def test_BRAINSLinearModelerEPCA_outputs(): output_map = dict() outputs = BRAINSLinearModelerEPCA.output_spec() for key, metadata in output_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(outputs.traits()[key], metakey), value
def test_BRAINSLinearModelerEPCA_inputs(): input_map = dict( args=dict(argstr="%s"), environ=dict(nohash=True, usedefault=True), ignore_exception=dict(nohash=True, usedefault=True), inputTrainingList=dict(argstr="--inputTrainingList %s"), numberOfThreads=dict(argstr="--numberOfThreads %d"), terminal_output=dict(nohash=True), ) inputs = BRAINSLinearModelerEPCA.input_spec() for key, metadata in input_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(inputs.traits()[key], metakey), value
def test_BRAINSLinearModelerEPCA_inputs(): input_map = dict( args=dict(argstr='%s', ), environ=dict( nohash=True, usedefault=True, ), ignore_exception=dict( nohash=True, usedefault=True, ), inputTrainingList=dict(argstr='--inputTrainingList %s', ), numberOfThreads=dict(argstr='--numberOfThreads %d', ), terminal_output=dict(nohash=True, ), ) inputs = BRAINSLinearModelerEPCA.input_spec() for key, metadata in input_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(inputs.traits()[key], metakey), value