) # warp the functional images into MNI space using the transforms from FLIRT and SYN warp = Node(ApplyTransforms( reference_image='default_images/MNI152_T1_2mm_brain.nii.gz', input_image_type=3), name='warp') coreg.connect([(moco, warp, [('out_file', 'input_image')])]) coreg.connect([(merge1, warp, [('out', 'transforms')])]) preproc.connect([(selectfiles, coreg, [('anat', 'bet_anat.in_file')])]) preproc.connect([(fproc, coreg, [('moco.out_file', 'mean.in_file')])]) ''' Scrubbing workflow - find the motion outliers, bandpass filter, re-mean the data after bpf ''' scrub = Workflow(name='scrub') # Generate the Scrubbing Regressor scrub_metrics = Node(MotionOutliers(dummy=4, out_file='FD_outliers.1D', metric='fd', threshold=0.4), name="scrub_metrics") # regress out timepoints scrub_frames = Node(Bandpass(highpass=0, lowpass=99999, outputtype='NIFTI_GZ'), name='scrub_frames') scrub.connect([(scrub_metrics, scrub_frames, [('out_file', 'orthogonalize_file')])]) preproc.connect([(coreg, scrub, [('warp.output_image', 'scrub_frames.in_file')])]) preproc.connect([(selectfiles, scrub, [('func', 'scrub_metrics.in_file')]) ]) # mean image for remeaning after bandpass premean = Node(TStat(args='-mean', outputtype='NIFTI_GZ'), name='premean') # remean the image remean2 = Node(Calc(expr='a+b', outputtype='NIFTI_GZ'), name='remean2') scrub.connect([(scrub_frames, remean2, [('out_file', 'in_file_a')])]) scrub.connect([(premean, remean2, [('out_file', 'in_file_b')])]) preproc.connect([(coreg, scrub, [('warp.output_image', 'premean.in_file')]) ]) ''' Regressors for final cleaning steps ''' regressors = Workflow(name='regressors') # Using registered structural image to create the masks for both WM and CSF regbet = Node(BET(robust=True, frac=0.37, output_type='NIFTI_GZ'), name='regbet') regseg = Node(FAST(img_type=1, output_type='NIFTI_GZ', no_pve=True, no_bias=True, segments=True), name='regseg') regressors.connect([(regbet, regseg, [('out_file', 'in_files')])]) preproc.connect([(coreg, regressors, [('reg.warped_image', 'regbet.in_file')])]) ''' Create a cerebrospinal fluid (CSF) regressor ''' # subtract subcortical GM from the CSF mask subcortgm = Node(BinaryMaths( operation='sub', operand_file='default_images/subcortical_gm_mask_bin.nii.gz', output_type='NIFTI_GZ', args='-bin'), name='subcortgm') regressors.connect([(regseg, subcortgm, [(('tissue_class_files', pickindex, 0), 'in_file')])]) # Fill the mask holes fillcsf = Node(MaskTool(fill_holes=True, outputtype='NIFTI_GZ'), name='fillcsf') regressors.connect([(subcortgm, fillcsf, [('out_file', 'in_file')])]) # Erode the mask erocsf = Node(MaskTool(outputtype='NIFTI_GZ', dilate_inputs='-1'), name='erocsf') regressors.connect([(fillcsf, erocsf, [('out_file', 'in_file')])]) # Take mean csf signal from functional image meancsf = Node(ImageMeants(output_type='NIFTI_GZ'), name='meancsf') regressors.connect([(erocsf, meancsf, [('out_file', 'mask')])]) preproc.connect([(coreg, regressors, [('warp.output_image', 'meancsf.in_file')])]) bpf_dt_csf = Node(CSFbpfdt(), name='bpf_dt_csf') regressors.connect([(meancsf, bpf_dt_csf, [('out_file', 'in_file')])]) ''' Creates a local white matter regressor ''' # subtract subcortical gm subcortgm2 = Node(BinaryMaths( operation='sub', operand_file='default_images/subcortical_gm_mask_bin.nii.gz', output_type='NIFTI_GZ', args='-bin'), name='subcortgm2') regressors.connect([(regseg, subcortgm2, [(('tissue_class_files', pickindex, 2), 'in_file')])]) # fill mask fillwm = Node(MaskTool(fill_holes=True, outputtype='NIFTI_GZ'), name='fillwm') regressors.connect([(subcortgm2, fillwm, [('out_file', 'in_file')])]) # erod mask erowm = Node(MaskTool(outputtype='NIFTI_GZ', dilate_inputs='-1'), name='erowm') regressors.connect([(fillwm, erowm, [('out_file', 'in_file')])]) # generate local wm localwm = Node(Localstat(neighborhood=('SPHERE', 25), stat='mean', nonmask=True, outputtype='NIFTI_GZ'), name='localwm') regressors.connect([(erowm, localwm, [('out_file', 'mask_file')])]) preproc.connect([(coreg, regressors, [('warp.output_image', 'localwm.in_file')])]) # bandpass filter the local wm regressor localwm_bpf = Node(Fourier(highpass=0.01, lowpass=0.08, args='-retrend', outputtype='NIFTI_GZ'), name='loacwm_bpf') regressors.connect([(localwm, localwm_bpf, [('out_file', 'in_file')])]) # detrend the local wm regressor localwm_bpf_dt = Node(Detrend(args='-polort 2', outputtype='NIFTI_GZ'), name='localwm_bpf_dt') regressors.connect([(localwm_bpf, localwm_bpf_dt, [('out_file', 'in_file') ])]) ''' Clean up your functional image with the regressors you have created above ''' # create a mask for blurring filtering, and detrending clean = Workflow(name='clean') mask = Node(BET(mask=True, functional=True), name='mask') mean_mask = Node(MCFLIRT(mean_vol=True, output_type='NIFTI_GZ'), name="mean_mask") dilf = Node(DilateImage(operation='max', output_type='NIFTI_GZ'), name='dilf') clean.connect([(mask, dilf, [('mask_file', 'in_file')])]) preproc.connect([(scrub, clean, [('remean2.out_file', 'mask.in_file')])]) fill = Node(MaskTool(in_file='default_images/MNI152_T1_2mm_brain.nii.gz', fill_holes=True, outputtype='NIFTI_GZ'), name='fill') axb = Node(Calc(expr='a*b', outputtype='NIFTI_GZ'), name='axb') clean.connect([(dilf, axb, [('out_file', 'in_file_a')])]) clean.connect([(fill, axb, [('out_file', 'in_file_b')])]) bxc = Node(Calc(expr='ispositive(a)*b', outputtype='NIFTI_GZ'), name='bxc') clean.connect([(mean_mask, bxc, [('mean_img', 'in_file_a')])]) clean.connect([(axb, bxc, [('out_file', 'in_file_b')])]) preproc.connect([(scrub, clean, [('remean2.out_file', 'mean_mask.in_file') ])]) #### BLUR, FOURIER BPF, and DETREND blurinmask = Node(BlurInMask(fwhm=6, outputtype='NIFTI_GZ'), name='blurinmask') clean.connect([(bxc, blurinmask, [('out_file', 'mask')])]) preproc.connect([(scrub, clean, [('remean2.out_file', 'blurinmask.in_file') ])]) fourier = Node(Fourier(highpass=0.01, lowpass=0.08, retrend=True, outputtype='NIFTI_GZ'), name='fourier') clean.connect([(blurinmask, fourier, [('out_file', 'in_file')])]) tstat = Node(TStat(args='-mean', outputtype='NIFTI_GZ'), name='tstat') clean.connect([(fourier, tstat, [('out_file', 'in_file')])]) detrend = Node(Detrend(args='-polort 2', outputtype='NIFTI_GZ'), name='detrend') clean.connect([(fourier, detrend, [('out_file', 'in_file')])]) remean = Node(Calc(expr='a+b', outputtype='NIFTI_GZ'), name='remean') clean.connect([(detrend, remean, [('out_file', 'in_file_a')])]) clean.connect([(tstat, remean, [('out_file', 'in_file_b')])]) concat = Node(ConcatModel(), name='concat') # Removes nuisance regressors via regression function clean_rs = Node(Bandpass(highpass=0, lowpass=99999, outputtype='NIFTI_GZ'), name='clean_rs') clean.connect([(concat, clean_rs, [('out_file', 'orthogonalize_file')])]) remean1 = Node(Calc(expr='a+b', outputtype='NIFTI_GZ'), name='remean1') clean.connect([(clean_rs, remean1, [('out_file', 'in_file_a')])]) clean.connect([(tstat, remean1, [('out_file', 'in_file_b')])]) preproc.connect([(regressors, clean, [('bpf_dt_csf.out_file', 'concat.in_file_a')])]) preproc.connect([(fproc, clean, [('moco_bpfdt.out_file', 'concat.in_file_b')])]) preproc.connect([(regressors, clean, [('localwm_bpf_dt.out_file', 'clean_rs.orthogonalize_dset')])]) clean.connect([(remean, clean_rs, [('out_file', 'in_file')])]) ''' Write graphical output detailing the workflows and nodes ''' fproc.write_graph(graph2use='flat', format='png', simple_form=True, dotfilename='./fproc.dot') fproc.write_graph(graph2use='colored', format='png', simple_form=True, dotfilename='./fproc_color.dot') coreg.write_graph(graph2use='flat', format='png', simple_form=True, dotfilename='./coreg.dot') coreg.write_graph(graph2use='colored', format='png', simple_form=True, dotfilename='./coreg_color.dot') scrub.write_graph(graph2use='flat', format='png', simple_form=True, dotfilename='./scrub.dot') scrub.write_graph(graph2use='colored', format='png', simple_form=True, dotfilename='./scrub_color.dot') regressors.write_graph(graph2use='flat', format='png', simple_form=True, dotfilename='./reg.dot') regressors.write_graph(graph2use='colored', format='png', simple_form=True, dotfilename='./reg_color.dot') preproc.write_graph(graph2use='flat', format='png', simple_form=True, dotfilename='./preproc.dot') preproc.write_graph(graph2use='colored', format='png', simple_form=True, dotfilename='./preproc_color.dot') return preproc
def hmc(name="fMRI_HMC"): """ Create a :abbr:`HMC (head motion correction)` workflow for fMRI. .. workflow:: from mriqc.workflows.functional import hmc from mriqc.testing import mock_config with mock_config(): wf = hmc() """ from nipype.algorithms.confounds import FramewiseDisplacement from nipype.interfaces.afni import Calc, Despike, Refit, TShift, Volreg mem_gb = config.workflow.biggest_file_gb workflow = pe.Workflow(name=name) inputnode = pe.Node( niu.IdentityInterface( fields=["in_file", "fd_radius", "start_idx", "stop_idx"]), name="inputnode", ) outputnode = pe.Node(niu.IdentityInterface(fields=["out_file", "out_fd"]), name="outputnode") if any(( config.workflow.start_idx is not None, config.workflow.stop_idx is not None, )): drop_trs = pe.Node(Calc(expr="a", outputtype="NIFTI_GZ"), name="drop_trs") # fmt: off workflow.connect([ (inputnode, drop_trs, [("in_file", "in_file_a"), ("start_idx", "start_idx"), ("stop_idx", "stop_idx")]), ]) # fmt: on else: drop_trs = pe.Node(niu.IdentityInterface(fields=["out_file"]), name="drop_trs") # fmt: off workflow.connect([ (inputnode, drop_trs, [("in_file", "out_file")]), ]) # fmt: on # calculate hmc parameters hmc = pe.Node( Volreg(args="-Fourier -twopass", zpad=4, outputtype="NIFTI_GZ"), name="motion_correct", mem_gb=mem_gb * 2.5, ) # Compute the frame-wise displacement fdnode = pe.Node( FramewiseDisplacement(normalize=False, parameter_source="AFNI"), name="ComputeFD", ) # fmt: off workflow.connect([ (inputnode, fdnode, [("fd_radius", "radius")]), (hmc, outputnode, [("out_file", "out_file")]), (hmc, fdnode, [("oned_file", "in_file")]), (fdnode, outputnode, [("out_file", "out_fd")]), ]) # fmt: on # Slice timing correction, despiking, and deoblique st_corr = pe.Node(TShift(outputtype="NIFTI_GZ"), name="TimeShifts") deoblique_node = pe.Node(Refit(deoblique=True), name="deoblique") despike_node = pe.Node(Despike(outputtype="NIFTI_GZ"), name="despike") if all(( config.workflow.correct_slice_timing, config.workflow.despike, config.workflow.deoblique, )): # fmt: off workflow.connect([ (drop_trs, st_corr, [("out_file", "in_file")]), (st_corr, despike_node, [("out_file", "in_file")]), (despike_node, deoblique_node, [("out_file", "in_file")]), (deoblique_node, hmc, [("out_file", "in_file")]), ]) # fmt: on elif config.workflow.correct_slice_timing and config.workflow.despike: # fmt: off workflow.connect([ (drop_trs, st_corr, [("out_file", "in_file")]), (st_corr, despike_node, [("out_file", "in_file")]), (despike_node, hmc, [("out_file", "in_file")]), ]) # fmt: on elif config.workflow.correct_slice_timing and config.workflow.deoblique: # fmt: off workflow.connect([ (drop_trs, st_corr, [("out_file", "in_file")]), (st_corr, deoblique_node, [("out_file", "in_file")]), (deoblique_node, hmc, [("out_file", "in_file")]), ]) # fmt: on elif config.workflow.correct_slice_timing: # fmt: off workflow.connect([ (drop_trs, st_corr, [("out_file", "in_file")]), (st_corr, hmc, [("out_file", "in_file")]), ]) # fmt: on elif config.workflow.despike and config.workflow.deoblique: # fmt: off workflow.connect([ (drop_trs, despike_node, [("out_file", "in_file")]), (despike_node, deoblique_node, [("out_file", "in_file")]), (deoblique_node, hmc, [("out_file", "in_file")]), ]) # fmt: on elif config.workflow.despike: # fmt: off workflow.connect([ (drop_trs, despike_node, [("out_file", "in_file")]), (despike_node, hmc, [("out_file", "in_file")]), ]) # fmt: on elif config.workflow.deoblique: # fmt: off workflow.connect([ (drop_trs, deoblique_node, [("out_file", "in_file")]), (deoblique_node, hmc, [("out_file", "in_file")]), ]) # fmt: on else: # fmt: off workflow.connect([ (drop_trs, hmc, [("out_file", "in_file")]), ]) # fmt: on return workflow
##Define Experiment Parameters experiment_dir = '/Users/srk482-admin/Documents/forcemem_mriDat/nipype_tutorial' # location of experiment folder data_dir = '/Users/srk482-admin/Documents/forcemem_mriDat/' subject_list = ['2017062801', '2017070601', '2017062701', '2017062101'] block_list = ['block1', 'block2', 'block3', 'block4', 'block5'] # list of subject identifiers output_dir = 'output_fMRI_example_1st' # name of 1st-level output folder working_dir = 'workingdir_fMRI_example_1st' # name of 1st-level working directory number_of_slices = 48 # number of slices in volume TR = 2.0 # time repetition of volume fwhm_size = 6 # size of FWHM in mm # Despike - Removes 'spikes' from the 3D+time input dataset despike = MapNode(Despike(outputtype='NIFTI'), name="despike", iterfield=['in_file']) # Slicetiming - correct for slice wise acquisition interleaved_order = range(1, number_of_slices + 1, 2) + range( 2, number_of_slices + 1, 2) sliceTiming = Node(SliceTiming(num_slices=number_of_slices, time_repetition=TR, time_acquisition=TR - TR / number_of_slices, slice_order=interleaved_order, ref_slice=2), name="sliceTiming") # Realign - correct for motion realign = Node(Realign(register_to_mean=True), name="realign")
def create_lvl1pipe_wf(options): ''' Input [Mandatory]: ~~~~~~~~~~~ Set in command call: options: dictionary with the following entries remove_steadystateoutlier [boolean]: Should always be True. Remove steady state outliers from bold timecourse, specified in fmriprep confounds file. smooth [boolean]: If True, then /smooth subfolder created and populated with results. If False, then /nosmooth subfolder created and populated with results. censoring [string]: Either '' or 'despike', which implements nipype.interfaces.afni.Despike ICA_AROMA [boolean]: Use AROMA error components, from fmriprep confounds file. run_contrasts [boolean]: If False, then components related to contrasts and p values are removed from nipype.workflows.fmri.fsl.estimate.create_modelfit_workflow() keep_resid [boolean]: If False, then only sum of squares residuals will be outputted. If True, then timecourse residuals kept. poly_trend [integer. Use None to skip]: If given, polynomial trends will be added to run confounds, up to the order of the integer e.g. "0", gives an intercept, "1" gives intercept + linear trend, "2" gives intercept + linear trend + quadratic. DO NOT use in conjnuction with high pass filters. dct_basis [integer. Use None to skip]: If given, adds a discrete cosine transform, with a length (in seconds) of the interger specified. Adds unit scaled cosine basis functions to Design_Matrix columns, based on spm-style discrete cosine transform for use in high-pass filtering. Does not add intercept/constant. DO NOT use in conjnuction with high pass filters. ~~~~~~~~~~~ Set through inputs.inputspec input_dir [string]: path to folder containing fmriprep preprocessed data. e.g. model_wf.inputs.inputspec.input_dir = '/home/neuro/data' output_dir [string]: path to desired output folder. Workflow will create a new subfolder based on proj_name. e.g. model_wf.inputs.inputspec.output_dir = '/home/neuro/output' proj_name [string]: name for project subfolder within output_dir. Ideally something unique, or else workflow will write to an existing folder. e.g. model_wf.inputs.inputspec.proj_name = 'FSMAP_stress' design_col [string]: Name of column within events.tsv with values corresponding to entries specified in params. e.g. model_wf.inputs.inputspec.design_col = 'trial_type' params [list fo strings]: values within events.tsv design_col that correspond to events to be modeled. e.g. ['Instructions', 'Speech_prep', 'No_speech'] conditions [list, of either strings or lists], each condition must be a string within the events.tsv design_col. These conditions correspond to event conditions to be modeled. Give a list, instead of a string, to model parametric terms. These parametric terms give a event condition, then a parametric term, which is another column in the events.tsv file. The parametric term can be centered and normed using entries 3 and 4 in the list. e.g. model_wf.inputs.inputspec.params = ['condition1', 'condition2', ['condition1', 'parametric1', 'no_cent', 'no_norm'], ['condition2', 'paramatric2', 'cent', 'norm']] entry 1 is a condition within the design_col column entry 2 is a column in the events folder, which will be used for parametric weightings. entry 3 is either 'no_cent', or 'cent', indicating whether to center the parametric variable. entry 4 is either 'no_norm', or 'norm', indicating whether to normalize the parametric variable. Onsets and durations will be taken from corresponding values for entry 1 parametric weighting specified by entry 2, scaled/centered as specified, then appended to the design matrix. contrasts [list of lists]: Specifies contrasts to be performed. using params selected above. e.g. model_wf.inputs.inputspec.contrasts = [['Instructions', 'T', ['Instructions'], [1]], ['Speech_prep', 'T', ['Speech_prep'], [1]], ['No_speech', 'T', ['No_speech'], [1]], ['Speech_prep>No_speech', 'T', ['Speech_prep', 'No_speech'], [1, -1]]] noise_regressors [list of strings]: column names in confounds.tsv, specifying desired noise regressors for model. IF noise_transforms are to be applied to a regressor, add '*' to the name. e.g. model_wf.inputs.inputspec.noise_regressors = ['CSF', 'WhiteMatter', 'GlobalSignal', 'X*', 'Y*', 'Z*', 'RotX*', 'RotY*', 'RotZ*'] noise_transforms [list of strings]: noise transforms to be applied to select noise_regressors above. Possible values are 'quad', 'tderiv', and 'quadtderiv', standing for quadratic function of value, temporal derivative of value, and quadratic function of temporal derivative. e.g. model_wf.inputs.inputspec.noise_transforms = ['quad', 'tderiv', 'quadtderiv'] TR [float]: Scanner TR value in seconds. e.g. model_wf.inputs.inputspec.TR = 2. FILM_threshold [integer]: Cutoff value for modeling threshold. 1000: p <.001; 1: p <=1, i.e. unthresholded. e.g. model_wf.inputs.inputspec.FILM_threshold = 1 hpf_cutoff [float]: high pass filter value. DO NOT USE THIS in conjunction with poly_trend or dct_basis. e.g. model_wf.inputs.inputspec.hpf_cutoff = 120. bases: (a dictionary with keys which are 'hrf' or 'fourier' or 'fourier_han' or 'gamma' or 'fir' and with values which are any value) dict {'name':{'basesparam1':val,...}} name : string Name of basis function (hrf, fourier, fourier_han, gamma, fir) hrf : derivs : 2-element list Model HRF Derivatives. No derivatives: [0,0], Time derivatives : [1,0], Time and Dispersion derivatives: [1,1] fourier, fourier_han, gamma, fir: length : int Post-stimulus window length (in seconds) order : int Number of basis functions e.g. model_wf.inputs.inputspec.bases = {'dgamma':{'derivs': False}} model_serial_correlations [boolean]: Allow prewhitening, with 5mm spatial smoothing. model_wf.inputs.inputspec.model_serial_correlations = True sinker_subs [list of tuples]: passed to nipype.interfaces.io.Datasink. Changes names when passing to output directory. e.g. model_wf.inputs.inputspec.sinker_subs = [('pe1', 'pe1_instructions'), ('pe2', 'pe2_speech_prep'), ('pe3', 'pe3_no_speech')] bold_template [dictionary with string entry]: Specifies path, with wildcard, to grab all relevant BOLD files. Each subject_list entry should uniquely identify the ONE relevant file. e.g. model_wf.inputs.inputspec.bold_template = {'bold': '/home/neuro/data/sub-*/func/sub-*_task-stress_bold_space-MNI152NLin2009cAsym_preproc.nii.gz'} This would grab the functional run for all subjects, and when subject_id = 'sub-001', there is ONE file in the list that the ID could possible correspond to. To handle multiple runs, list the run information in the subject_id. e.g. 'sub-01_task-trag_run-01'. mask_template [dictionary with string entry]: Specifies path, with wildcard, to grab all relevant MASK files, corresponding to functional images. Each subject_list entry should uniquely identify the ONE relevant file. e.g. model_wf.inputs.inputspec.mask_template = {'mask': '/home/neuro/data/sub-*/func/sub-*_task-stress_bold_space-MNI152NLin2009cAsym_brainmask.nii.gz'} See bold_template for more detail. task_template [dictionary with string entry]: Specifies path, with wildcard, to grab all relevant events.tsv files, corresponding to functional images. Each subject_list entry should uniquely identify the ONE relevant file. e.g. model_wf.inputs.inputspec.task_template = {'task': '/home/neuro/data/sub-*/func/sub-*_task-stress_events.tsv'} See bold_template for more detail. confound_template [dictionary with string entry]: Specifies path, with wildcard, to grab all relevant confounds.tsv files, corresponding to functional images. Each subject_list entry should uniquely identify the ONE relevant file. e.g. model_wf.inputs.inputspec.confound_template = {'confound': '/home/neuro/data/sub-*/func/sub-*_task-stress_bold_confounds.tsv'} See bold_template for more detail. smooth_gm_mask_template [dictionary with string entry]: Specifies path, with wildcard, to grab all relevant grey matter mask .nii.gz files, pulling from each subject's /anat fodler. Each subject_list entry should uniquely identify the ONE relevant file (BUT SEE THE NOTE BELOW). e.g. model_wf.inputs.inputspec.smooth_gm_mask_template = {'gm_mask': '/scratch/data/sub-*/anat/sub-*_T1w_space-MNI152NLin2009cAsym_class-GM_probtissue.nii.gz'} NOTE: If the subject_id value has more information than just the ID (e.g. sub-01_task-trag_run-01), then JUST the sub-01 portion will be used to identify the grey matter mask. This is because multiple runs will have the same anatomical data. i.e. sub-01_run-01, sub-01_run-02, sub-01_run-03, all correspond to sub-01_T1w_space-MNI152NLin2009cAsym_class-GM_probtissue.nii.gz. fwhm [float]. Redundant if options['smooth']: False Determines smoothing kernel. Multiple kernels can be run in parallel by iterating through an outside workflow. Also see subject_id below for another example of iterables. e.g. model_wf.inputs.inputspec.fwhm = 1.5 OR Iterable e.g. import nipype.pipeline.engine as pe fwhm_list = [1.5, 6] infosource = pe.Node(IdentityInterface(fields=['fwhm']), name='infosource') infosource.iterables = [('fwhm', fwhm_list)] full_model_wf = pe.Workflow(name='full_model_wf') full_model_wf.connect([(infosource, model_wf, [('subject_id', 'inputspec.subject_id')])]) full_model_wf.run() subject_id [string]: Identifies subject in conjnuction with template. See bold_template note above. Can also be entered as an iterable from an outside workflow, in which case iterables are run in parallel to the extent that cpu cores are available. e.g. model_wf.inputs.inputspec.subject_id = 'sub-01' OR Iterable e.g. import nipype.pipeline.engine as pe subject_list = ['sub-001', 'sub-002'] infosource = pe.Node(IdentityInterface(fields=['subject_id']), name='infosource') infosource.iterables = [('subject_id', subject_list)] full_model_wf = pe.Workflow(name='full_model_wf') full_model_wf.connect([(infosource, model_wf, [('subject_id', 'inputspec.subject_id')])]) full_model_wf.run() ''' import nipype.pipeline.engine as pe # pypeline engine import nipype.interfaces.fsl as fsl import os from nipype import IdentityInterface, SelectFiles from nipype.interfaces.utility.wrappers import Function ################## Setup workflow. lvl1pipe_wf = pe.Workflow(name='lvl_one_pipe') inputspec = pe.Node(IdentityInterface( fields=['input_dir', 'output_dir', 'design_col', 'noise_regressors', 'noise_transforms', 'TR', # in seconds. 'FILM_threshold', 'hpf_cutoff', 'conditions', 'contrasts', 'bases', 'model_serial_correlations', 'sinker_subs', 'bold_template', 'mask_template', 'task_template', 'confound_template', 'smooth_gm_mask_template', 'gmmask_args', 'subject_id', 'fwhm', 'proj_name', ], mandatory_inputs=False), name='inputspec') ################## Select Files def get_file(subj_id, template): import glob temp_list = [] out_list = [] if '_' in subj_id and '/anat/' in list(template.values())[0]: subj_id = subj_id[:subj_id.find('_')] # if looking for gmmask, and subj_id includes additional info (e.g. sub-001_task-trag_run-01) then just take the subject id component, as the run info will not be present for the anatomical data. for x in glob.glob(list(template.values())[0]): if subj_id in x: temp_list.append(x) for file in temp_list: # ensure no duplicate entries. if file not in out_list: out_list.append(file) if len(out_list) == 0: assert (len(out_list) == 1), 'Each combination of template and subject ID should return 1 file. 0 files were returned.' if len(out_list) > 1: assert (len(out_list) == 1), 'Each combination of template and subject ID should return 1 file. Multiple files returned.' out_file = out_list[0] return out_file get_bold = pe.Node(Function( input_names=['subj_id', 'template'], output_names=['out_file'], function=get_file), name='get_bold') get_mask = pe.Node(Function( input_names=['subj_id', 'template'], output_names=['out_file'], function=get_file), name='get_mask') get_task = pe.Node(Function( input_names=['subj_id', 'template'], output_names=['out_file'], function=get_file), name='get_task') get_confile = pe.Node(Function( input_names=['subj_id', 'template'], output_names=['out_file'], function=get_file), name='get_confile') # get_bold.inputs.subj_id # From inputspec # get_bold.inputs.templates # From inputspec if options['smooth']: get_gmmask = pe.Node(Function( input_names=['subj_id', 'template'], output_names=['out_file'], function=get_file), name='get_gmmask') mod_gmmask = pe.Node(fsl.maths.MathsCommand(), name='mod_gmmask') # mod_gmmask.inputs.in_file = # from get_gmmask # mod_gmmask.inputs.args = from inputspec def fit_mask(mask_file, ref_file): from nilearn.image import resample_img import nibabel as nib import os out_file = resample_img(nib.load(mask_file), target_affine=nib.load(ref_file).affine, target_shape=nib.load(ref_file).shape[0:3], interpolation='nearest') nib.save(out_file, os.path.join(os.getcwd(), mask_file.split('.nii')[0]+'_fit.nii.gz')) out_mask = os.path.join(os.getcwd(), mask_file.split('.nii')[0]+'_fit.nii.gz') return out_mask fit_mask = pe.Node(Function( input_names=['mask_file', 'ref_file'], output_names=['out_mask'], function=fit_mask), name='fit_mask') ################## Setup confounds def get_terms(confound_file, noise_transforms, noise_regressors, TR, options): ''' Gathers confounds (and transformations) into a pandas dataframe. Input [Mandatory]: confound_file [string]: path to confound.tsv file, given by fmriprep. noise_transforms [list of strings]: noise transforms to be applied to select noise_regressors above. Possible values are 'quad', 'tderiv', and 'quadtderiv', standing for quadratic function of value, temporal derivative of value, and quadratic function of temporal derivative. e.g. model_wf.inputs.inputspec.noise_transforms = ['quad', 'tderiv', 'quadtderiv'] noise_regressors [list of strings]: column names in confounds.tsv, specifying desired noise regressors for model. IF noise_transforms are to be applied to a regressor, add '*' to the name. e.g. model_wf.inputs.inputspec.noise_regressors = ['CSF', 'WhiteMatter', 'GlobalSignal', 'X*', 'Y*', 'Z*', 'RotX*', 'RotY*', 'RotZ*'] TR [float]: Scanner TR value in seconds. options: dictionary with the following entries remove_steadystateoutlier [boolean]: Should always be True. Remove steady state outliers from bold timecourse, specified in fmriprep confounds file. ICA_AROMA [boolean]: Use AROMA error components, from fmriprep confounds file. poly_trend [integer. Use None to skip]: If given, polynomial trends will be added to run confounds, up to the order of the integer e.g. "0", gives an intercept, "1" gives intercept + linear trend, "2" gives intercept + linear trend + quadratic. dct_basis [integer. Use None to skip]: If given, adds a discrete cosine transform, with a length (in seconds) of the interger specified. Adds unit scaled cosine basis functions to Design_Matrix columns, based on spm-style discrete cosine transform for use in high-pass filtering. Does not add intercept/constant. ''' import numpy as np import pandas as pd from nltools.data import Design_Matrix df_cf = pd.DataFrame(pd.read_csv(confound_file, sep='\t', parse_dates=False)) transfrm_list = [] for idx, entry in enumerate(noise_regressors): # get entries marked with *, indicating they should be transformed. if '*' in entry: transfrm_list.append(entry.replace('*', '')) # add entry to transformation list if it has *. noise_regressors[idx] = entry.replace('*', '') confounds = df_cf[noise_regressors] transfrmd_cnfds = df_cf[transfrm_list] # for transforms TR_time = pd.Series(np.arange(0.0, TR*transfrmd_cnfds.shape[0], TR)) # time series for derivatives. if 'quad' in noise_transforms: quad = np.square(transfrmd_cnfds) confounds = confounds.join(quad, rsuffix='_quad') if 'tderiv' in noise_transforms: tderiv = pd.DataFrame(pd.Series(np.gradient(transfrmd_cnfds[col]), TR_time) for col in transfrmd_cnfds).T tderiv.columns = transfrmd_cnfds.columns tderiv.index = confounds.index confounds = confounds.join(tderiv, rsuffix='_tderiv') if 'quadtderiv' in noise_transforms: quadtderiv = np.square(tderiv) confounds = confounds.join(quadtderiv, rsuffix='_quadtderiv') if options['remove_steadystateoutlier']: if not df_cf[df_cf.columns[df_cf.columns.to_series().str.contains('^non_steady_state_outlier')]].empty: confounds = confounds.join(df_cf[df_cf.columns[df_cf.columns.to_series().str.contains('^non_steady_state_outlier')]]) elif not df_cf[df_cf.columns[df_cf.columns.to_series().str.contains('^NonSteadyStateOutlier')]].empty: confounds = confounds.join(df_cf[df_cf.columns[df_cf.columns.to_series().str.contains('^NonSteadyStateOutlier')]]) # old syntax if options['ICA_AROMA']: if not df_cf[df_cf.columns[df_cf.columns.to_series().str.contains('^aroma_motion')]].empty: confounds = confounds.join(df_cf[df_cf.columns[df_cf.columns.to_series().str.contains('^aroma_motion')]]) elif not df_cf[df_cf.columns[df_cf.columns.to_series().str.contains('^AROMAAggrComp')]].empty: confounds = confounds.join(df_cf[df_cf.columns[df_cf.columns.to_series().str.contains('^AROMAAggrComp')]]) # old syntax confounds = Design_Matrix(confounds, sampling_freq=1/TR) if isinstance(options['poly_trend'], int): confounds = confounds.add_poly(order = options['poly_trend']) # these do not play nice with high pass filters. if isinstance(options['dct_basis'], int): confounds = confounds.add_dct_basis(duration=options['dct_basis']) # these do not play nice with high pass filters. return confounds get_confounds = pe.Node(Function(input_names=['confound_file', 'noise_transforms', 'noise_regressors', 'TR', 'options'], output_names=['confounds'], function=get_terms), name='get_confounds') # get_confounds.inputs.confound_file = # From get_confile # get_confounds.inputs.noise_transforms = # From inputspec # get_confounds.inputs.noise_regressors = # From inputspec # get_confounds.inputs.TR = # From inputspec get_confounds.inputs.options = options ################## Create bunch to run FSL first level model. def get_subj_info(task_file, design_col, confounds, conditions): ''' Makes a Bunch, giving all necessary data about conditions, onsets, and durations to FSL first level model. Needs a task file to run. Inputs: task file [string], path to the subject events.tsv file, as per BIDS format. design_col [string], column name within task file, identifying event conditions to model. confounds [pandas dataframe], pd.df of confounds, gathered from get_confounds node. conditions [list], e.g. ['condition1', 'condition2', ['condition1', 'parametric1', 'no_cent', 'no_norm'], ['condition2', 'paramatric2', 'cent', 'norm']] each string entry (e.g. 'condition1') specifies a event condition in the design_col column. each list entry includes 4 strings: entry 1 is a condition within the design_col column entry 2 is a column in the events folder, which will be used for parametric weightings. entry 3 is either 'no_cent', or 'cent', indicating whether to center the parametric variable. entry 4 is either 'no_norm', or 'norm', indicating whether to normalize the parametric variable. Onsets and durations will be taken from corresponding values for entry 1 parametric weighting specified by entry 2, scaled/centered as specified, then appended to the design matrix. ''' from nipype.interfaces.base import Bunch import pandas as pd import numpy as np from sklearn.preprocessing import scale onsets = [] durations = [] amplitudes = [] df = pd.read_csv(task_file, sep='\t', parse_dates=False) for idx, cond in enumerate(conditions): if isinstance(cond, list): if cond[2] == 'no_cent': # determine whether to center/scale c = False elif cond[2] == 'cent': c = True if cond[3] == 'no_norm': n = False elif cond[3] == 'norm': n = True # grab parametric terms. onsets.append(list(df[df[design_col] == cond[0]].onset)) durations.append(list(df[df[design_col] == cond[0]].duration)) amp_temp = list(scale(df[df[design_col] == cond[0]][cond[1]].tolist(), with_mean=c, with_std=n)) # scale amp_temp = pd.Series(amp_temp, dtype=object).fillna(0).tolist() # fill na amplitudes.append(amp_temp) # append conditions[idx] = cond[0]+'_'+cond[1] # combine condition/parametric names and replace. elif isinstance(cond, str): onsets.append(list(df[df[design_col] == cond].onset)) durations.append(list(df[df[design_col] == cond].duration)) # dummy code 1's for non-parametric conditions. amplitudes.append(list(np.repeat(1, len(df[df[design_col] == cond].onset)))) else: print('cannot identify condition:', cond) # return None output = Bunch(conditions= conditions, onsets=onsets, durations=durations, amplitudes=amplitudes, tmod=None, pmod=None, regressor_names=confounds.columns.values, regressors=confounds.T.values.tolist()) # movement regressors added here. List of lists. return output make_bunch = pe.Node(Function(input_names=['task_file', 'design_col', 'confounds', 'conditions'], output_names=['subject_info'], function=get_subj_info), name='make_bunch') # make_bunch.inputs.task_file = # From get_task # make_bunch.inputs.confounds = # From get_confounds # make_bunch.inputs.design_col = # From inputspec # make_bunch.inputs.conditions = # From inputspec def mk_outdir(output_dir, options, proj_name): import os from time import gmtime, strftime prefix = proj_name if options['smooth']: new_out_dir = os.path.join(output_dir, prefix, 'smooth') else: new_out_dir = os.path.join(output_dir, prefix, 'nosmooth') if not os.path.isdir(new_out_dir): os.makedirs(new_out_dir) return new_out_dir make_outdir = pe.Node(Function(input_names=['output_dir', 'options', 'proj_name'], output_names=['new_out_dir'], function=mk_outdir), name='make_outdir') # make_outdir.inputs.proj_name = from inputspec # make_outdir.inputs.output_dir = from inputspec make_outdir.inputs.options = options ################## Mask functional data. from jtnipyutil.util import mask_img maskBold = pe.Node(Function(input_names=['img_file', 'mask_file'], output_names=['out_file'], function=mask_img), name='maskBold') # maskBold.inputs.img_file # From get_bold, or smooth_wf # maskBold.inputs.mask_file # From get_mask ################## Despike from nipype.interfaces.afni import Despike despike = pe.Node(Despike(), name='despike') # despike.inputs.in_file = # From Mask despike.inputs.outputtype = 'NIFTI_GZ' from nipype.workflows.fmri.fsl.preprocess import create_susan_smooth smooth_wf = create_susan_smooth() # smooth_wf.inputs.inputnode.in_files = # from maskBold # smooth_wf.inputs.inputnode.fwhm = # from inputspec ################## Model Generation. import nipype.algorithms.modelgen as model specify_model = pe.Node(interface=model.SpecifyModel(), name='specify_model') specify_model.inputs.input_units = 'secs' # specify_model.functional_runs # From maskBold, despike, or smooth_wf # specify_model.subject_info # From make_bunch.outputs.subject_info # specify_model.high_pass_filter_cutoff # From inputspec # specify_model.time_repetition # From inputspec ################## Estimate workflow from nipype.workflows.fmri.fsl import estimate # fsl workflow modelfit = estimate.create_modelfit_workflow() modelfit.base_dir = '.' # modelfit.inputs.inputspec.session_info = # From specify_model # modelfit.inputs.inputspec.functional_data = # from maskBold # modelfit.inputs.inputspec.interscan_interval = # From inputspec # modelfit.inputs.inputspec.film_threshold = # From inputspec # modelfit.inputs.inputspec.bases = # From inputspec # modelfit.inputs.inputspec.model_serial_correlations = # From inputspec # modelfit.inputs.inputspec.contrasts = # From inputspec if not options['run_contrasts']: # drop contrast part of modelfit if contrasts aren't required. modelestimate = modelfit.get_node('modelestimate') merge_contrasts = modelfit.get_node('merge_contrasts') ztop = modelfit.get_node('ztop') outputspec = modelfit.get_node('outputspec') modelfit.disconnect([(modelestimate, merge_contrasts, [('zstats', 'in1'), ('zfstats', 'in2')]), (merge_contrasts, ztop, [('out', 'in_file')]), (merge_contrasts, outputspec, [('out', 'zfiles')]), (ztop, outputspec, [('out_file', 'pfiles')]) ]) modelfit.remove_nodes([merge_contrasts, ztop]) ################## DataSink from nipype.interfaces.io import DataSink import os.path sinker = pe.Node(DataSink(), name='sinker') # sinker.inputs.substitutions = # From inputspec # sinker.inputs.base_directory = # frm make_outdir def negate(input): return not input def unlist(input): return input[0] lvl1pipe_wf.connect([ # grab subject/run info (inputspec, get_bold, [('subject_id', 'subj_id'), ('bold_template', 'template')]), (inputspec, get_mask, [('subject_id', 'subj_id'), ('mask_template', 'template')]), (inputspec, get_task, [('subject_id', 'subj_id'), ('task_template', 'template')]), (inputspec, get_confile, [('subject_id', 'subj_id'), ('confound_template', 'template')]), (inputspec, get_confounds, [('noise_transforms', 'noise_transforms'), ('noise_regressors', 'noise_regressors'), ('TR', 'TR')]), (inputspec, make_bunch, [('design_col', 'design_col'), ('conditions', 'conditions')]), (inputspec, make_outdir, [('output_dir', 'output_dir'), ('proj_name', 'proj_name')]), (inputspec, specify_model, [('hpf_cutoff', 'high_pass_filter_cutoff'), ('TR', 'time_repetition')]), (inputspec, modelfit, [('TR', 'inputspec.interscan_interval'), ('FILM_threshold', 'inputspec.film_threshold'), ('bases', 'inputspec.bases'), ('model_serial_correlations', 'inputspec.model_serial_correlations'), (('model_serial_correlations', negate), 'modelestimate.autocorr_noestimate'), ('contrasts', 'inputspec.contrasts')]), (get_confile, get_confounds, [('out_file', 'confound_file')]), (get_confounds, make_bunch, [('confounds', 'confounds')]), (get_task, make_bunch, [('out_file', 'task_file')]), (make_bunch, specify_model, [('subject_info', 'subject_info')]), (get_mask, maskBold, [('out_file', 'mask_file')]), ]) if options['censoring'] == 'despike': lvl1pipe_wf.connect([ (get_bold, despike, [('out_file', 'in_file')]) ]) if options['smooth']: lvl1pipe_wf.connect([ (inputspec, smooth_wf, [('fwhm', 'inputnode.fwhm')]), (inputspec, get_gmmask, [('subject_id', 'subj_id'), ('smooth_gm_mask_template', 'template')]), (get_gmmask, mod_gmmask, [('out_file', 'in_file')]), (inputspec, mod_gmmask, [('gmmask_args', 'args')]), (mod_gmmask, fit_mask, [('out_file', 'mask_file')]), (get_bold, fit_mask, [('out_file', 'ref_file')]), (fit_mask, smooth_wf, [('out_mask', 'inputnode.mask_file')]), (fit_mask, sinker, [('out_mask', 'smoothing_mask')]), (despike, smooth_wf, [('out_file', 'inputnode.in_files')]), (smooth_wf, maskBold, [(('outputnode.smoothed_files', unlist), 'img_file')]), (maskBold, specify_model, [('out_file', 'functional_runs')]), (maskBold, modelfit, [('out_file', 'inputspec.functional_data')]) ]) else: lvl1pipe_wf.connect([ (despike, specify_model, [('out_file', 'functional_runs')]), (despike, modelfit, [('out_file', 'inputspec.functional_data')]), (despike, sinker, [('out_file', 'despike')]) ]) else: if options['smooth']: lvl1pipe_wf.connect([ (inputspec, smooth_wf, [('fwhm', 'inputnode.fwhm')]), (inputspec, get_gmmask, [('subject_id', 'subj_id'), ('smooth_gm_mask_template', 'template')]), (get_gmmask, mod_gmmask, [('out_file', 'in_file')]), (inputspec, mod_gmmask, [('gmmask_args', 'args')]), (mod_gmmask, fit_mask, [('out_file', 'mask_file')]), (get_bold, fit_mask, [('out_file', 'ref_file')]), (fit_mask, smooth_wf, [('out_mask', 'inputnode.mask_file')]), (fit_mask, sinker, [('out_mask', 'smoothing_mask')]), (get_bold, smooth_wf, [('out_file', 'inputnode.in_files')]), (smooth_wf, maskBold, [(('outputnode.smoothed_files', unlist), 'img_file')]), (maskBold, specify_model, [('out_file', 'functional_runs')]), (maskBold, modelfit, [('out_file', 'inputspec.functional_data')]) ]) else: lvl1pipe_wf.connect([ (get_bold, maskBold, [('out_file', 'img_file')]), (maskBold, specify_model, [('out_file', 'functional_runs')]), (maskBold, modelfit, [('out_file', 'inputspec.functional_data')]) ]) lvl1pipe_wf.connect([ (specify_model, modelfit, [('session_info', 'inputspec.session_info')]), (inputspec, sinker, [('subject_id','container'), ('sinker_subs', 'substitutions')]), # creates folder for each subject. (make_outdir, sinker, [('new_out_dir', 'base_directory')]), (modelfit, sinker, [('outputspec.parameter_estimates', 'model'), ('outputspec.dof_file','model.@dof'), #.@ puts this in the model folder. ('outputspec.copes','model.@copes'), ('outputspec.varcopes','model.@varcopes'), ('outputspec.zfiles','stats'), ('outputspec.pfiles', 'stats.@pfiles'), ('level1design.ev_files', 'design'), ('level1design.fsf_files', 'design.@fsf'), ('modelgen.con_file', 'design.@confile'), ('modelgen.fcon_file', 'design.@fconfile'), ('modelgen.design_cov', 'design.@covmatriximg'), ('modelgen.design_image', 'design.@designimg'), ('modelgen.design_file', 'design.@designfile'), ('modelestimate.logfile', 'design.@log'), ('modelestimate.sigmasquareds', 'model.@resid_sum'), ('modelestimate.fstats', 'stats.@fstats'), ('modelestimate.thresholdac', 'model.@serial_corr'), ]) ]) if options['keep_resid']: lvl1pipe_wf.connect([ (modelfit, sinker, [('modelestimate.residual4d', 'model.@resid') ]) ]) return lvl1pipe_wf