示例#1
0
def get_surface_workflow(name='surface_1sample'):
    import nipype.pipeline.engine as pe
    import nipype.interfaces.freesurfer as fs
    import nipype.interfaces.io as nio
    import nipype.interfaces.utility as niu

    wf = pe.Workflow(name=name)
    inputspec = pe.Node(niu.IdentityInterface(
        fields=["copes", "regfiles", "surf_template", "subjects_dir"]),
                        name='inputspec')
    formatter = pe.Node(niu.Function(input_names=['copes', 'regfiles'],
                                     output_names=['out'],
                                     function=do_format),
                        name='formatter')
    preproc = pe.MapNode(fs.MRISPreproc(), name='preproc', iterfield=['hemi'])
    preproc.inputs.hemi = ['lh', 'rh']
    glmfit = pe.MapNode(fs.GLMFit(one_sample=True, surf=True),
                        name='glmfit',
                        iterfield=['hemi', 'in_file'])
    glmfit.inputs.hemi = ['lh', 'rh']
    outputspec = pe.Node(niu.IdentityInterface(fields=[
        "beta_file", "dof_file", "error_file", "error_stddev_file",
        "error_var_file", "estimate_file", "frame_eigenvectors", "ftest_file",
        "fwhm_file", "gamma_file", "gamma_var_file", "mask_file", "sig_file"
    ]),
                         name='outputspec')
    #connections
    wf.connect(inputspec, 'copes', formatter, 'copes')
    wf.connect(inputspec, 'regfiles', formatter, 'regfiles')
    wf.connect(inputspec, 'surf_template', preproc, 'target')
    wf.connect(inputspec, 'surf_template', glmfit, 'subject_id')
    wf.connect(inputspec, 'subjects_dir', preproc, 'subjects_dir')
    wf.connect(inputspec, 'subjects_dir', glmfit, 'subjects_dir')

    wf.connect(formatter, 'out', preproc, 'vol_measure_file')

    wf.connect(preproc, 'out_file', glmfit, 'in_file')

    wf.connect([(glmfit, outputspec,
                 [('beta_file', 'beta_file'), ('dof_file', 'dof_file'),
                  ('error_file', 'error_file'),
                  ('error_stddev_file', 'error_stddev_file'),
                  ('error_var_file', 'error_var_file'),
                  ('estimate_file', 'estimate_file'),
                  ('frame_eigenvectors', 'frame_eigenvectors'),
                  ('ftest_file', 'ftest_file'), ('fwhm_file', 'fwhm_file'),
                  ('gamma_file', 'gamma_file'),
                  ('gamma_var_file', 'gamma_var_file'),
                  ('mask_file', 'mask_file'), ('sig_file', 'sig_file')])])
    return wf
示例#2
0
            if '/%s/' % s in f:
                outlist.append(f)
                continue
    print(outlist)
    return outlist


l2flow.connect(l2source, ('con', ordersubjects, subject_list), mergenode,
               'in1')
l2flow.connect(l2source, ('reg', ordersubjects, subject_list), mergenode,
               'in2')
"""
Concatenate contrast images projected to fsaverage
"""

l2concat = pe.Node(interface=fs.MRISPreproc(), name='concat')
l2concat.inputs.target = 'fsaverage'
l2concat.inputs.fwhm = 5


def list2tuple(listoflist):
    return [tuple(x) for x in listoflist]


l2flow.connect(l2inputnode, 'hemi', l2concat, 'hemi')
l2flow.connect(mergenode, ('out', list2tuple), l2concat, 'vol_measure_file')
"""
Perform a one sample t-test
"""

l2ttest = pe.Node(interface=fs.OneSampleTTest(), name='onesample')
def test_mrispreproc():
    input_map = dict(
        args=dict(argstr='%s', ),
        environ=dict(),
        fsgd_file=dict(
            xor=('subjects', 'fsgd_file', 'subject_file'),
            argstr='--fsgd %s',
        ),
        fwhm=dict(
            xor=['num_iters'],
            argstr='--fwhm %f',
        ),
        fwhm_source=dict(
            xor=['num_iters_source'],
            argstr='--fwhm-src %f',
        ),
        hemi=dict(
            argstr='--hemi %s',
            mandatory=True,
        ),
        num_iters=dict(
            xor=['fwhm'],
            argstr='--niters %d',
        ),
        num_iters_source=dict(
            xor=['fwhm_source'],
            argstr='--niterssrc %d',
        ),
        out_file=dict(argstr='--out %s', ),
        proj_frac=dict(argstr='--projfrac %s', ),
        smooth_cortex_only=dict(argstr='--smooth-cortex-only', ),
        source_format=dict(argstr='--srcfmt %s', ),
        subject_file=dict(
            xor=('subjects', 'fsgd_file', 'subject_file'),
            argstr='--f %s',
        ),
        subjects=dict(
            xor=('subjects', 'fsgd_file', 'subject_file'),
            argstr='--s %s...',
        ),
        subjects_dir=dict(),
        surf_area=dict(
            xor=('surf_measure', 'surf_measure_file', 'surf_area'),
            argstr='--area %s',
        ),
        surf_dir=dict(argstr='--surfdir %s', ),
        surf_measure=dict(
            xor=('surf_measure', 'surf_measure_file', 'surf_area'),
            argstr='--meas %s',
        ),
        surf_measure_file=dict(
            xor=('surf_measure', 'surf_measure_file', 'surf_area'),
            argstr='--is %s...',
        ),
        target=dict(
            mandatory=True,
            argstr='--target %s',
        ),
        vol_measure_file=dict(argstr='--iv %s %s...', ),
    )
    instance = freesurfer.MRISPreproc()
    for key, metadata in input_map.items():
        for metakey, value in metadata.items():
            yield assert_equal, getattr(instance.inputs.traits()[key],
                                        metakey), value