示例#1
0
def test_TimeArray_index_at():
    time1 = ts.TimeArray(list(range(10)), time_unit='ms')
    for i in range(5):
        # The return value is always an array, so we keep it for multiple tests
        i_arr = np.array(i)
        # Check 'closest' indexing mode first
        idx = time1.index_at(i)
        npt.assert_equal(idx, i_arr)

        # If we index with seconds/1000, results shouldn't vary
        idx_secs = time1.index_at(ts.TimeArray(i / 1000., time_unit='s'))
        npt.assert_equal(idx_secs, i_arr)

        # If we now change the tolerance
        # In this case, it should still return
        idx = time1.index_at(i + 0.1, tol=0.1)
        npt.assert_equal(idx, i_arr)
        # But with a smaller tolerance, we should get no indices
        idx = time1.index_at(i + 0.1, tol=0.05)
        npt.assert_equal(idx, np.array([]))

        # Now, check before/after modes
        idx = time1.index_at(i + 0.1, mode='before')
        npt.assert_equal(idx, i_arr)

        idx = time1.index_at(i + 0.1, mode='after')
        npt.assert_equal(idx, i_arr + 1)
示例#2
0
def test_time_series_from_file():
    """Testing reading of data from nifti files, using nibabel"""

    TR = 1.35
    ts_ff = io.time_series_from_file

    #File names:
    fmri_file1 = os.path.join(data_path, 'fmri1.nii.gz')
    fmri_file2 = os.path.join(data_path, 'fmri2.nii.gz')

    #Spatial coordinates into the volumes:
    coords1 = np.array([[5, 5, 5, 5], [5, 5, 5, 5], [1, 2, 3, 4]])
    coords2 = np.array([[6, 6, 6, 6], [6, 6, 6, 6], [3, 4, 5, 6]])

    #No averaging, no normalization:
    t1 = ts_ff([fmri_file1, fmri_file2], [coords1, coords2], TR)

    npt.assert_equal(t1[0].shape, (4, 80))  # 4 coordinates, 80 time-points

    t2 = ts_ff([fmri_file1, fmri_file2], [coords1, coords2], TR, average=True)

    npt.assert_equal(t2[0].shape,
                     (80, ))  # collapse coordinates,80 time-points

    t3 = ts_ff(fmri_file1, coords1, TR, normalize='zscore')

    #The mean of each channel should be almost equal to 0:
    npt.assert_almost_equal(t3.data[0].mean(), 0)
    #And the standard deviation should be almost equal to 1:
    npt.assert_almost_equal(t3.data[0].std(), 1)

    t4 = ts_ff(fmri_file1, coords1, TR, normalize='percent')

    #In this case, the average is almost equal to 0, but no constraint on the
    #std:
    npt.assert_almost_equal(t4.data[0].mean(), 0)

    #Make sure that we didn't mess up the sampling interval:
    npt.assert_equal(t4.sampling_interval, nitime.TimeArray(1.35))

    # Test the default behavior:
    data = io.load(fmri_file1).get_data()
    t5 = ts_ff(fmri_file1)
    npt.assert_equal(t5.shape, data.shape)
    npt.assert_equal(t5.sampling_interval, ts.TimeArray(1, time_unit='s'))

    # Test initializing TR with a TimeArray:
    t6 = ts_ff(fmri_file1, TR=ts.TimeArray(1350, time_unit='ms'))
    npt.assert_equal(t4.sampling_interval, t6.sampling_interval)

    # Check the concatenation dimensions:
    t7 = ts_ff([fmri_file1, fmri_file2])
    npt.assert_equal([t7.shape[:3], t7.shape[-1]],
                     [data.shape[:3], data.shape[-1] * 2])

    t8 = ts_ff([fmri_file1, fmri_file2], average=True)
    npt.assert_equal(t8.shape[0], data.shape[-1] * 2)

    t9 = ts_ff([fmri_file1, fmri_file2], average=True, normalize='zscore')
    npt.assert_almost_equal(t9.data.mean(), 0)
示例#3
0
def test_UniformTime_index_at():
    time1 = ts.UniformTime(t0=1000,
                           length=10,
                           sampling_rate=1000,
                           time_unit='ms')
    mask = [False] * 10
    for i in xrange(10):
        idx = time1.index_at(ts.TimeArray(1000 + i, time_unit='ms'))
        npt.assert_equal(idx, np.array(i))
        mask[i] = True
        mask_idx = time1.index_at(ts.TimeArray(1000 + i, time_unit='ms'),
                                  boolean=True)
        npt.assert_equal(mask_idx, mask)
        if i > 0 and i < 9:
            mask[i - 1] = True
            mask[i + 1] = True

            mask_idx = time1.index_at(ts.TimeArray(
                [999 + i, 1000 + i, 1001 + i], time_unit='ms'),
                                      boolean=True)

            npt.assert_equal(mask_idx, mask)
            mask[i - 1] = False
            mask[i + 1] = False
        mask[i] = False
示例#4
0
def test_TimeArray_at2():
    time1 = ts.TimeArray(list(range(10)), time_unit='ms')
    for i in [1]:
        i_ms = ts.TimeArray(i / 1000.)
        this_secs = time1.at(i_ms, tol=1)
        npt.assert_equal(this_secs,
                               ts.TimeArray([i - 1, i, i + 1], time_unit='ms'))
示例#5
0
def test_TimeArray_bool():
    time1 = ts.TimeArray([1, 2, 3], time_unit='s')
    time2 = ts.TimeArray([1000, 2000, 3000], time_unit='ms')
    bool_arr = np.ones(time1.shape, dtype=bool)
    npt.assert_equal(time1, time2)
    npt.assert_equal(bool_arr, time1 == time2)
    nt.assert_not_equal(type(time1 == time2), ts.TimeArray)
示例#6
0
def test_TimeArray_math():
    "Addition and subtraction should convert to TimeArray units"
    time1 = ts.TimeArray(list(range(10)), time_unit='ms')
    time2 = ts.TimeArray(list(range(1,11)), time_unit='ms')
    # units should be converted to whatever units the array has
    time3 = time1 + 1
    npt.assert_equal(time2,time3)
    time4 = time2 - 1
    npt.assert_equal(time1,time4)
    # floats should also work
    time3 = time1 + 1.0
    npt.assert_equal(time2,time3)
    time4 = time2 - 1.0
    npt.assert_equal(time1,time4)

    # test the r* versions
    time3 = 1 + time1
    npt.assert_equal(time2,time3)
    time4 = 1 - time2
    npt.assert_equal(-time1,time4)
    # floats should also work
    time3 = 1.0 + time1
    npt.assert_equal(time2,time3)
    time4 = 1.0 - time2
    npt.assert_equal(-time1,time4)

    timeunits = ts.TimeArray(list(range(10)), time_unit='s')
    timeunits.convert_unit('ms')
    # now, math with non-TimeArrays should be based on the new time_unit

    # here the range() list gets converted to a TimeArray with the same units
    # as timeunits (which is now 'ms')
    tnew = timeunits + list(range(10))
    npt.assert_equal(tnew, timeunits+time1) # recall that time1 was 0-10ms
示例#7
0
def test_TimeArray_init_list():
    """Initializing with a list that contains TimeArray should work.
    """
    for t in [0.001, ts.TimeArray(0.001, time_unit='s')]:
        tl = [t]
        ta = ts.TimeArray(t, time_unit='s')
        tla = ts.TimeArray(tl, time_unit='s')
        nt.assert_equal(ta, tla)
示例#8
0
def test_FilterAnalyzer():
    """Testing the FilterAnalyzer """
    t = np.arange(np.pi / 100, 10 * np.pi, np.pi / 100)
    fast = np.sin(50 * t) + 10
    slow = np.sin(10 * t) - 20

    fast_mean = np.mean(fast)
    slow_mean = np.mean(slow)

    fast_ts = ts.TimeSeries(data=fast, sampling_rate=np.pi)
    slow_ts = ts.TimeSeries(data=slow, sampling_rate=np.pi)

    #Make sure that the DC is preserved
    f_slow = nta.FilterAnalyzer(slow_ts, ub=0.6)
    f_fast = nta.FilterAnalyzer(fast_ts, lb=0.6)

    npt.assert_almost_equal(f_slow.filtered_fourier.data.mean(),
                            slow_mean,
                            decimal=2)

    npt.assert_almost_equal(f_slow.filtered_boxcar.data.mean(),
                            slow_mean,
                            decimal=2)

    npt.assert_almost_equal(f_slow.fir.data.mean(), slow_mean)

    npt.assert_almost_equal(f_slow.iir.data.mean(), slow_mean)

    npt.assert_almost_equal(f_fast.filtered_fourier.data.mean(), 10)

    npt.assert_almost_equal(f_fast.filtered_boxcar.data.mean(), 10, decimal=2)

    npt.assert_almost_equal(f_fast.fir.data.mean(), 10)

    npt.assert_almost_equal(f_fast.iir.data.mean(), 10)

    #Check that things work with a two-channel time-series:
    T2 = ts.TimeSeries(np.vstack([fast, slow]), sampling_rate=np.pi)
    f_both = nta.FilterAnalyzer(T2, ub=1.0, lb=0.1)
    #These are rather basic tests:
    npt.assert_equal(f_both.fir.shape, T2.shape)
    npt.assert_equal(f_both.iir.shape, T2.shape)
    npt.assert_equal(f_both.filtered_boxcar.shape, T2.shape)
    npt.assert_equal(f_both.filtered_fourier.shape, T2.shape)

    # Check that t0 is propagated to the filtered time-series
    t0 = np.pi
    T3 = ts.TimeSeries(np.vstack([fast, slow]), sampling_rate=np.pi, t0=t0)
    f_both = nta.FilterAnalyzer(T3, ub=1.0, lb=0.1)
    # These are rather basic tests:
    npt.assert_equal(f_both.fir.t0, ts.TimeArray(t0, time_unit=T3.time_unit))
    npt.assert_equal(f_both.iir.t0, ts.TimeArray(t0, time_unit=T3.time_unit))
    npt.assert_equal(f_both.filtered_boxcar.t0,
                     ts.TimeArray(t0, time_unit=T3.time_unit))
    npt.assert_equal(f_both.filtered_fourier.t0,
                     ts.TimeArray(t0, time_unit=T3.time_unit))
示例#9
0
def test_TimeArray_copyflag():
    """Testing the setting of the copy-flag, where that makes sense"""

    #These two should both generate a TimeArray, with one picosecond.
    #This one holds time_unit='s'
    t1 = ts.TimeArray(np.array([1], dtype=np.int64), copy=False)
    #This one holds time_unit='ps':
    t2 = ts.TimeArray(1, time_unit='ps')
    t3 = ts.TimeArray(t2, copy=False)
    npt.assert_equal(t1, t2)
    npt.assert_equal(t2.ctypes.data, t3.ctypes.data)
示例#10
0
def test_get_time_unit():

    number = 4
    npt.assert_equal(ts.get_time_unit(number), None)

    list_of_numbers = [4, 5, 6]
    npt.assert_equal(ts.get_time_unit(list_of_numbers), None)

    for tu in ['ps', 's', 'D']:
        time_point = ts.TimeArray([4], time_unit=tu)
        npt.assert_equal(ts.get_time_unit(time_point), tu)

        list_of_time = [
            ts.TimeArray(4, time_unit=tu),
            ts.TimeArray(5, time_unit=tu)
        ]
        npt.assert_equal(ts.get_time_unit(list_of_time), tu)

        # Go crazy, we don't mind:
        list_of_lists = [[
            ts.TimeArray(4, time_unit=tu),
            ts.TimeArray(5, time_unit=tu)
        ], [ts.TimeArray(4, time_unit=tu),
            ts.TimeArray(5, time_unit=tu)]]

        npt.assert_equal(ts.get_time_unit(list_of_lists), tu)
        time_arr = ts.TimeArray([4, 5], time_unit=tu)
        npt.assert_equal(ts.get_time_unit(time_arr), tu)
示例#11
0
def test_timearray_var_prod():
    """
    Variance and product change the TimeArray units, so they are not
    implemented and raise an error
    """
    a = ts.TimeArray(list(range(10)))
    npt.assert_raises(NotImplementedError, a.var)
    npt.assert_raises(NotImplementedError, a.prod)
示例#12
0
def test_index_int64():
    "indexing with int64 should still return a valid TimeArray"
    a = list(range(10))
    b = ts.TimeArray(a)
    assert b[0] == b[np.int64(0)]
    assert repr(b[0]) == repr(b[np.int64(0)])
    assert b[0] == b[np.int32(0)]
    assert repr(b[0]) == repr(b[np.int32(0)])
示例#13
0
def test_epochs_subclass_slicing():
    "Subclassing Epochs should preserve the subclass after slicing"
    class Epochs_with_X(ts.Epochs):
        "An epoch class with extra 'stuff'"
        def total_duration(self):
            """Duration array for the epoch"""
            # XXX: bug in duration after slicing - attr_onread should be reset
            # after slicing
            #return self.duration.sum()
            return (self.stop - self.start).sum()

    time_0 = list(range(10))
    e = Epochs_with_X(time_0, duration=.2)
    npt.assert_equal(e.total_duration(), ts.TimeArray(2.0))

    slice_of_e = e[:5]
    npt.assert_equal(slice_of_e.total_duration(), ts.TimeArray(1.0))
    assert(slice_of_e.__class__ == Epochs_with_X)
示例#14
0
def test_timearray_var_prod():
    """
    Variance and product change the TimeArray units, so they are not
    implemented and raise an error
    """
    a = ts.TimeArray(list(range(10)))
    with pytest.raises(NotImplementedError) as e_info:
        a.var()
    with pytest.raises(NotImplementedError) as e_info:
        a.prod()
示例#15
0
def test_timearray_math_functions():
    "Calling TimeArray.min() .max(), mean() should return TimeArrays"
    a = np.arange(2, 11)
    for f in ['min', 'max', 'mean', 'ptp', 'sum']:
        for tu in ['s', 'ms', 'ps', 'D']:
            b = ts.TimeArray(a, time_unit=tu)
            npt.assert_(getattr(b, f)().__class__ == ts.TimeArray)
            npt.assert_(getattr(b, f)().time_unit == b.time_unit)
            # comparison with unitless should convert to the TimeArray's units
            npt.assert_(getattr(b, f)() == getattr(a, f)())
示例#16
0
def test_TimeArray():

    time1 = ts.TimeArray(list(range(100)), time_unit='ms')
    time2 = time1 + time1
    npt.assert_equal(time2.time_unit, 'ms')
    time1 = ts.TimeArray(10 ** 6)
    npt.assert_equal(time1.__repr__(), '1000000.0 s')
    #TimeArray can't be more than 1-d:
    nt.assert_raises(ValueError, ts.TimeArray, np.zeros((2, 2)))

    dt = ts.TimeArray(0.001, time_unit='s')
    tt = ts.TimeArray([dt])
    npt.assert_equal(dt, tt)

    t1 = ts.TimeArray([0, 1, 2, 3])
    t2 = ts.TimeArray([ts.TimeArray(0),
                       ts.TimeArray(1),
                       ts.TimeArray(2),
                       ts.TimeArray(3)])
    npt.assert_equal(t1, t2)
示例#17
0
def test_Events_scalar():
    t = ts.TimeArray(1, time_unit='ms')
    i, j = 4, 5
    ev = ts.Events(t, i=i, j=j)
    # The semantics of scalar indexing into events are such that the returned
    # value is always a new Events object (the mental model is that of python
    # strings, where slicing OR scalar indexing still return the same thing, a
    # string again -- there are no 'string scalars', and there are no 'Event
    # scalars' either).
    npt.assert_equal(ev.data['i'][0], i)
    npt.assert_equal(ev.data['j'][0], j)
示例#18
0
def test_TimeArray_new():
    for unit in ['ns', 'ms', 's', None]:
        for flag, assertion in [(True, nt.assert_not_equal),
                (False, nt.assert_equal)]:
            #list -doesn't make sense to set copy=True
            time2 = ts.TimeArray(list(range(5)), time_unit=unit, copy=True)
            #numpy array (float) - doesn't make sense to set copy=True
            time2f = ts.TimeArray(np.arange(5.), time_unit=unit, copy=True)
            #TimeArray
            time3 = ts.TimeArray(time2, time_unit=unit, copy=flag)
            #integer
            time4 = ts.TimeArray(5, time_unit=unit, copy=True)
            #float
            time5 = ts.TimeArray(5.0, time_unit=unit, copy=True)

            npt.assert_equal(time2, time2f)
            npt.assert_equal(time2, time3)
            time3[0] += 100
            assertion(time2[0], time3[0])
            npt.assert_equal(time2[1:], time3[1:])
            npt.assert_equal(time4, time5)
示例#19
0
def test_TimeArray_div():

    #divide singelton by singleton:
    a = 2.0
    b = 6.0
    time1 = ts.TimeArray(a, time_unit='s')
    time2 = ts.TimeArray(b, time_unit='s')
    div1 = a / b
    #This should eliminate the units and return a float, not a TimeArray:
    div2 = time1 / time2
    npt.assert_equal(div1, div2)

    #Divide a TimeArray by a singelton:
    a = np.array([1, 2, 3])
    b = 6.0
    time1 = ts.TimeArray(a, time_unit='s')
    time2 = ts.TimeArray(b, time_unit='s')
    div1 = a / b
    #This should eliminate the units and return a float array, not a TimeArray:
    div2 = time1 / time2
    npt.assert_equal(div1, div2)

    #Divide a TimeArray by another TimeArray:
    a = np.array([1, 2, 3])
    b = np.array([2, 2, 2]).astype(float)  # TimeArray division is float division!
    time1 = ts.TimeArray(a, time_unit='s')
    time2 = ts.TimeArray(b, time_unit='s')
    div1 = a / b
    #This should eliminate the units and return a float array, not a TimeArray:
    div2 = time1 / time2
    npt.assert_equal(div1, div2)
示例#20
0
def test_TimeArray_comparison():
    "Comparison with unitless quantities should convert to TimeArray units"
    time = ts.TimeArray(range(10), time_unit='ms')
    npt.assert_equal(time < 5 , [True]*5+[False]*5)
    npt.assert_equal(time >= 5 , [False]*5+[True]*5)
    npt.assert_equal(time <= 5 , [True]*6+[False]*4)
    npt.assert_equal(time > 5 , [False]*6+[True]*4)
    time.convert_unit('s')
    # now all of time is < 1 in the new time_unit
    npt.assert_equal(time < 5 , [True]*10)
    npt.assert_equal(time <= 5 , [True]*10)
    npt.assert_equal(time > 5 , [False]*10)
    npt.assert_equal(time >= 5 , [False]*10)
示例#21
0
def test_basic_slicing():
    t = ts.TimeArray(list(range(4)))

    for x in range(3):
        ep  = ts.Epochs(.5,x+.5)
        npt.assert_equal(len(t[ep]), x)

    # epoch starts before timeseries
    npt.assert_equal(len(t[ts.Epochs(-1,3)]), len(t)-1)
    # epoch ends after timeseries
    npt.assert_equal(len(t[ts.Epochs(.5,5)]), len(t)-1)
    # epoch starts before and ends after timeseries
    npt.assert_equal(len(t[ts.Epochs(-1,100)]), len(t))
    ep  = ts.Epochs(20,100)
    npt.assert_equal(len(t[ep]), 0)
示例#22
0
def test_TimeArray_at():
    time1 = ts.TimeArray(list(range(10)), time_unit='ms')
    for i in range(10):
        this = time1.at(i)
        i_ms = ts.TimeArray(i / 1000.)
        npt.assert_equal(this, ts.TimeArray(i, time_unit='ms'))
        this_secs = time1.at(i_ms)
        npt.assert_equal(this_secs, ts.TimeArray(i, time_unit='ms'))
        seconds_array = ts.TimeArray(time1, time_unit='s')
        this_secs = seconds_array.at(i / 1000.)
        npt.assert_equal(this_secs, ts.TimeArray(i, time_unit='ms'))
        all = time1.at(i_ms, tol=10)
        npt.assert_equal(all, time1)
        if i > 0 and i < 9:
            this_secs = time1.at(i_ms, tol=1)
            npt.assert_equal(this_secs,
                                   ts.TimeArray([i - 1, i, i + 1], time_unit='ms'))
示例#23
0
def test_TimeArray_init_int64():
    """Make sure that we can initialize TimeArray with an array of ints"""
    time = ts.TimeArray(np.int64(1))
    npt.assert_equal(time.__repr__(), '1.0 s')

    pass
示例#24
0
def test_UniformTime():
    tuc = ts.time_unit_conversion
    for unit, duration in zip(['ns', 'ms', 's', None],
                             [2 * 10 ** 9, 2 * 10 ** 6, 100, 20]):

        t1 = ts.UniformTime(duration=duration, sampling_rate=1,
                            time_unit=unit)
        t2 = ts.UniformTime(duration=duration, sampling_rate=20,
                            time_unit=unit)

        #The following two tests verify that first-last are equal to the
        #duration, but it is unclear whether that is really the behavior we
        #want, because the t_i held by a TimeSeries is the left
        #(smaller) side of the time-duration defined by the bin

        #The difference between the first and last item is the duration:
        #npt.assert_equal(t1[-1]-t1[0],
        #                       ts.TimeArray(duration,time_unit=unit))
        #Duration doesn't depend on the sampling rate:
        #npt.assert_equal(t1[-1]-t2[0],
        #                       ts.TimeArray(duration,time_unit=unit))

        a = ts.UniformTime(duration=10, sampling_rate=1)
        b = ts.UniformTime(a, time_unit=unit)
        npt.assert_equal(a.sampling_interval, b.sampling_interval)
        npt.assert_equal(a.sampling_rate, b.sampling_rate)

        b = ts.UniformTime(a, duration=2 * duration, time_unit=unit)
        npt.assert_equal(a.sampling_interval, b.sampling_interval)
        npt.assert_equal(a.sampling_rate, b.sampling_rate)

        b = ts.UniformTime(a, length=100, time_unit=unit)
        npt.assert_equal(a.sampling_interval, b.sampling_interval)
        npt.assert_equal(a.sampling_rate, b.sampling_rate)

        b = ts.UniformTime(a, length=100, time_unit=unit)
        npt.assert_equal(a.sampling_interval, b.sampling_interval)
        npt.assert_equal(a.sampling_rate, b.sampling_rate)

        b = ts.UniformTime(a, length=100, duration=duration, time_unit=unit)
        c = ts.UniformTime(length=100, duration=duration, time_unit=unit)
        npt.assert_equal(c, b)

        b = ts.UniformTime(sampling_interval=1, duration=10, time_unit=unit)
        c = ts.UniformTime(sampling_rate=tuc['s'] / tuc[unit],
                           length=10, time_unit=unit)

        npt.assert_equal(c, b)

        #This should raise a value error, because the duration is shorter than
        #the sampling_interval:
        npt.assert_raises(ValueError,
                                ts.UniformTime,
                                dict(sampling_interval=10, duration=1))

    #Time objects can be initialized with other time objects setting the
    #duration, sampling_interval and sampling_rate:

    a = ts.UniformTime(length=1, sampling_rate=1)
    npt.assert_raises(ValueError, ts.UniformTime, dict(data=a,
        sampling_rate=10, sampling_interval=.1))
    b = ts.UniformTime(duration=2 * a.sampling_interval,
                       sampling_rate=2 * a.sampling_rate)

    npt.assert_equal(ts.Frequency(b.sampling_rate),
                     ts.Frequency(2 * a.sampling_rate))
    npt.assert_equal(b.sampling_interval,
                           ts.TimeArray(0.5 * a.sampling_rate))

    b = ts.UniformTime(duration=10,
                       sampling_interval=a.sampling_interval)

    npt.assert_equal(b.sampling_rate, a.sampling_rate)

    b = ts.UniformTime(duration=10,
                       sampling_rate=a.sampling_rate)

    npt.assert_equal(b.sampling_interval, a.sampling_interval)

    # make sure the t0 ando other attribute is copied
    a = ts.UniformTime(length=1, sampling_rate=1)
    b = a.copy()
    npt.assert_equal(b.duration, a.duration)
    npt.assert_equal(b.sampling_rate, a.sampling_rate)
    npt.assert_equal(b.sampling_interval, a.sampling_interval)
    npt.assert_equal(b.t0, a.t0)
示例#25
0
def test_TimeSeries():
    """Testing the initialization of the uniform time series object """

    #Test initialization with duration:
    tseries1 = ts.TimeSeries([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], duration=10)
    tseries2 = ts.TimeSeries([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], sampling_interval=1)
    npt.assert_equal(tseries1.time, tseries2.time)

    #downsampling:
    t1 = ts.UniformTime(length=8, sampling_rate=2)
    #duration is the same, but we're downsampling to 1Hz
    tseries1 = ts.TimeSeries(data=[1, 2, 3, 4], time=t1, sampling_rate=1)
    #If you didn't explicitely provide the rate you want to downsample to, that
    #is an error:
    npt.assert_raises(ValueError, ts.TimeSeries, dict(data=[1, 2, 3, 4],
                                                           time=t1))

    tseries2 = ts.TimeSeries(data=[1, 2, 3, 4], sampling_rate=1)
    tseries3 = ts.TimeSeries(data=[1, 2, 3, 4], sampling_rate=1000,
                                    time_unit='ms')
    #you can specify the sampling_rate or the sampling_interval, to the same
    #effect, where specificying the sampling_interval is in the units of that
    #time-series:
    tseries4 = ts.TimeSeries(data=[1, 2, 3, 4], sampling_interval=1,
                                        time_unit='ms')
    npt.assert_equal(tseries4.time, tseries3.time)

    #The units you use shouldn't matter - time is time:
    tseries6 = ts.TimeSeries(data=[1, 2, 3, 4],
                                    sampling_interval=0.001,
                                    time_unit='s')
    npt.assert_equal(tseries6.time, tseries3.time)

    #And this too - perverse, but should be possible:
    tseries5 = ts.TimeSeries(data=[1, 2, 3, 4],
                                    sampling_interval=ts.TimeArray(0.001,
                                                         time_unit='s'),
                                    time_unit='ms')

    npt.assert_equal(tseries5.time, tseries3.time)

    #initializing with a UniformTime object:
    t = ts.UniformTime(length=3, sampling_rate=3)

    data = [1, 2, 3]

    tseries7 = ts.TimeSeries(data=data, time=t)

    npt.assert_equal(tseries7.data, data)

    data = [1, 2, 3, 4]
    #If the data is not the right length, that should throw an error:
    npt.assert_raises(ValueError,
                          ts.TimeSeries, dict(data=data, time=t))

    # test basic arithmetics wiht TimeSeries
    tseries1 = ts.TimeSeries([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], sampling_rate=1)
    tseries2 = tseries1 + 1
    npt.assert_equal(tseries1.data + 1, tseries2.data)
    npt.assert_equal(tseries1.time, tseries2.time)
    tseries2 -= 1
    npt.assert_equal(tseries1.data, tseries2.data)
    npt.assert_equal(tseries1.time, tseries2.time)
    tseries2 = tseries1 * 2
    npt.assert_equal(tseries1.data * 2, tseries2.data)
    npt.assert_equal(tseries1.time, tseries2.time)
    tseries2 = tseries2 / 2
    npt.assert_equal(tseries1.data, tseries2.data)
    npt.assert_equal(tseries1.time, tseries2.time)
示例#26
0
def test_Epochs():
    tms = ts.TimeArray(data=list(range(100)), time_unit='ms')
    tmin = ts.TimeArray(data=list(range(100)), time_unit='m')
    tsec = ts.TimeArray(data=list(range(100)), time_unit='s')

    utms = ts.UniformTime(length=100, sampling_interval=1, time_unit='ms')
    utmin = ts.UniformTime(length=100, sampling_interval=1, time_unit='m')
    utsec = ts.UniformTime(length=100, sampling_interval=1, time_unit='s')

    tsms = ts.TimeSeries(data=list(range(100)), sampling_interval=1, time_unit='ms')
    tsmin = ts.TimeSeries(data=list(range(100)), sampling_interval=1, time_unit='m')
    tssec = ts.TimeSeries(data=list(range(100)), sampling_interval=1, time_unit='s')

    # one millisecond epoch
    e1ms = ts.Epochs(0, 1, time_unit='ms')
    e09ms = ts.Epochs(0.1, 1, time_unit='ms')
    msg = "Seems like a problem with copy=False in TimeArray constructor."
    npt.assert_equal(e1ms.duration, ts.TimeArray(1, time_unit='ms'), msg)

    # one day
    e1d = ts.Epochs(0, 1, time_unit='D')
    npt.assert_equal(e1d.duration, ts.TimeArray(1, time_unit='D'), msg)

    e1ms_ar = ts.Epochs([0, 0], [1, 1], time_unit='ms')

    for t in [tms, tmin, tsec, utms, utmin, utsec]:

        # the sample time arrays are all at least 1ms long, so this should
        # return a timearray that has exactly one time point in it
        npt.assert_equal(len(t.during(e1ms)), 1)

        # this time epoch should not contain any point
        npt.assert_equal(len(t.during(e09ms)), 0)

        # make sure, slicing doesn't change the class
        npt.assert_equal(type(t), type(t.during(e1ms)))

    for t in [tsms, tsmin, tssec]:
        # the sample time series are all at least 1ms long, so this should
        # return a timeseries that has exactly one time point in it
        npt.assert_equal(len(t.during(e1ms)), 1)

        # make sure, slicing doesn't change the class
        npt.assert_equal(type(t), type(t.during(e1ms)))

        # same thing but now there's an array of epochs
        e2 = ts.Epochs([0, 10], [10, 20], time_unit=t.time_unit)

        # make sure, slicing doesn't change the class for array of epochs
        npt.assert_equal(type(t), type(t.during(e2)))

        # Indexing with an array of epochs (all of which are the same length)
        npt.assert_equal(t[e2].data.shape, (2, 10))
        npt.assert_equal(len(t.during(e2)), 10)
        npt.assert_equal(t[e2].data.ndim, 2)
        # check the data at some timepoints (a dimension was added)
        npt.assert_equal(t[e2][0], (0, 10))
        npt.assert_equal(t[e2][1], (1, 11))
        # check the data for each epoch
        npt.assert_equal(t[e2].data[0], list(range(10)))
        npt.assert_equal(t[e2].data[1], list(range(10, 20)))
        npt.assert_equal(t[e2].duration, e2[0].duration)

        # slice with Epochs of different length (not supported for timeseries,
        # raise error, though future jagged array implementation could go here)
        ejag = ts.Epochs([0, 10], [10, 40], time_unit=t.time_unit)
        # next line is the same as t[ejag]
        npt.assert_raises(ValueError, t.__getitem__, ejag)

        # if an epoch lies entirely between samples in the timeseries,
        # return an empty array
        eshort = ts.Epochs(2.5, 2.7, time_unit=t.time_unit)
        npt.assert_equal(len(t[eshort].data), 0)

        e1ms_outofrange = ts.Epochs(200, 300, time_unit=t.time_unit)
        # assert that with the epoch moved outside of the time range of our
        # data, slicing with the epoch now yields an empty array
        npt.assert_raises(ValueError, t.during, dict(e=e1ms_outofrange))

        # the sample timeseries are all shorter than a day, so this should
        # raise an error (instead of padding, or returning a shorter than
        # expected array.
        npt.assert_raises(ValueError, t.during, dict(e=e1d))
示例#27
0
def test_Events():

    # time has to be one-dimensional
    nt.assert_raises(ValueError, ts.Events, np.zeros((2, 2)))

    t = ts.TimeArray([1, 2, 3], time_unit='ms')
    x = [1, 2, 3]
    y = [2, 4, 6]
    z = [10., 20., 30.]
    i0 = [0, 0, 1]
    i1 = [0, 1, 2]
    for unit in [None, 's', 'ns', 'D']:
        # events with data
        ev1 = ts.Events(t, time_unit=unit, i=x, j=y, k=z)

        # events with indices
        ev2 = ts.Events(t, time_unit=unit, indices=[i0, i1])

        # events with indices and labels
        ev3 = ts.Events(t, time_unit=unit, labels=['trial', 'other'],
                        indices=[i0, i1])

        # Note that the length of indices and labels has to be identical:
        nt.assert_raises(ValueError, ts.Events, t, time_unit=unit,
                                                       labels=['trial',
                                                               'other'],
                                                       indices=[i0])# Only
                                                                    # one of
                                                                    # the
                                                                    # indices!

        # make sure the time is retained
        npt.assert_equal(ev1.time, t)
        npt.assert_equal(ev2.time, t)

        # make sure time unit is correct
        if unit is not None:
            npt.assert_equal(ev1.time_unit, unit)
            npt.assert_equal(ev2.time_unit, unit)
        else:
            npt.assert_equal(ev1.time_unit, t.time_unit)
            npt.assert_equal(ev2.time_unit, t.time_unit)

        # make sure we can extract data
        npt.assert_equal(ev1.data['i'], x)
        npt.assert_equal(ev1.data['j'], y)
        npt.assert_equal(ev1.data['k'], z)

        # make sure we can get the indices by label
        npt.assert_equal(ev3.index.trial, i0)
        npt.assert_equal(ev3.index.other, i1)

        # make sure we can get the indices by position
        npt.assert_equal(ev2.index.i0, i0)
        npt.assert_equal(ev2.index.i1, i1)

        #make sure slicing works
        #one_event = ts.Events(t[[0]],time_unit=unit,i=[x[0]],j=[y[0]],k=[z[0]])
        #regular indexing
        npt.assert_equal(ev1[0].data['i'], x[0])
        npt.assert_equal(ev1[0:2].data['i'], x[0:2])

        # indexing w/ time
        npt.assert_equal(ev1[0.].data['i'], x[0])

        # indexing w/ epoch
        ep = ts.Epochs(start=0, stop=1.5, time_unit='ms')
        npt.assert_equal(ev1[ep].data['i'], x[0])

        # fancy indexing (w/ boolean mask)
        npt.assert_equal(ev1[ev3.index.trial == 0].data['j'], y[0:2])

        # len() function is implemented and working
        assert len(t) == len(ev1) == len(ev2) == len(ev3)