def test_BRAINSLinearModelerEPCA_outputs():
    output_map = dict()
    outputs = BRAINSLinearModelerEPCA.output_spec()

    for key, metadata in output_map.items():
        for metakey, value in metadata.items():
            yield assert_equal, getattr(outputs.traits()[key], metakey), value
def test_BRAINSLinearModelerEPCA_outputs():
    output_map = dict()
    outputs = BRAINSLinearModelerEPCA.output_spec()

    for key, metadata in output_map.items():
        for metakey, value in metadata.items():
            yield assert_equal, getattr(outputs.traits()[key], metakey), value
def test_BRAINSLinearModelerEPCA_inputs():
    input_map = dict(
        args=dict(argstr="%s"),
        environ=dict(nohash=True, usedefault=True),
        ignore_exception=dict(nohash=True, usedefault=True),
        inputTrainingList=dict(argstr="--inputTrainingList %s"),
        numberOfThreads=dict(argstr="--numberOfThreads %d"),
        terminal_output=dict(nohash=True),
    )
    inputs = BRAINSLinearModelerEPCA.input_spec()

    for key, metadata in input_map.items():
        for metakey, value in metadata.items():
            yield assert_equal, getattr(inputs.traits()[key], metakey), value
def test_BRAINSLinearModelerEPCA_inputs():
    input_map = dict(
        args=dict(argstr='%s', ),
        environ=dict(
            nohash=True,
            usedefault=True,
        ),
        ignore_exception=dict(
            nohash=True,
            usedefault=True,
        ),
        inputTrainingList=dict(argstr='--inputTrainingList %s', ),
        numberOfThreads=dict(argstr='--numberOfThreads %d', ),
        terminal_output=dict(nohash=True, ),
    )
    inputs = BRAINSLinearModelerEPCA.input_spec()

    for key, metadata in input_map.items():
        for metakey, value in metadata.items():
            yield assert_equal, getattr(inputs.traits()[key], metakey), value