示例#1
0
def legacy(
    bids_base,
    template,
    debug=False,
    functional_blur_xy=False,
    functional_match={},
    keep_work=False,
    n_jobs=False,
    n_jobs_percentage=0.8,
    out_base=None,
    realign="time",
    registration_mask=False,
    sessions=[],
    structural_match={},
    subjects=[],
    tr=1,
    workflow_name='legacy',
    enforce_dummy_scans=DUMMY_SCANS,
    exclude={},
):
    '''
	Legacy realignment and registration workflow representative of the tweaks and workarounds commonly used in the pre-SAMRI period.

	Parameters
	----------
	bids_base : str
		Path to the BIDS data set root.
	template : str
		Path to the template to register the data to.
	debug : bool, optional
		Whether to enable nipype debug mode.
		This increases logging.
	exclude : dict
		A dictionary with any combination of "sessions", "subjects", "tasks" as keys and corresponding identifiers as values.
		If this is specified matching entries will be excluded in the analysis.
	functional_blur_xy : float, optional
		Factor by which to smooth data in the xy-plane; if parameter evaluates to false, no smoothing will be applied.
		Ideally this value should correspond to the resolution or smoothness in the z-direction (assuing z represents the lower-resolution slice-encoding direction).
	functional_match : dict, optional
		Dictionary specifying a whitelist to use for functional data inclusion into the workflow; if dictionary is empty no whitelist is present and all data will be considered.
		The dictionary should have keys which are 'acquisition', 'task', or 'modality', and values which are lists of acceptable strings for the respective BIDS field.
	keep_work : bool, str
		Whether to keep the work directory after workflow conclusion (this directory contains all the intermediary processing commands, inputs, and outputs --- it is invaluable for debugging but many times larger in size than the actual output).
	n_jobs : int, optional
		Number of processors to maximally use for the workflow; if unspecified a best guess will be estimate based on `n_jobs_percentage` and hardware (but not on current load).
	n_jobs_percentage : float, optional
		Percentage of available processors (as in available hardware, not available free load) to maximally use for the workflow (this is overriden by `n_jobs`).
	out_base : str, optional
		Output base directory - inside which a directory named `workflow_name` (as well as associated directories) will be created.
	realign : {"space","time","spacetime",""}, optional
		Parameter that dictates slictiming correction and realignment of slices. "time" (FSL.SliceTimer) is default, since it works safely. Use others only with caution!
	registration_mask : str, optional
		Mask to use for the registration process.
		This mask will constrain the area for similarity metric evaluation, but the data will not be cropped.
	sessions : list, optional
		A whitelist of sessions to include in the workflow, if the list is empty there is no whitelist and all sessions will be considered.
	structural_match : dict, optional
		Dictionary specifying a whitelist to use for structural data inclusion into the workflow; if dictionary is empty no whitelist is present and all data will be considered.
		The dictionary should have keys which are 'acquisition', or 'modality', and values which are lists of acceptable strings for the respective BIDS field.
	subjects : list, optional
		A whitelist of subjects to include in the workflow, if the list is empty there is no whitelist and all sessions will be considered.
	tr : float, optional
		Repetition time, explicitly.
		WARNING! This is a parameter waiting for deprecation.
	workflow_name : str, optional
		Top level name for the output directory.
	'''

    try:
        import nipype.interfaces.ants.legacy as antslegacy
    except ModuleNotFoundError:
        print('''
			The `nipype.interfaces.ants.legacy` was not found on this system.
			You may want to downgrade nipype to e.g. 1.1.1, as this module has been removed in more recent versions:
			https://github.com/nipy/nipype/issues/3197
		''')

    bids_base, out_base, out_dir, template, registration_mask, data_selection, functional_scan_types, structural_scan_types, subjects_sessions, func_ind, struct_ind = common_select(
        bids_base,
        out_base,
        workflow_name,
        template,
        registration_mask,
        functional_match,
        structural_match,
        subjects,
        sessions,
        exclude,
    )

    if not n_jobs:
        n_jobs = max(int(round(mp.cpu_count() * n_jobs_percentage)), 2)

    get_f_scan = pe.Node(name='get_f_scan',
                         interface=util.Function(
                             function=get_bids_scan,
                             input_names=inspect.getargspec(get_bids_scan)[0],
                             output_names=[
                                 'scan_path', 'scan_type', 'task', 'nii_path',
                                 'nii_name', 'events_name', 'subject_session',
                                 'metadata_filename', 'dict_slice', 'ind_type'
                             ]))
    get_f_scan.inputs.ignore_exception = True
    get_f_scan.inputs.data_selection = data_selection
    get_f_scan.inputs.bids_base = bids_base
    get_f_scan.iterables = ("ind_type", func_ind)

    dummy_scans = pe.Node(
        name='dummy_scans',
        interface=util.Function(
            function=force_dummy_scans,
            input_names=inspect.getargspec(force_dummy_scans)[0],
            output_names=['out_file', 'deleted_scans']))
    dummy_scans.inputs.desired_dummy_scans = enforce_dummy_scans

    events_file = pe.Node(
        name='events_file',
        interface=util.Function(
            function=write_bids_events_file,
            input_names=inspect.getargspec(write_bids_events_file)[0],
            output_names=['out_file']))

    temporal_mean = pe.Node(interface=fsl.MeanImage(), name="temporal_mean")

    f_resize = pe.Node(interface=VoxelResize(), name="f_resize")
    f_resize.inputs.resize_factors = [10, 10, 10]

    f_percentile = pe.Node(interface=fsl.ImageStats(), name="f_percentile")
    f_percentile.inputs.op_string = '-p 98'

    f_threshold = pe.Node(interface=fsl.Threshold(), name="f_threshold")

    f_fast = pe.Node(interface=fsl.FAST(), name="f_fast")
    f_fast.inputs.no_pve = True
    f_fast.inputs.output_biascorrected = True

    f_bet = pe.Node(interface=fsl.BET(), name="f_BET")

    f_swapdim = pe.Node(interface=fsl.SwapDimensions(), name="f_swapdim")
    f_swapdim.inputs.new_dims = ('x', '-z', '-y')

    f_deleteorient = pe.Node(interface=FSLOrient(), name="f_deleteorient")
    f_deleteorient.inputs.main_option = 'deleteorient'

    datasink = pe.Node(nio.DataSink(), name='datasink')
    datasink.inputs.base_directory = out_dir
    datasink.inputs.parameterization = False

    workflow_connections = [
        (get_f_scan, dummy_scans, [('nii_path', 'in_file')]),
        (dummy_scans, events_file, [('deleted_scans', 'forced_dummy_scans')]),
        (dummy_scans, f_resize, [('out_file', 'in_file')]),
        (get_f_scan, events_file, [('nii_path', 'timecourse_file'),
                                   ('task', 'task'),
                                   ('scan_path', 'scan_dir')]),
        (events_file, datasink, [('out_file', 'func.@events')]),
        (get_f_scan, events_file, [('events_name', 'out_file')]),
        (get_f_scan, datasink, [(('subject_session', ss_to_path), 'container')
                                ]),
        (temporal_mean, f_percentile, [('out_file', 'in_file')]),
        # here we divide by 10 assuming 10 percent noise
        (f_percentile, f_threshold, [(('out_stat', divideby_10), 'thresh')]),
        (temporal_mean, f_threshold, [('out_file', 'in_file')]),
        (f_threshold, f_fast, [('out_file', 'in_files')]),
        (f_fast, f_bet, [('restored_image', 'in_file')]),
        (f_resize, f_deleteorient, [('out_file', 'in_file')]),
        (f_deleteorient, f_swapdim, [('out_file', 'in_file')]),
    ]

    if realign == "space":
        realigner = pe.Node(interface=spm.Realign(), name="realigner")
        realigner.inputs.register_to_mean = True
        workflow_connections.extend([
            (f_swapdim, realigner, [('out_file', 'in_file')]),
        ])

    elif realign == "spacetime":
        realigner = pe.Node(interface=nipy.SpaceTimeRealigner(),
                            name="realigner")
        realigner.inputs.slice_times = "asc_alt_2"
        realigner.inputs.tr = tr
        realigner.inputs.slice_info = 3  #3 for coronal slices (2 for horizontal, 1 for sagittal)
        workflow_connections.extend([
            (f_swapdim, realigner, [('out_file', 'in_file')]),
        ])

    elif realign == "time":
        realigner = pe.Node(interface=fsl.SliceTimer(), name="slicetimer")
        realigner.inputs.time_repetition = tr
        workflow_connections.extend([
            (f_swapdim, realigner, [('out_file', 'in_file')]),
        ])

    f_antsintroduction = pe.Node(interface=antslegacy.antsIntroduction(),
                                 name='ants_introduction')
    f_antsintroduction.inputs.dimension = 3
    f_antsintroduction.inputs.reference_image = template
    #will need updating to `1`
    f_antsintroduction.inputs.bias_field_correction = True
    f_antsintroduction.inputs.transformation_model = 'GR'
    f_antsintroduction.inputs.max_iterations = [8, 15, 8]

    f_warp = pe.Node(interface=ants.WarpTimeSeriesImageMultiTransform(),
                     name='f_warp')
    f_warp.inputs.reference_image = template
    f_warp.inputs.dimension = 4

    f_copysform2qform = pe.Node(interface=FSLOrient(),
                                name='f_copysform2qform')
    f_copysform2qform.inputs.main_option = 'copysform2qform'

    warp_merge = pe.Node(util.Merge(2), name='warp_merge')

    workflow_connections.extend([
        (f_bet, f_antsintroduction, [('out_file', 'input_image')]),
        (f_antsintroduction, warp_merge, [('warp_field', 'in1')]),
        (f_antsintroduction, warp_merge, [('affine_transformation', 'in2')]),
        (warp_merge, f_warp, [('out', 'transformation_series')]),
        (f_warp, f_copysform2qform, [('output_image', 'in_file')]),
    ])
    if realign == "space":
        workflow_connections.extend([
            (realigner, temporal_mean, [('realigned_files', 'in_file')]),
            (realigner, f_warp, [('realigned_files', 'input_image')]),
        ])
    elif realign == "spacetime":
        workflow_connections.extend([
            (realigner, temporal_mean, [('out_file', 'in_file')]),
            (realigner, f_warp, [('out_file', 'input_image')]),
        ])
    elif realign == "time":
        workflow_connections.extend([
            (realigner, temporal_mean, [('slice_time_corrected_file',
                                         'in_file')]),
            (realigner, f_warp, [('slice_time_corrected_file', 'input_image')
                                 ]),
        ])
    else:
        workflow_connections.extend([
            (f_resize, temporal_mean, [('out_file', 'in_file')]),
            (f_swapdim, f_warp, [('out_file', 'input_image')]),
        ])

    if functional_blur_xy:
        blur = pe.Node(interface=afni.preprocess.BlurToFWHM(), name="blur")
        blur.inputs.fwhmxy = functional_blur_xy
        workflow_connections.extend([
            (get_f_scan, blur, [('nii_name', 'out_file')]),
            (f_copysform2qform, blur, [('out_file', 'in_file')]),
            (blur, datasink, [('out_file', 'func')]),
        ])
    else:

        f_rename = pe.Node(util.Rename(), name='f_rename')

        workflow_connections.extend([
            (get_f_scan, f_rename, [('nii_name', 'format_string')]),
            (f_copysform2qform, f_rename, [('out_file', 'in_file')]),
            (f_rename, datasink, [('out_file', 'func')]),
        ])

    workflow_config = {
        'execution': {
            'crashdump_dir': path.join(out_base, 'crashdump'),
        }
    }
    if debug:
        workflow_config['logging'] = {
            'workflow_level': 'DEBUG',
            'utils_level': 'DEBUG',
            'interface_level': 'DEBUG',
            'filemanip_level': 'DEBUG',
            'log_to_file': 'true',
        }

    workdir_name = workflow_name + "_work"
    #this gives the name of the workdir, the output name is passed to the datasink
    workflow = pe.Workflow(name=workdir_name)
    workflow.connect(workflow_connections)
    workflow.base_dir = out_base
    workflow.config = workflow_config
    try:
        workflow.write_graph(dotfilename=path.join(workflow.base_dir,
                                                   workdir_name, "graph.dot"),
                             graph2use="hierarchical",
                             format="png")
    except OSError:
        print(
            'We could not write the DOT file for visualization (`dot` function from the graphviz package). This is non-critical to the processing, but you should get this fixed.'
        )

    workflow.run(plugin="MultiProc", plugin_args={'n_procs': n_jobs})
    copy_bids_files(bids_base, os.path.join(out_base, workflow_name))
    if not keep_work:
        workdir = path.join(workflow.base_dir, workdir_name)
        try:
            shutil.rmtree(workdir)
        except OSError as e:
            if str(e) == 'Cannot call rmtree on a symbolic link':
                print(
                    'Not deleting top level workdir (`{}`), as it is a symlink. Deleting only contents instead'
                    .format(workdir))
                for file_object in os.listdir(workdir):
                    file_object_path = os.path.join(workdir, file_object)
                    if os.path.isfile(file_object_path):
                        os.unlink(file_object_path)
                    else:
                        shutil.rmtree(file_object_path)
            else:
                raise OSError(str(e))
示例#2
0
def create_apply_ants_xfm(dimension, mapnode, name='apply_ants_xfm'):
    """
    Takes in the results of the FSL-based functional-to-anatomical registration,
    and the results of the ANTS-based anatomical-to-template registration, and
    applies these transformations to register functional to template.

    The FSL-based functional-to-anatomical registration output transformations
    are first converted from FSL format to ITK format - this step can and
    should be separated into their own workflows in the future.

    NOTE: The dimension of the input image (3 or 4) must be specified in the
          function call, as well as whether or not the apply warp must be
          treated as a mapnode (0 - no, 1 - yes).

    Parameters
    ----------
    name : string, optional
        Name of the workflow.

    Returns
    -------
    apply_ants_xfm : nipype.pipeline.engine.Workflow

    Notes
    -----
    
    Workflow Inputs::

        inputspec.in_file : string (nifti file)
            File of functional brain data to be registered
        inputspec.warp_reference : string (nifti file)
            File of template to be used
        inputspec.use_nearest : boolean (True or False)
            Whether or not to use nearest neighbor interpolation
        inputspec.func_anat_affine : .mat file (affine matrix)
            Output matrix of FSL-based functional to anatomical registration
        inputspec.conversion_reference : string (nifti file)
            File of skull-stripped anatomical brain to be used in affine conversion
        inputspec.conversion_source : string (nifti file)
            Should match the input of the apply warp (in_file) unless you are
            applying the warp to a 4-d file, in which case this file should
            be a mean_functional file
        inputspec.nonlinear_field : string (nifti file)
            Output field file of the anatomical to template ANTS registration
        inputspec.ants_affine : text file
            Output matrix of the anatomical to template ANTS registration
            
    Workflow Outputs::
    
        outputspec.out_file : string (nifti file)
            Normalizion of input functional file

            
    Registration Procedure:
    
    1. Convert the FSL-based functional-to-anatomical output affine matrix into ANTS (ITK) format.
    2. Collect this converted affine, and the ants_affine.txt and nonlinear field file from
       the anatomical-to-template ANTS registration into one transformation series string.
    3. Apply the warp to the input file using WarpImageMultiTransform (for 3d files) or
       WarpTimeSeriesImageMultiTransform (for 4d files with timeseries).
       
    Workflow Graph:
    
    .. image::
        :width: 500
    
    Detailed Workflow Graph:
    
    .. image:: 
        :width: 500    
       
    """

    apply_ants_xfm = pe.Workflow(name=name)

    inputspec = pe.Node(util.IdentityInterface(fields=[
        'warp_reference', 'in_file', 'use_nearest', 'func_anat_affine',
        'conversion_reference', 'conversion_source', 'nonlinear_field',
        'ants_affine'
    ]),
                        name='inputspec')

    outputspec = pe.Node(util.IdentityInterface(fields=['out_file']),
                         name='outputspec')

    if dimension == 4:

        if mapnode == 0:

            # converts FSL-format .mat affine xfm into ANTS-format .txt
            # .mat affine comes from Func->Anat registration
            fsl_reg_2_itk = create_fsl_to_itk_conversion(
                mapnode, 'fsl_reg_2_itk')

            #collects series of transformations to be applied to the moving images
            collect_transforms = pe.Node(util.Merge(3),
                                         name='collect_transforms')

            # performs series of transformations on moving images
            warp_images = pe.Node(
                interface=ants.WarpTimeSeriesImageMultiTransform(),
                name='ants_apply_4d_warp')
            warp_images.inputs.dimension = 4

            apply_ants_xfm.connect(inputspec, 'warp_reference', warp_images,
                                   'reference_image')
            apply_ants_xfm.connect(inputspec, 'use_nearest', warp_images,
                                   'use_nearest')

        elif mapnode == 1:

            # in this case with 4-d images (timeseries), fsl_reg_2_itk and collect_transforms are not
            # map nodes due to the fact that the affine conversion (fsl_reg_2_itk) cannot take in a
            # 4-d image as its conversion_source (ordinarily the input image and the conversion source
            # are the same image, however with timeseries, mean_functional should be used as the
            # conversion source and the 4-d image used as the input image to the apply warp.
            # (this is why in_file and conversion_source are separated into two inputs)

            # converts FSL-format .mat affine xfm into ANTS-format .txt
            # .mat affine comes from Func->Anat registration
            fsl_reg_2_itk = create_fsl_to_itk_conversion(
                mapnode, 'fsl_reg_2_itk')

            #collects series of transformations to be applied to the moving images
            collect_transforms = pe.Node(util.Merge(3),
                                         name='collect_transforms')

            # performs series of transformations on moving images
            warp_images = pe.MapNode(
                interface=ants.WarpTimeSeriesImageMultiTransform(),
                name='ants_apply_4d_warp',
                iterfield=['in_file'])
            warp_images.inputs.dimension = 4

            apply_ants_xfm.connect(inputspec, 'warp_reference', warp_images,
                                   'reference_image')
            apply_ants_xfm.connect(inputspec, 'use_nearest', warp_images,
                                   'use_nearest')

    elif dimension == 3:

        if mapnode == 0:

            # converts FSL-format .mat affine xfm into ANTS-format .txt
            # .mat affine comes from Func->Anat registration
            fsl_reg_2_itk = create_fsl_to_itk_conversion(
                mapnode, 'fsl_reg_2_itk')

            #collects series of transformations to be applied to the moving images
            collect_transforms = pe.Node(util.Merge(3),
                                         name='collect_transforms')

            # performs series of transformations on moving images
            warp_images = pe.Node(interface=ants.WarpImageMultiTransform(),
                                  name='apply_ants_3d_warp')
            warp_images.inputs.dimension = 3

            apply_ants_xfm.connect(inputspec, 'warp_reference', warp_images,
                                   'reference_image')
            apply_ants_xfm.connect(inputspec, 'use_nearest', warp_images,
                                   'use_nearest')

        elif mapnode == 1:

            # converts FSL-format .mat affine xfm into ANTS-format .txt
            # .mat affine comes from Func->Anat registration
            fsl_reg_2_itk = create_fsl_to_itk_conversion(
                mapnode, 'fsl_reg_2_itk')

            #collects series of transformations to be applied to the moving images
            collect_transforms = pe.MapNode(util.Merge(3),
                                            name='collect_transforms',
                                            iterfield=['in3'])

            # performs series of transformations on moving images
            warp_images = pe.MapNode(
                interface=ants.WarpImageMultiTransform(),
                name='apply_ants_3d_warp',
                iterfield=['input_image', 'transformation_series'])
            warp_images.inputs.dimension = 3

            apply_ants_xfm.connect(inputspec, 'warp_reference', warp_images,
                                   'reference_image')
            apply_ants_xfm.connect(inputspec, 'use_nearest', warp_images,
                                   'use_nearest')

    # convert the .mat from linear Func->Anat to ANTS format
    apply_ants_xfm.connect(inputspec, 'func_anat_affine', fsl_reg_2_itk,
                           'inputspec.transform_file')

    apply_ants_xfm.connect(inputspec, 'conversion_reference', fsl_reg_2_itk,
                           'inputspec.reference_file')

    apply_ants_xfm.connect(inputspec, 'conversion_source', fsl_reg_2_itk,
                           'inputspec.source_file')

    # Premat from Func->Anat linear reg and bbreg (if bbreg is enabled)
    apply_ants_xfm.connect(fsl_reg_2_itk, 'outputspec.itk_transform',
                           collect_transforms, 'in3')

    # Field file from anatomical nonlinear registration
    apply_ants_xfm.connect(inputspec, 'nonlinear_field', collect_transforms,
                           'in1')

    # affine transformation from anatomical registration
    apply_ants_xfm.connect(inputspec, 'ants_affine', collect_transforms, 'in2')

    apply_ants_xfm.connect(inputspec, 'in_file', warp_images, 'input_image')

    apply_ants_xfm.connect(collect_transforms, 'out', warp_images,
                           'transformation_series')

    apply_ants_xfm.connect(warp_images, 'output_image', outputspec, 'out_file')

    return apply_ants_xfm
def get_post_struct_norm_workflow(name='normalize_post_struct'):
    """ Base post-structural workflow for normalization

    Parameters
    ----------
    name : name of workflow. Default = 'normalize_post_struct'

    Inputs
    ------
    inputspec.template_file :
    inputspec.unwarped_brain :
    inputspec.warp_field :
    inputspec.affine_transformation :
    inputspec.out_fsl_file :
    inputspec.moving_image :
    inputspec.mean_func :
    inputspec.use_nearest:

    Outputs
    -------
    outputspec.warped_image :

    Returns
    -------
    workflow : post-structural normalization workflow
    """
    #inputs to workflow
    import nipype.interfaces.freesurfer as fs
    import nipype.interfaces.ants as ants
    import nipype.pipeline.engine as pe
    import nipype.interfaces.utility as util
    inputspec = pe.Node(util.IdentityInterface(fields=[
        'template_file', 'unwarped_brain', 'warp_field',
        'affine_transformation', 'out_fsl_file', 'moving_image', 'mean_func',
        "use_nearest"
    ]),
                        name='inputspec')

    #makes fsl-style coregistration ANTS compatible
    fsl_reg_2_itk = pe.Node(c3.C3dAffineTool(fsl2ras=True),
                            name='fsl_reg_2_itk')

    #collects series of transformations to be applied to the moving images
    collect_transforms = pe.Node(util.Merge(3), name='collect_transforms')

    #performs series of transformations on moving images
    warp_images = pe.MapNode(ants.WarpTimeSeriesImageMultiTransform(),
                             name='warp_images',
                             iterfield=['input_image', 'dimension'])

    #collects workflow outputs
    outputspec = pe.Node(util.IdentityInterface(fields=['warped_image']),
                         name='outputspec')

    #initializes and connects workflow nodes
    normalize_post_struct = pe.Workflow(name=name)
    normalize_post_struct.connect([
        (inputspec, fsl_reg_2_itk, [('unwarped_brain', 'reference_file')]),
        (inputspec, fsl_reg_2_itk, [('out_fsl_file', 'transform_file')]),
        (inputspec, fsl_reg_2_itk, [('mean_func', 'source_file')]),
        (fsl_reg_2_itk, collect_transforms, [('itk_transform', 'in3')]),
        (inputspec, collect_transforms, [('warp_field', 'in1'),
                                         ('affine_transformation', 'in2')]),
        (inputspec, warp_images, [('moving_image', 'input_image')]),
        (inputspec, warp_images, [(('moving_image', get_image_dimensions),
                                   'dimension')]),
        (inputspec, warp_images, [('template_file', 'reference_image'),
                                  ('use_nearest', 'use_nearest')]),
        (collect_transforms, warp_images, [('out', 'transformation_series')]),
        (warp_images, outputspec, [('output_image', 'warped_image')])
    ])

    return normalize_post_struct
示例#4
0
def legacy(
    bids_base,
    template,
    autorotate=False,
    debug=False,
    functional_blur_xy=False,
    functional_match={},
    keep_work=False,
    negative_contrast_agent=False,
    n_procs=N_PROCS,
    out_base=None,
    realign="time",
    registration_mask=False,
    sessions=[],
    structural_match={},
    subjects=[],
    tr=1,
    workflow_name='legacy',
):
    '''
	Legacy realignment and registration workflow representative of the tweaks and workarounds commonly used in the pre-SAMRI period.

	Parameters
	----------
	bids_base : str
		Path to the BIDS data set root.
	template : str
		Path to the template to register the data to.
	autorotate : bool, optional
		Whether to use a multi-rotation-state transformation start.
		This allows the registration to commence with the best rotational fit, and may help if the orientation of the data is malformed with respect to the header.
	debug : bool, optional
		Whether to enable nipype debug mode.
		This increases logging.
	functional_blur_xy : float, optional
		Factor by which to smooth data in the xy-plane; if parameter evaluates to false, no smoothing will be applied.
		Ideally this value should correspond to the resolution or smoothness in the z-direction (assuing z represents the lower-resolution slice-encoding direction).
	functional_match : dict, optional
		Dictionary specifying a whitelist to use for functional data inclusion into the workflow; if dictionary is empty no whitelist is present and all data will be considered.
		The dictionary should have keys which are 'acquisition', 'task', or 'modality', and values which are lists of acceptable strings for the respective BIDS field.
	keep_work : bool, str
		Whether to keep the work directory after workflow conclusion (this directory contains all the intermediary processing commands, inputs, and outputs --- it is invaluable for debugging but many times larger in size than the actual output).
	negative_contrast_agent : bool, optional
		Whether the scan was acquired witn a negative contrast agent given the imaging modality; if true the values will be inverted with respect to zero.
		This is commonly used for iron nano-particle Cerebral Blood Volume (CBV) measurements.
	n_procs : int, optional
		Number of processors to maximally use for the workflow; if unspecified a best guess will be estimate based on hardware (but not on current load).
	out_base : str, optional
		Output base directory --- inside which a directory named `workflow_name` (as well as associated directories) will be created.
	realign : {"space","time","spacetime",""}, optional
		Parameter that dictates slictiming correction and realignment of slices. "time" (FSL.SliceTimer) is default, since it works safely. Use others only with caution!
	registration_mask : str, optional
		Mask to use for the registration process.
		This mask will constrain the area for similarity metric evaluation, but the data will not be cropped.
	sessions : list, optional
		A whitelist of sessions to include in the workflow, if the list is empty there is no whitelist and all sessions will be considered.
	structural_match : dict, optional
		Dictionary specifying a whitelist to use for structural data inclusion into the workflow; if dictionary is empty no whitelist is present and all data will be considered.
		The dictionary should have keys which are 'acquisition', or 'modality', and values which are lists of acceptable strings for the respective BIDS field.
	subjects : list, optional
		A whitelist of subjects to include in the workflow, if the list is empty there is no whitelist and all sessions will be considered.
	tr : float, optional
		Repetition time, explicitly.
		WARNING! This is a parameter waiting for deprecation.
	workflow_name : str, optional
		Top level name for the output directory.
	'''

    bids_base, out_base, out_dir, template, registration_mask, data_selection, functional_scan_types, structural_scan_types, subjects_sessions, func_ind, struct_ind = common_select(
        bids_base,
        out_base,
        workflow_name,
        template,
        registration_mask,
        functional_match,
        structural_match,
        subjects,
        sessions,
    )

    get_f_scan = pe.Node(name='get_f_scan',
                         interface=util.Function(
                             function=get_bids_scan,
                             input_names=inspect.getargspec(get_bids_scan)[0],
                             output_names=[
                                 'scan_path', 'scan_type', 'task', 'nii_path',
                                 'nii_name', 'file_name', 'events_name',
                                 'subject_session'
                             ]))
    get_f_scan.inputs.ignore_exception = True
    get_f_scan.inputs.data_selection = data_selection
    get_f_scan.inputs.bids_base = bids_base
    get_f_scan.iterables = ("ind_type", func_ind)

    dummy_scans = pe.Node(
        name='dummy_scans',
        interface=util.Function(
            function=force_dummy_scans,
            input_names=inspect.getargspec(force_dummy_scans)[0],
            output_names=['out_file', 'deleted_scans']))
    dummy_scans.inputs.desired_dummy_scans = DUMMY_SCANS

    events_file = pe.Node(
        name='events_file',
        interface=util.Function(
            function=write_bids_events_file,
            input_names=inspect.getargspec(write_bids_events_file)[0],
            output_names=['out_file']))

    temporal_mean = pe.Node(interface=fsl.MeanImage(), name="temporal_mean")

    f_resize = pe.Node(interface=VoxelResize(), name="f_resize")
    f_resize.inputs.resize_factors = [10, 10, 10]

    f_percentile = pe.Node(interface=fsl.ImageStats(), name="f_percentile")
    f_percentile.inputs.op_string = '-p 98'

    f_threshold = pe.Node(interface=fsl.Threshold(), name="f_threshold")

    f_fast = pe.Node(interface=fsl.FAST(), name="f_fast")
    f_fast.inputs.no_pve = True
    f_fast.inputs.output_biascorrected = True

    f_bet = pe.Node(interface=fsl.BET(), name="f_BET")

    f_swapdim = pe.Node(interface=fsl.SwapDimensions(), name="f_swapdim")
    f_swapdim.inputs.new_dims = ('x', '-z', '-y')

    f_deleteorient = pe.Node(interface=FSLOrient(), name="f_deleteorient")
    f_deleteorient.inputs.main_option = 'deleteorient'

    datasink = pe.Node(nio.DataSink(), name='datasink')
    datasink.inputs.base_directory = out_dir
    datasink.inputs.parameterization = False

    workflow_connections = [
        (get_f_scan, dummy_scans, [('nii_path', 'in_file')]),
        (get_f_scan, dummy_scans, [('scan_path', 'scan_dir')]),
        (dummy_scans, events_file, [('deleted_scans', 'forced_dummy_scans')]),
        (dummy_scans, f_resize, [('out_file', 'in_file')]),
        (get_f_scan, events_file, [('nii_path', 'timecourse_file'),
                                   ('task', 'task'),
                                   ('scan_path', 'scan_dir')]),
        (events_file, datasink, [('out_file', 'func.@events')]),
        (get_f_scan, events_file, [('events_name', 'out_file')]),
        (get_f_scan, datasink, [(('subject_session', ss_to_path), 'container')
                                ]),
        (temporal_mean, f_percentile, [('out_file', 'in_file')]),
        # here we divide by 10 assuming 10 percent noise
        (f_percentile, f_threshold, [(('out_stat', divideby_10), 'thresh')]),
        (temporal_mean, f_threshold, [('out_file', 'in_file')]),
        (f_threshold, f_fast, [('out_file', 'in_files')]),
        (f_fast, f_bet, [('restored_image', 'in_file')]),
        (f_resize, f_deleteorient, [('out_file', 'in_file')]),
        (f_deleteorient, f_swapdim, [('out_file', 'in_file')]),
    ]

    if realign == "space":
        realigner = pe.Node(interface=spm.Realign(), name="realigner")
        realigner.inputs.register_to_mean = True
        workflow_connections.extend([
            (f_swapdim, realigner, [('out_file', 'in_file')]),
        ])

    elif realign == "spacetime":
        realigner = pe.Node(interface=nipy.SpaceTimeRealigner(),
                            name="realigner")
        realigner.inputs.slice_times = "asc_alt_2"
        realigner.inputs.tr = tr
        realigner.inputs.slice_info = 3  #3 for coronal slices (2 for horizontal, 1 for sagittal)
        workflow_connections.extend([
            (f_swapdim, realigner, [('out_file', 'in_file')]),
        ])

    elif realign == "time":
        realigner = pe.Node(interface=fsl.SliceTimer(), name="slicetimer")
        realigner.inputs.time_repetition = tr
        workflow_connections.extend([
            (f_swapdim, realigner, [('out_file', 'in_file')]),
        ])

    #if structural_scan_types.any():
    #	get_s_scan = pe.Node(name='get_s_scan', interface=util.Function(function=get_bids_scan, input_names=inspect.getargspec(get_bids_scan)[0], output_names=['scan_path','scan_type','task', 'nii_path', 'nii_name', 'file_name', 'events_name', 'subject_session']))
    #	get_s_scan.inputs.ignore_exception = True
    #	get_s_scan.inputs.data_selection = data_selection
    #	get_s_scan.inputs.bids_base = bids_base

    #	s_cutoff = pe.Node(interface=fsl.ImageMaths(), name="s_cutoff")
    #	s_cutoff.inputs.op_string = "-thrP 20 -uthrp 98"

    #	s_resize = pe.Node(interface=VoxelResize(), name="s_resize")

    #	s_BET = pe.Node(interface=fsl.BET(), name="s_BET")
    #	s_BET.inputs.mask = True
    #	s_BET.inputs.frac = 0.3
    #	s_BET.inputs.robust = True

    #	ants_introduction = pe.Node(interface=legacy.antsIntroduction(), name='ants_introduction')
    #	ants_introduction.inputs.dimension = 3
    #	ants_introduction.inputs.reference_image = template
    #	#will need updating to `1`
    #	ants_introduction.inputs.bias_field_correction = True
    #	ants_introduction.inputs.transformation_model = 'GR'
    #	ants_introduction.inputs.max_iterations = [8,15,8]

    #	s_mask = pe.Node(interface=fsl.ApplyMask(), name="s_mask")
    #	s_register, s_warp, f_warp = structural_registration(template)

    #	workflow_connections.extend([
    #		(get_s_scan, s_reg_biascorrect, [('nii_path', 'input_image')]),
    #		(s_reg_biascorrect, s_cutoff, [('output_image', 'in_file')]),
    #		(s_cutoff, s_BET, [('out_file', 'in_file')]),
    #		(s_biascorrect, s_mask, [('output_image', 'in_file')]),
    #		(s_BET, s_mask, [('mask_file', 'mask_file')]),
    #		])

    #	#TODO: incl. in func registration
    #	if autorotate:
    #		workflow_connections.extend([
    #			(s_mask, s_rotated, [('out_file', 'out_file')]),
    #			(s_rotated, s_register, [('out_file', 'moving_image')]),
    #			])
    #	else:
    #		workflow_connections.extend([
    #			(s_mask, s_register, [('out_file', 'moving_image')]),
    #			(s_register, s_warp, [('composite_transform', 'transforms')]),
    #			(get_s_scan, s_warp, [('nii_path', 'input_image')]),
    #			(s_warp, datasink, [('output_image', 'anat')]),
    #			])

    #	if autorotate:
    #		s_rotated = autorotate(template)

    #	workflow_connections.extend([
    #		(get_f_scan, get_s_scan, [('subject_session', 'selector')]),
    #		(get_s_scan, s_warp, [('nii_name','output_image')]),
    #		(get_s_scan, s_biascorrect, [('nii_path', 'input_image')]),
    #		])

    f_antsintroduction = pe.Node(interface=antslegacy.antsIntroduction(),
                                 name='ants_introduction')
    f_antsintroduction.inputs.dimension = 3
    f_antsintroduction.inputs.reference_image = template
    #will need updating to `1`
    f_antsintroduction.inputs.bias_field_correction = True
    f_antsintroduction.inputs.transformation_model = 'GR'
    f_antsintroduction.inputs.max_iterations = [8, 15, 8]

    f_warp = pe.Node(interface=ants.WarpTimeSeriesImageMultiTransform(),
                     name='f_warp')
    f_warp.inputs.reference_image = template
    f_warp.inputs.dimension = 4

    f_copysform2qform = pe.Node(interface=FSLOrient(),
                                name='f_copysform2qform')
    f_copysform2qform.inputs.main_option = 'copysform2qform'

    warp_merge = pe.Node(util.Merge(2), name='warp_merge')

    workflow_connections.extend([
        (f_bet, f_antsintroduction, [('out_file', 'input_image')]),
        (f_antsintroduction, warp_merge, [('warp_field', 'in1')]),
        (f_antsintroduction, warp_merge, [('affine_transformation', 'in2')]),
        (warp_merge, f_warp, [('out', 'transformation_series')]),
        (f_warp, f_copysform2qform, [('output_image', 'in_file')]),
    ])
    if realign == "space":
        workflow_connections.extend([
            (realigner, temporal_mean, [('realigned_files', 'in_file')]),
            (realigner, f_warp, [('realigned_files', 'input_image')]),
        ])
    elif realign == "spacetime":
        workflow_connections.extend([
            (realigner, temporal_mean, [('out_file', 'in_file')]),
            (realigner, f_warp, [('out_file', 'input_image')]),
        ])
    elif realign == "time":
        workflow_connections.extend([
            (realigner, temporal_mean, [('slice_time_corrected_file',
                                         'in_file')]),
            (realigner, f_warp, [('slice_time_corrected_file', 'input_image')
                                 ]),
        ])
    else:
        workflow_connections.extend([
            (f_resize, temporal_mean, [('out_file', 'in_file')]),
            (f_swapdim, f_warp, [('out_file', 'input_image')]),
        ])

    invert = pe.Node(interface=fsl.ImageMaths(), name="invert")

    blur = pe.Node(interface=afni.preprocess.BlurToFWHM(), name="blur")
    blur.inputs.fwhmxy = functional_blur_xy

    if functional_blur_xy and negative_contrast_agent:
        workflow_connections.extend([
            (f_copysform2qform, blur, [('out_file', 'in_file')]),
            (blur, invert, [(('out_file', fslmaths_invert_values), 'op_string')
                            ]),
            (blur, invert, [('out_file', 'in_file')]),
            (get_f_scan, invert, [('nii_name', 'output_image')]),
            (invert, datasink, [('out_file', 'func')]),
        ])

    elif functional_blur_xy:
        workflow_connections.extend([
            (get_f_scan, blur, [('nii_name', 'output_image')]),
            (f_copysform2qform, blur, [('out_file', 'in_file')]),
            (blur, datasink, [('out_file', 'func')]),
        ])

    elif negative_contrast_agent:
        workflow_connections.extend([
            (get_f_scan, invert, [('nii_name', 'out_file')]),
            (f_copysform2qform, invert, [(('out_file', fslmaths_invert_values),
                                          'op_string')]),
            (f_copysform2qform, invert, [('out_file', 'in_file')]),
            (invert, datasink, [('out_file', 'func')]),
        ])
    else:

        f_rename = pe.Node(util.Rename(), name='f_rename')

        workflow_connections.extend([
            (get_f_scan, f_rename, [('nii_name', 'format_string')]),
            (f_copysform2qform, f_rename, [('out_file', 'in_file')]),
            (f_rename, datasink, [('out_file', 'func')]),
        ])

    workflow_config = {
        'execution': {
            'crashdump_dir': path.join(bids_base, 'preprocessing/crashdump'),
        }
    }
    if debug:
        workflow_config['logging'] = {
            'workflow_level': 'DEBUG',
            'utils_level': 'DEBUG',
            'interface_level': 'DEBUG',
            'filemanip_level': 'DEBUG',
            'log_to_file': 'true',
        }

    workdir_name = workflow_name + "_work"
    #this gives the name of the workdir, the output name is passed to the datasink
    workflow = pe.Workflow(name=workdir_name)
    workflow.connect(workflow_connections)
    workflow.base_dir = out_base
    workflow.config = workflow_config
    workflow.write_graph(dotfilename=path.join(workflow.base_dir, workdir_name,
                                               "graph.dot"),
                         graph2use="hierarchical",
                         format="png")

    workflow.run(plugin="MultiProc", plugin_args={'n_procs': n_procs})
    if not keep_work:
        workdir = path.join(workflow.base_dir, workdir_name)
        try:
            shutil.rmtree(workdir)
        except OSError as e:
            if str(e) == 'Cannot call rmtree on a symbolic link':
                print(
                    'Not deleting top level workdir (`{}`), as it is a symlink. Deleting only contents instead'
                    .format(workdir))
                for file_object in os.listdir(workdir):
                    file_object_path = os.path.join(workdir, file_object)
                    if os.path.isfile(file_object_path):
                        os.unlink(file_object_path)
                    else:
                        shutil.rmtree(file_object_path)
            else:
                raise OSError(str(e))
示例#5
0
preproc.connect(fsl2ras_downsample_atlas_from_struct_to_func, 'itk_transform', cmb_tfm_func_to_ds_atlas, 'in1')
# from structural to atlas (with struct resolution)
preproc.connect(structs_to_atlas_coreg_output, ('forward_transforms', get_sec), cmb_tfm_func_to_ds_atlas, 'in2')
preproc.connect(structs_to_atlas_coreg_output, ('forward_transforms', get_first), cmb_tfm_func_to_ds_atlas, 'in3')
# transform from functional to structural
#preproc.connect(ants_mbRef_to_t2_output, ('forward_transforms', get_sec), cmb_tfm_func_to_ds_atlas, 'in4')
preproc.connect(sep_tfms, 'out_list', cmb_tfm_func_to_ds_atlas, 'in4')

# apply transformation from mbRef all the way to caltech atlas (in func resolution)
mbRef_to_ds_atlas = pe.MapNode(interface=ants.WarpImageMultiTransform(use_nearest = True), name = 'mbRef_to_ds_atlas', iterfield=['input_image', 'transformation_series'])
preproc.connect(mask_mbRef, 'out_file', mbRef_to_ds_atlas, 'input_image')
preproc.connect(downsample_atlas_t2_to_func, 'out_file', mbRef_to_ds_atlas, 'reference_image')
preproc.connect(cmb_tfm_func_to_ds_atlas, 'out', mbRef_to_ds_atlas, 'transformation_series')

# apply transformation to 4D func
func_to_ds_atlas = pe.MapNode(interface=ants.WarpTimeSeriesImageMultiTransform(use_nearest = True), name = 'func_to_ds_atlas', iterfield=['transformation_series','input_image'])
preproc.connect(unwarp_func, 'unwarped_file', func_to_ds_atlas, 'input_image')
preproc.connect(downsample_atlas_t2_to_func, 'out_file', func_to_ds_atlas, 'reference_image')
preproc.connect(cmb_tfm_func_to_ds_atlas, 'out', func_to_ds_atlas, 'transformation_series')

# combine transformations (t2 to atlas)
cmb_tfm_t2_to_ds_atlas = pe.Node(interface=util.Merge(3, axis='hstack'), name='cmb_tfm_t2_to_ds_atlas')
# from structural to atlas (with struct resolution)
preproc.connect(structs_to_atlas_coreg_output, ('forward_transforms', get_sec), cmb_tfm_t2_to_ds_atlas, 'in1')
preproc.connect(structs_to_atlas_coreg_output, ('forward_transforms', get_first), cmb_tfm_t2_to_ds_atlas, 'in2')
# from atlas in struct resolution to t2 resolution
preproc.connect(fsl2ras_downsample_atlas_from_struct_to_func, 'itk_transform', cmb_tfm_t2_to_ds_atlas, 'in3')

# apply transformation from t2 all the way to caltech atlas (in func resolution)
t2_to_ds_atlas = pe.Node(interface=ants.WarpImageMultiTransform(use_nearest = True), name = 't2_to_ds_atlas')
preproc.connect(maskT2, 'out_file', t2_to_ds_atlas, 'input_image')