示例#1
0
def evaluate(Y,
             Yhat,
             S2=None,
             mY=None,
             sY=None,
             metrics=['Rho', 'RMSE', 'SMSE', 'EXPV', 'MSLL']):

    feature_num = Y.shape[1]

    # find and remove bad variables from the response variables
    nz = np.where(
        np.bitwise_and(np.isfinite(Y).any(axis=0),
                       np.var(Y, axis=0) != 0))[0]

    MSE = np.mean((Y - Yhat)**2, axis=0)

    results = dict()

    if 'RMSE' in metrics:
        RMSE = np.sqrt(MSE)
        results['RMSE'] = RMSE

    if 'Rho' in metrics:
        Rho = np.zeros(feature_num)
        pRho = np.ones(feature_num)
        Rho[nz], pRho[nz] = compute_pearsonr(Y[:, nz], Yhat[:, nz])
        results['Rho'] = Rho
        results['pRho'] = pRho

    if 'SMSE' in metrics:
        SMSE = np.zeros_like(MSE)
        SMSE[nz] = MSE[nz] / np.var(Y[:, nz], axis=0)
        results['SMSE'] = SMSE

    if 'EXPV' in metrics:
        EXPV = np.zeros(feature_num)
        EXPV[nz] = explained_var(Y[:, nz], Yhat[:, nz])
        results['EXPV'] = EXPV

    if 'MSLL' in metrics:
        if ((S2 is not None) and (mY is not None) and (sY is not None)):
            MSLL = np.zeros(feature_num)
            MSLL[nz] = compute_MSLL(Y[:, nz], Yhat[:, nz], S2[:, nz],
                                    mY[nz].reshape(-1, 1).T,
                                    (sY[nz]**2).reshape(-1, 1).T)
            results['MSLL'] = MSLL

    return results
示例#2
0
def estimate(args):
    torch.set_default_dtype(torch.float32)
    args.type = 'MT'
    print('Loading the input Data ...')
    responses = fileio.load_nifti(args.respfile,
                                  vol=True).transpose([3, 0, 1, 2])
    response_shape = responses.shape
    with open(args.covfile, 'rb') as handle:
        covariates = pickle.load(handle)['covariates']
    with open(args.testcovfile, 'rb') as handle:
        test_covariates = pickle.load(handle)['test_covariates']
    if args.mask is not None:
        mask = fileio.load_nifti(args.mask, vol=True)
        mask = fileio.create_mask(mask, mask=None)
    else:
        mask = fileio.create_mask(responses[0, :, :, :], mask=None)
    if args.testrespfile is not None:
        test_responses = fileio.load_nifti(args.testrespfile,
                                           vol=True).transpose([3, 0, 1, 2])
        test_responses_shape = test_responses.shape

    print('Normalizing the input Data ...')
    covariates_scaler = StandardScaler()
    covariates = covariates_scaler.fit_transform(covariates)
    test_covariates = covariates_scaler.transform(test_covariates)
    response_scaler = MinMaxScaler()
    responses = unravel_2D(response_scaler.fit_transform(ravel_2D(responses)),
                           response_shape)
    if args.testrespfile is not None:
        test_responses = unravel_2D(
            response_scaler.transform(ravel_2D(test_responses)),
            test_responses_shape)
        test_responses = np.expand_dims(test_responses, axis=1)

    factor = args.m

    x_context = np.zeros([covariates.shape[0], factor, covariates.shape[1]],
                         dtype=np.float32)
    y_context = np.zeros([
        responses.shape[0], factor, responses.shape[1], responses.shape[2],
        responses.shape[3]
    ],
                         dtype=np.float32)
    x_all = np.zeros([covariates.shape[0], factor, covariates.shape[1]],
                     dtype=np.float32)
    x_context_test = np.zeros(
        [test_covariates.shape[0], factor, test_covariates.shape[1]],
        dtype=np.float32)
    y_context_test = np.zeros([
        test_covariates.shape[0], factor, responses.shape[1],
        responses.shape[2], responses.shape[3]
    ],
                              dtype=np.float32)

    print('Estimating the fixed-effects ...')
    for i in range(factor):
        x_context[:, i, :] = covariates[:, :]
        x_context_test[:, i, :] = test_covariates[:, :]
        idx = np.random.randint(0, covariates.shape[0], covariates.shape[0])
        if args.estimator == 'ST':
            for j in range(responses.shape[1]):
                for k in range(responses.shape[2]):
                    for l in range(responses.shape[3]):
                        reg = LinearRegression()
                        reg.fit(x_context[idx, i, :], responses[idx, j, k, l])
                        y_context[:, i, j, k, l] = reg.predict(x_context[:,
                                                                         i, :])
                        y_context_test[:, i, j, k,
                                       l] = reg.predict(x_context_test[:,
                                                                       i, :])
        elif args.estimator == 'MT':
            reg = MultiTaskLasso(alpha=0.1)
            reg.fit(
                x_context[idx, i, :],
                np.reshape(responses[idx, :, :, :],
                           [covariates.shape[0],
                            np.prod(responses.shape[1:])]))
            y_context[:, i, :, :, :] = np.reshape(
                reg.predict(x_context[:, i, :]), [
                    x_context.shape[0], responses.shape[1], responses.shape[2],
                    responses.shape[3]
                ])
            y_context_test[:, i, :, :, :] = np.reshape(
                reg.predict(x_context_test[:, i, :]), [
                    x_context_test.shape[0], responses.shape[1],
                    responses.shape[2], responses.shape[3]
                ])
        print('Fixed-effect %d of %d is computed!' % (i + 1, factor))

    x_all = x_context
    responses = np.expand_dims(responses, axis=1).repeat(factor, axis=1)

    ################################## TRAINING #################################

    encoder = Encoder(x_context, y_context, args).to(args.device)
    args.cnn_feature_num = encoder.cnn_feature_num
    decoder = Decoder(x_context, y_context, args).to(args.device)
    model = NP(encoder, decoder, args).to(args.device)

    print('Estimating the Random-effect ...')
    k = 1
    epochs = [
        int(args.epochs / 4),
        int(args.epochs / 2),
        int(args.epochs / 5),
        int(args.epochs - args.epochs / 4 - args.epochs / 2 - args.epochs / 5)
    ]
    mini_batch_num = args.batchnum
    batch_size = int(x_context.shape[0] / mini_batch_num)
    model.train()
    for e in range(len(epochs)):
        optimizer = optim.Adam(model.parameters(), lr=10**(-e - 2))
        for j in range(epochs[e]):
            train_loss = 0
            rand_idx = np.random.permutation(x_context.shape[0])
            for i in range(mini_batch_num):
                optimizer.zero_grad()
                idx = rand_idx[i * batch_size:(i + 1) * batch_size]
                y_hat, z_all, z_context, dummy = model(
                    torch.tensor(x_context[idx, :, :], device=args.device),
                    torch.tensor(y_context[idx, :, :, :, :],
                                 device=args.device),
                    torch.tensor(x_all[idx, :, :], device=args.device),
                    torch.tensor(responses[idx, :, :, :, :],
                                 device=args.device))
                loss = np_loss(
                    y_hat,
                    torch.tensor(responses[idx, :, :, :, :],
                                 device=args.device), z_all, z_context)
                loss.backward()
                train_loss += loss.item()
                optimizer.step()
            print('Epoch: %d, Loss:%f, Average Loss:%f' %
                  (k, train_loss, train_loss / responses.shape[0]))
            k += 1

    ################################## Evaluation #################################

    print('Predicting on Test Data ...')
    model.eval()
    model.apply(apply_dropout_test)
    with torch.no_grad():
        y_hat, z_all, z_context, y_sigma = model(
            torch.tensor(x_context_test, device=args.device),
            torch.tensor(y_context_test, device=args.device),
            n=15)
    if args.testrespfile is not None:
        test_loss = np_loss(y_hat[0:test_responses_shape[0], :],
                            torch.tensor(test_responses, device=args.device),
                            z_all, z_context).item()
        print('Average Test Loss:%f' % (test_loss / test_responses_shape[0]))

        RMSE = np.sqrt(
            np.mean((test_responses -
                     y_hat[0:test_responses_shape[0], :].cpu().numpy())**2,
                    axis=0)).squeeze() * mask
        SMSE = RMSE**2 / np.var(test_responses, axis=0).squeeze()
        Rho, pRho = compute_pearsonr(
            test_responses.squeeze(),
            y_hat[0:test_responses_shape[0], :].cpu().numpy().squeeze())
        EXPV = explained_var(
            test_responses.squeeze(),
            y_hat[0:test_responses_shape[0], :].cpu().numpy().squeeze()) * mask
        MSLL = compute_MSLL(
            test_responses.squeeze(),
            y_hat[0:test_responses_shape[0], :].cpu().numpy().squeeze(),
            y_sigma[0:test_responses_shape[0], :].cpu().numpy().squeeze()**2,
            train_mean=test_responses.mean(0),
            train_var=test_responses.var(0)).squeeze() * mask

        NPMs = (test_responses -
                y_hat[0:test_responses_shape[0], :].cpu().numpy()) / (
                    y_sigma[0:test_responses_shape[0], :].cpu().numpy())
        NPMs = NPMs.squeeze()
        NPMs = NPMs * mask
        NPMs = np.nan_to_num(NPMs)

        temp = NPMs.reshape(
            [NPMs.shape[0], NPMs.shape[1] * NPMs.shape[2] * NPMs.shape[3]])
        EVD_params = extreme_value_prob_fit(temp, 0.01)
        abnormal_probs = extreme_value_prob(EVD_params, temp, 0.01)

    ############################## SAVING RESULTS #################################

    print('Saving Results to: %s' % (args.outdir))
    exfile = args.respfile
    y_hat = y_hat.squeeze().cpu().numpy()
    y_hat = response_scaler.inverse_transform(ravel_2D(y_hat))
    y_hat = y_hat[:, mask.flatten()]
    fileio.save(y_hat.T,
                args.outdir + '/yhat.nii.gz',
                example=exfile,
                mask=mask)
    ys2 = y_sigma.squeeze().cpu().numpy()
    ys2 = ravel_2D(ys2) * (response_scaler.data_max_ -
                           response_scaler.data_min_)
    ys2 = ys2**2
    ys2 = ys2[:, mask.flatten()]
    fileio.save(ys2.T, args.outdir + '/ys2.nii.gz', example=exfile, mask=mask)
    if args.testrespfile is not None:
        NPMs = ravel_2D(NPMs)[:, mask.flatten()]
        fileio.save(NPMs.T,
                    args.outdir + '/Z.nii.gz',
                    example=exfile,
                    mask=mask)
        fileio.save(Rho.flatten()[mask.flatten()],
                    args.outdir + '/Rho.nii.gz',
                    example=exfile,
                    mask=mask)
        fileio.save(pRho.flatten()[mask.flatten()],
                    args.outdir + '/pRho.nii.gz',
                    example=exfile,
                    mask=mask)
        fileio.save(RMSE.flatten()[mask.flatten()],
                    args.outdir + '/rmse.nii.gz',
                    example=exfile,
                    mask=mask)
        fileio.save(SMSE.flatten()[mask.flatten()],
                    args.outdir + '/smse.nii.gz',
                    example=exfile,
                    mask=mask)
        fileio.save(EXPV.flatten()[mask.flatten()],
                    args.outdir + '/expv.nii.gz',
                    example=exfile,
                    mask=mask)
        fileio.save(MSLL.flatten()[mask.flatten()],
                    args.outdir + '/msll.nii.gz',
                    example=exfile,
                    mask=mask)

    with open(args.outdir + 'model.pkl', 'wb') as handle:
        pickle.dump(
            {
                'model': model,
                'covariates_scaler': covariates_scaler,
                'response_scaler': response_scaler,
                'EVD_params': EVD_params,
                'abnormal_probs': abnormal_probs
            },
            handle,
            protocol=pickle.HIGHEST_PROTOCOL)


###############################################################################
    print('DONE!')
示例#3
0
def estimate(respfile,
             covfile,
             maskfile=None,
             cvfolds=None,
             testcov=None,
             testresp=None,
             alg='gpr',
             configparam=None,
             saveoutput=True,
             outputsuffix=None,
             standardize=True):
    """ Estimate a normative model

    This will estimate a model in one of two settings according to the
    particular parameters specified (see below):

    * under k-fold cross-validation
        required settings 1) respfile 2) covfile 3) cvfolds>2
    * estimating a training dataset then applying to a second test dataset
        required sessting 1) respfile 2) covfile 3) testcov 4) testresp
    * estimating on a training dataset ouput of forward maps mean and se
        required sessting 1) respfile 2) covfile 3) testcov

    The models are estimated on the basis of data stored on disk in ascii or
    neuroimaging data formats (nifti or cifti). Ascii data should be in
    tab or space delimited format with the number of subjects in rows and the
    number of variables in columns. Neuroimaging data will be reshaped
    into the appropriate format

    Basic usage::

        estimate(respfile, covfile, [extra_arguments])

    where the variables are defined below. Note that either the cfolds
    parameter or (testcov, testresp) should be specified, but not both.

    :param respfile: response variables for the normative model
    :param covfile: covariates used to predict the response variable
    :param maskfile: mask used to apply to the data (nifti only)
    :param cvfolds: Number of cross-validation folds
    :param testcov: Test covariates
    :param testresp: Test responses
    :param alg: Algorithm for normative model
    :param configparam: Parameters controlling the estimation algorithm
    :param saveoutput: Save the output to disk? Otherwise returned as arrays
    :param outputsuffix: Text string to add to the output filenames

    All outputs are written to disk in the same format as the input. These are:

    :outputs: * yhat - predictive mean
              * ys2 - predictive variance
              * Hyp - hyperparameters
              * Z - deviance scores
              * Rho - Pearson correlation between true and predicted responses
              * pRho - parametric p-value for this correlation
              * rmse - root mean squared error between true/predicted responses
              * smse - standardised mean squared error

    The outputsuffix may be useful to estimate multiple normative models in the
    same directory (e.g. for custom cross-validation schemes)
    """

    # load data
    print("Processing data in " + respfile)
    X = fileio.load(covfile)
    Y, maskvol = load_response_vars(respfile, maskfile)
    if len(Y.shape) == 1:
        Y = Y[:, np.newaxis]
    if len(X.shape) == 1:
        X = X[:, np.newaxis]
    Nmod = Y.shape[1]

    if testcov is not None:
        # we have a separate test dataset
        Xte = fileio.load(testcov)
        testids = range(X.shape[0], X.shape[0] + Xte.shape[0])
        if len(Xte.shape) == 1:
            Xte = Xte[:, np.newaxis]
        if testresp is not None:
            Yte, testmask = load_response_vars(testresp, maskfile)
            if len(Yte.shape) == 1:
                Yte = Yte[:, np.newaxis]
        else:
            sub_te = Xte.shape[0]
            Yte = np.zeros([sub_te, Nmod])

        # Initialise normative model
        nm = norm_init(X, alg=alg, configparam=configparam)

        # treat as a single train-test split
        splits = CustomCV((range(0, X.shape[0]), ), (testids, ))

        Y = np.concatenate((Y, Yte), axis=0)
        X = np.concatenate((X, Xte), axis=0)

        # force the number of cross-validation folds to 1
        if cvfolds is not None and cvfolds != 1:
            print("Ignoring cross-valdation specification (test data given)")
        cvfolds = 1

    else:
        # we are running under cross-validation
        splits = KFold(n_splits=cvfolds)
        testids = range(0, X.shape[0])
        # Initialise normative model
        nm = norm_init(X, alg=alg, configparam=configparam)

    # find and remove bad variables from the response variables
    # note: the covariates are assumed to have already been checked
    nz = np.where(
        np.bitwise_and(np.isfinite(Y).any(axis=0),
                       np.var(Y, axis=0) != 0))[0]

    # run cross-validation loop
    Yhat = np.zeros_like(Y)
    S2 = np.zeros_like(Y)
    Hyp = np.zeros((Nmod, nm.n_params, cvfolds))

    Z = np.zeros_like(Y)
    nlZ = np.zeros((Nmod, cvfolds))

    for idx in enumerate(splits.split(X)):

        fold = idx[0]
        tr = idx[1][0]
        te = idx[1][1]

        # standardize responses and covariates, ignoring invalid entries
        iy, jy = np.ix_(tr, nz)
        mY = np.mean(Y[iy, jy], axis=0)
        sY = np.std(Y[iy, jy], axis=0)

        if standardize:
            Yz = np.zeros_like(Y)
            Yz[:, nz] = (Y[:, nz] - mY) / sY
            mX = np.mean(X[tr, :], axis=0)
            sX = np.std(X[tr, :], axis=0)
            Xz = (X - mX) / sX
        else:
            Yz = Y
            Xz = X

        # estimate the models for all subjects
        for i in range(0, len(nz)):  # range(0, Nmod):
            print("Estimating model ", i + 1, "of", len(nz))
            try:
                nm = norm_init(Xz[tr, :],
                               Yz[tr, nz[i]],
                               alg=alg,
                               configparam=configparam)
                Hyp[nz[i], :, fold] = nm.estimate(Xz[tr, :], Yz[tr, nz[i]])
                if (alg == 'hbr'):
                    if nm.configs['new_site'] == True:
                        nm.estimate_on_new_sites(
                            Xz[te, :], Y[te, nz[i]]
                        )  # The test/train division is done internally
                        yhat, s2 = nm.predict_on_new_sites(Xz[te, :])
                    else:
                        yhat, s2 = nm.predict(Xz[te, :], Xz[tr, :],
                                              Yz[tr, nz[i]], Hyp[nz[i], :,
                                                                 fold])
                else:
                    yhat, s2 = nm.predict(Xz[te, :], Xz[tr, :], Yz[tr, nz[i]],
                                          Hyp[nz[i], :, fold])

                if standardize:
                    Yhat[te, nz[i]] = yhat * sY[i] + mY[i]
                    S2[te, nz[i]] = s2 * sY[i]**2
                else:
                    Yhat[te, nz[i]] = yhat
                    S2[te, nz[i]] = s2

                nlZ[nz[i], fold] = nm.neg_log_lik
                if testcov is None:
                    Z[te, nz[i]] = (Y[te, nz[i]] - Yhat[te, nz[i]]) / \
                                   np.sqrt(S2[te, nz[i]])
                else:
                    if testresp is not None:
                        Z[te, nz[i]] = (Y[te, nz[i]] - Yhat[te, nz[i]]) / \
                                       np.sqrt(S2[te, nz[i]])

            except Exception as e:
                exc_type, exc_obj, exc_tb = sys.exc_info()
                fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
                print("Model ", i + 1, "of", len(nz),
                      "FAILED!..skipping and writing NaN to outputs")
                print("Exception:")
                print(e)
                print(exc_type, fname, exc_tb.tb_lineno)
                Hyp[nz[i], :, fold] = float('nan')

                Yhat[te, nz[i]] = float('nan')
                S2[te, nz[i]] = float('nan')
                nlZ[nz[i], fold] = float('nan')
                if testcov is None:
                    Z[te, nz[i]] = float('nan')
                else:
                    if testresp is not None:
                        Z[te, nz[i]] = float('nan')

    # compute performance metrics
    if testcov is None:
        MSE = np.mean((Y[testids, :] - Yhat[testids, :])**2, axis=0)
        RMSE = np.sqrt(MSE)
        # for the remaining variables, we need to ignore zero variances
        SMSE = np.zeros_like(MSE)
        Rho = np.zeros(Nmod)
        pRho = np.ones(Nmod)
        EXPV = np.zeros(Nmod)
        MSLL = np.zeros(Nmod)
        iy, jy = np.ix_(testids, nz)  # ids for tested samples nonzero values
        SMSE[nz] = MSE[nz] / np.var(Y[iy, jy], axis=0)
        Rho[nz], pRho[nz] = compute_pearsonr(Y[iy, jy], Yhat[iy, jy])
        EXPV[nz] = explained_var(Y[iy, jy], Yhat[iy, jy])
        MSLL[nz] = compute_MSLL(Y[iy, jy], Yhat[iy, jy], S2[iy, jy],
                                mY.reshape(-1, 1).T, (sY**2).reshape(-1, 1).T)
    else:
        if testresp is not None:
            MSE = np.mean((Y[testids, :] - Yhat[testids, :])**2, axis=0)
            RMSE = np.sqrt(MSE)
            # for the remaining variables, we need to ignore zero variances
            SMSE = np.zeros_like(MSE)
            Rho = np.zeros(Nmod)
            pRho = np.ones(Nmod)
            EXPV = np.zeros(Nmod)
            MSLL = np.zeros(Nmod)
            iy, jy = np.ix_(testids, nz)  # ids tested samples nonzero values
            SMSE[nz] = MSE[nz] / np.var(Y[iy, jy], axis=0)
            Rho[nz], pRho[nz] = compute_pearsonr(Y[iy, jy], Yhat[iy, jy])
            EXPV[nz] = explained_var(Y[iy, jy], Yhat[iy, jy])
            MSLL[nz] = compute_MSLL(Y[iy, jy], Yhat[iy, jy], S2[iy, jy],
                                    mY.reshape(-1, 1).T,
                                    (sY**2).reshape(-1, 1).T)

    # Set writing options
    if saveoutput:
        print("Writing output ...")
        if fileio.file_type(respfile) == 'cifti' or \
           fileio.file_type(respfile) == 'nifti':
            exfile = respfile
        else:
            exfile = None
        if outputsuffix is not None:
            ext = str(outputsuffix) + fileio.file_extension(respfile)
        else:
            ext = fileio.file_extension(respfile)

        # Write output
        if testcov is None:
            fileio.save(Yhat[testids, :],
                        'yhat' + ext,
                        example=exfile,
                        mask=maskvol)
            fileio.save(S2[testids, :],
                        'ys2' + ext,
                        example=exfile,
                        mask=maskvol)
            fileio.save(Z[testids, :], 'Z' + ext, example=exfile, mask=maskvol)
            fileio.save(Rho, 'Rho' + ext, example=exfile, mask=maskvol)
            fileio.save(pRho, 'pRho' + ext, example=exfile, mask=maskvol)
            fileio.save(RMSE, 'rmse' + ext, example=exfile, mask=maskvol)
            fileio.save(SMSE, 'smse' + ext, example=exfile, mask=maskvol)
            fileio.save(EXPV, 'expv' + ext, example=exfile, mask=maskvol)
            fileio.save(MSLL, 'msll' + ext, example=exfile, mask=maskvol)
            if cvfolds is None:
                fileio.save(Hyp[:, :, 0],
                            'Hyp' + ext,
                            example=exfile,
                            mask=maskvol)
            else:
                for idx in enumerate(splits.split(X)):
                    fold = idx[0]
                    fileio.save(Hyp[:, :, fold].T,
                                'Hyp_' + str(fold + 1) + ext,
                                example=exfile,
                                mask=maskvol)
        else:
            if testresp is None:
                fileio.save(Yhat[testids, :],
                            'yhat' + ext,
                            example=exfile,
                            mask=maskvol)
                fileio.save(S2[testids, :],
                            'ys2' + ext,
                            example=exfile,
                            mask=maskvol)
                fileio.save(Hyp[:, :, 0],
                            'Hyp' + ext,
                            example=exfile,
                            mask=maskvol)
            else:
                fileio.save(Yhat[testids, :],
                            'yhat' + ext,
                            example=exfile,
                            mask=maskvol)
                fileio.save(S2[testids, :],
                            'ys2' + ext,
                            example=exfile,
                            mask=maskvol)
                fileio.save(Z[testids, :],
                            'Z' + ext,
                            example=exfile,
                            mask=maskvol)
                fileio.save(Rho, 'Rho' + ext, example=exfile, mask=maskvol)
                fileio.save(pRho, 'pRho' + ext, example=exfile, mask=maskvol)
                fileio.save(RMSE, 'rmse' + ext, example=exfile, mask=maskvol)
                fileio.save(SMSE, 'smse' + ext, example=exfile, mask=maskvol)
                fileio.save(EXPV, 'expv' + ext, example=exfile, mask=maskvol)
                fileio.save(MSLL, 'msll' + ext, example=exfile, mask=maskvol)
                if cvfolds is None:
                    fileio.save(Hyp[:, :, 0].T,
                                'Hyp' + ext,
                                example=exfile,
                                mask=maskvol)
                else:
                    for idx in enumerate(splits.split(X)):
                        fold = idx[0]
                        fileio.save(Hyp[:, :, fold].T,
                                    'Hyp_' + str(fold + 1) + ext,
                                    example=exfile,
                                    mask=maskvol)
    else:
        if testcov is None:
            output = (Yhat[testids, :], S2[testids, :], Hyp, Z[testids, :],
                      Rho, pRho, RMSE, SMSE, EXPV, MSLL)
        else:
            if testresp is None:
                output = (Yhat[testids, :], S2[testids, :], Hyp)
            else:
                output = (Yhat[testids, :], S2[testids, :], Hyp, Z[testids, :],
                          Rho, pRho, RMSE, SMSE, EXPV, MSLL)
        return output