### Define the cross-validation scheme used for validation. # Here we use a KFold cross-validation on the session, which corresponds to # splitting the samples in 4 folds and make 4 runs using each fold as a test # set once and the others as learning sets from sklearn.cross_validation import KFold cv = KFold(y.size, k=4) ### Fit ####################################################################### from nisl import searchlight # The radius is the one of the Searchlight sphere that will scan the volume searchlight = searchlight.SearchLight(mask, process_mask, radius=1.5, n_jobs=n_jobs, score_func=score_func, verbose=1, cv=cv) searchlight.fit(X, y) ### Visualization ############################################################# import pylab as pl pl.figure(1) # searchlight.scores_ contains per voxel cross validation scores s_scores = np.ma.array(searchlight.scores_, mask=np.logical_not(process_mask)) pl.imshow(np.rot90(mean_img[..., 37]), interpolation='nearest', cmap=pl.cm.gray) pl.imshow(np.rot90(s_scores[..., 37]), interpolation='nearest', cmap=pl.cm.hot, vmax=1) pl.axis('off') pl.title('Searchlight') pl.show() ### Show the F_score
### Define the cross-validation scheme used for validation. # Here we use a KFold cross-validation on the session, which corresponds to # splitting the samples in 4 folds and make 4 runs using each fold as a test # set once and the others as learning sets from sklearn.cross_validation import KFold cv = KFold(y.size, k=4) ### Fit ####################################################################### from nisl import searchlight # The radius is the one of the Searchlight sphere that will scan the volume searchlight = searchlight.SearchLight(mask, process_mask, radius=1.5, n_jobs=n_jobs, score_func=score_func, verbose=1, cv=cv) searchlight.fit(X_preprocessed, y) ### Visualization ############################################################# import pylab as pl pl.figure(1) # searchlight.scores_ contains per voxel cross validation scores s_scores = np.ma.array(searchlight.scores_, mask=np.logical_not(process_mask)) pl.imshow(np.rot90(mean_img[..., 37]), interpolation='nearest', cmap=pl.cm.gray) pl.imshow(np.rot90(s_scores[..., 37]), interpolation='nearest', cmap=pl.cm.hot, vmax=1) pl.axis('off') pl.title('Searchlight') pl.show() ### Show the F_score
cv = KFold(y.size, k=4) ### Fit ####################################################################### from nisl import searchlight # The radius is the one of the Searchlight sphere that will scan the volume searchlight = searchlight.SearchLight(mask, process_mask, radius=1.5, n_jobs=n_jobs, score_func=score_func, verbose=1, cv=cv) searchlight.fit(X_detrended, y) ### Visualization ############################################################# import pylab as pl pl.figure(1) # searchlight.scores_ contains per voxel cross validation scores s_scores = np.ma.array(searchlight.scores_, mask=np.logical_not(process_mask)) pl.imshow(np.rot90(mean_img[..., 37]), interpolation='nearest', cmap=pl.cm.gray) pl.imshow(np.rot90(s_scores[..., 37]), interpolation='nearest', cmap=pl.cm.hot, vmax=1) pl.axis('off') pl.title('Searchlight')
### Define the cross-validation scheme used for validation. # Here we use a KFold cross-validation on the session, which corresponds to # splitting the samples in 4 folds and make 4 runs using each fold as a test # set once and the others as learning sets from sklearn.cross_validation import KFold cv = KFold(y.size, k=4) ### Fit ####################################################################### from nisl import searchlight # The radius is the one of the Searchlight sphere that will scan the volume searchlight = searchlight.SearchLight(mask, process_mask, radius=1.5, n_jobs=n_jobs, score_func=score_func, verbose=1, cv=cv) searchlight.fit(X_detrended, y) ### Visualization ############################################################# import pylab as pl pl.figure(1) # searchlight.scores_ contains per voxel cross validation scores s_scores = np.ma.array(searchlight.scores_, mask=np.logical_not(process_mask)) pl.imshow(np.rot90(mean_img[..., 37]), interpolation='nearest', cmap=pl.cm.gray) pl.imshow(np.rot90(s_scores[..., 37]), interpolation='nearest', cmap=pl.cm.hot, vmax=1) pl.axis('off') pl.title('Searchlight') pl.show() ### Show the F_score
# Here we use a KFold cross-validation on the session, which corresponds to # splitting the samples in 4 folds and make 4 runs using each fold as a test # set once and the others as learning sets from sklearn.cross_validation import KFold cv = KFold(y.size, k=4) ### Fit ####################################################################### from nisl import searchlight # The radius is the one of the Searchlight sphere that will scan the volume searchlight = searchlight.SearchLight(mask=mask, process_mask=process_mask, radius=1.5, n_jobs=n_jobs, score_func=score_func, verbose=1, cv=cv) searchlight.fit(X_masked, y) ### Visualization ############################################################# import pylab as pl pl.figure(1) # searchlight.scores_ contains per voxel cross validation scores s_scores = np.ma.array(searchlight.scores_, mask=np.logical_not(process_mask)) pl.imshow(np.rot90(mean_img[..., 37]), interpolation='nearest', cmap=pl.cm.gray) pl.imshow(np.rot90(s_scores[..., 37]), interpolation='nearest', cmap=pl.cm.hot, vmax=1) pl.axis('off') pl.title('Searchlight') pl.show() ### Show the F_score
cv = KFold(y.size, k=4) ### Fit ####################################################################### from nisl import searchlight # The radius is the one of the Searchlight sphere that will scan the volume searchlight = searchlight.SearchLight(mask=mask, process_mask=process_mask, radius=1.5, n_jobs=n_jobs, score_func=score_func, verbose=1, cv=cv) searchlight.fit(X_masked, y) ### Visualization ############################################################# import pylab as pl pl.figure(1) # searchlight.scores_ contains per voxel cross validation scores s_scores = np.ma.array(searchlight.scores_, mask=np.logical_not(process_mask)) pl.imshow(np.rot90(mean_img[..., 37]), interpolation='nearest', cmap=pl.cm.gray) pl.imshow(np.rot90(s_scores[..., 37]), interpolation='nearest', cmap=pl.cm.hot, vmax=1) pl.axis('off') pl.title('Searchlight')