示例#1
0
def test_signal_extraction_equivalence(tmp_path, nvols, nmasks, ext, factor):
    nlsignals = str(tmp_path / "nlsignals.tsv")
    imsignals = str(tmp_path / "imsignals.tsv")

    vol_shape = (64, 64, 40)

    img_fname = str(tmp_path / ("img" + ext))
    masks_fname = str(tmp_path / ("masks" + ext))

    random_data = np.random.random(size=vol_shape + (nvols,)) * 2000
    random_mask_data = np.random.random(size=vol_shape + (nmasks,)) < 0.2

    nb.Nifti1Image(random_data, np.eye(4)).to_filename(img_fname)
    nb.Nifti1Image(random_mask_data.astype(np.uint8), np.eye(4)).to_filename(
        masks_fname
    )

    se1 = nl.SignalExtraction(
        in_file=img_fname,
        label_files=masks_fname,
        class_labels=["a%d" % i for i in range(nmasks)],
        out_file=nlsignals,
    )
    se2 = im.SignalExtraction(
        in_file=img_fname,
        label_files=masks_fname,
        class_labels=["a%d" % i for i in range(nmasks)],
        out_file=imsignals,
    )

    tic = time.time()
    se1.run()
    toc = time.time()
    se2.run()
    toc2 = time.time()

    tab1 = np.loadtxt(nlsignals, skiprows=1)
    tab2 = np.loadtxt(imsignals, skiprows=1)

    assert np.allclose(tab1, tab2)

    t1 = toc - tic
    t2 = toc2 - toc

    assert t2 < t1 / factor
示例#2
0
def test_signal_extraction_equivalence(tmpdir, nvols, nmasks, ext, factor):
    tmpdir.chdir()

    vol_shape = (64, 64, 40)

    img_fname = 'img' + ext
    masks_fname = 'masks' + ext

    random_data = np.random.random(size=vol_shape + (nvols, )) * 2000
    random_mask_data = np.random.random(size=vol_shape + (nmasks, )) < 0.2

    nb.Nifti1Image(random_data, np.eye(4)).to_filename(img_fname)
    nb.Nifti1Image(random_mask_data.astype(np.uint8),
                   np.eye(4)).to_filename(masks_fname)

    se1 = nl.SignalExtraction(in_file=img_fname,
                              label_files=masks_fname,
                              class_labels=['a%d' % i for i in range(nmasks)],
                              out_file='nlsignals.tsv')
    se2 = im.SignalExtraction(in_file=img_fname,
                              label_files=masks_fname,
                              class_labels=['a%d' % i for i in range(nmasks)],
                              out_file='imsignals.tsv')

    tic = time.time()
    se1.run()
    toc = time.time()
    se2.run()
    toc2 = time.time()

    tab1 = np.loadtxt('nlsignals.tsv', skiprows=1)
    tab2 = np.loadtxt('imsignals.tsv', skiprows=1)

    assert np.allclose(tab1, tab2)

    t1 = toc - tic
    t2 = toc2 - toc

    assert t2 < t1 / factor
示例#3
0
def extract_timeseries(SinkTag="connectivity",
                       wf_name="extract_timeseries",
                       modularise=True):
    ########################################################################
    # Extract timeseries
    ########################################################################

    import nipype.interfaces.nilearn as learn
    import nipype.pipeline as pe
    import nipype.interfaces.utility as utility
    import nipype.interfaces.io as io
    from nipype.interfaces.utility import Function
    import PUMI.utils.globals as globals
    import PUMI.utils.QC as qc
    import os

    SinkDir = os.path.abspath(globals._SinkDir_ + "/" + SinkTag)
    if not os.path.exists(SinkDir):
        os.makedirs(SinkDir)

    # Identitiy mapping for input variables
    inputspec = pe.Node(
        utility.IdentityInterface(fields=[
            'std_func',
            'atlas_file',  # nii labelmap (or 4D probmaps)
            'labels',  # list of short names to regions
            'modules'  # list of modules of regions
        ]),
        name='inputspec')
    # re-label atlas, so that regions corresponding to the same modules follow each other
    if modularise:
        relabel_atls = pe.Node(interface=Function(
            input_names=['atlas_file', 'modules', 'labels'],
            output_names=[
                'relabelled_atlas_file', 'reordered_modules',
                'reordered_labels', 'newlabels_file'
            ],
            function=relabel_atlas),
                               name='relabel_atlas')
        # Save outputs which are important
        ds_nii = pe.Node(interface=io.DataSink(), name='ds_relabeled_atlas')
        ds_nii.inputs.base_directory = SinkDir
        ds_nii.inputs.regexp_substitutions = [("(\/)[^\/]*$", ".nii.gz")]

        # Save outputs which are important
        ds_newlabels = pe.Node(interface=io.DataSink(), name='ds_newlabels')
        ds_newlabels.inputs.base_directory = SinkDir
        ds_newlabels.inputs.regexp_substitutions = [("(\/)[^\/]*$", ".tsv")]

    extract_timesereies = pe.MapNode(
        interface=learn.SignalExtraction(detrend=False),
        iterfield=['in_file'],
        name='extract_timeseries')

    # Save outputs which are important
    ds_txt = pe.Node(interface=io.DataSink(), name='ds_txt')
    ds_txt.inputs.base_directory = SinkDir
    ds_txt.inputs.regexp_substitutions = [("(\/)[^\/]*$", wf_name + ".tsv")]

    #QC
    timeseries_qc = qc.regTimeseriesQC("regional_timeseries", tag=wf_name)

    outputspec = pe.Node(utility.IdentityInterface(fields=[
        'timeseries_file', 'relabelled_atlas_file', 'reordered_modules',
        'reordered_labels'
    ]),
                         name='outputspec')

    # Create workflow
    analysisflow = pe.Workflow(wf_name)
    analysisflow.connect(inputspec, 'std_func', extract_timesereies, 'in_file')
    if modularise:
        analysisflow.connect(inputspec, 'atlas_file', relabel_atls,
                             'atlas_file')
        analysisflow.connect(inputspec, 'modules', relabel_atls, 'modules')
        analysisflow.connect(inputspec, 'labels', relabel_atls, 'labels')

        analysisflow.connect(relabel_atls, 'relabelled_atlas_file',
                             extract_timesereies, 'label_files')
        analysisflow.connect(relabel_atls, 'reordered_labels',
                             extract_timesereies, 'class_labels')
        analysisflow.connect(relabel_atls, 'reordered_modules', timeseries_qc,
                             'inputspec.modules')
        analysisflow.connect(relabel_atls, 'relabelled_atlas_file',
                             timeseries_qc, 'inputspec.atlas')
        analysisflow.connect(relabel_atls, 'relabelled_atlas_file', ds_nii,
                             'atlas_relabeled')
        analysisflow.connect(relabel_atls, 'newlabels_file', ds_newlabels,
                             'atlas_relabeled')
        analysisflow.connect(relabel_atls, 'relabelled_atlas_file', outputspec,
                             'relabelled_atlas_file')
        analysisflow.connect(relabel_atls, 'reordered_labels', outputspec,
                             'reordered_labels')
        analysisflow.connect(relabel_atls, 'reordered_modules', outputspec,
                             'reordered_modules')
    else:
        analysisflow.connect(inputspec, 'atlas_file', extract_timesereies,
                             'label_files')
        analysisflow.connect(inputspec, 'labels', extract_timesereies,
                             'class_labels')
        analysisflow.connect(inputspec, 'modules', timeseries_qc,
                             'inputspec.modules')
        analysisflow.connect(inputspec, 'atlas_file', timeseries_qc,
                             'inputspec.atlas')
        analysisflow.connect(inputspec, 'atlas_file', outputspec,
                             'relabelled_atlas_file')
        analysisflow.connect(inputspec, 'labels', outputspec,
                             'reordered_labels')
        analysisflow.connect(inputspec, 'modules', outputspec,
                             'reordered_modules')

    analysisflow.connect(extract_timesereies, 'out_file', ds_txt,
                         'regional_timeseries')
    analysisflow.connect(extract_timesereies, 'out_file', timeseries_qc,
                         'inputspec.timeseries')

    analysisflow.connect(extract_timesereies, 'out_file', outputspec,
                         'timeseries_file')

    return analysisflow