def test_evaluate(self): es_size_2 = ensemble_selection.EnsembleSelection( problem_statement=ps_pb2.ProblemStatement(tasks=[ ps_pb2.Task( type=ps_pb2.Type( one_dimensional_regression=ps_pb2.OneDimensionalRegression( label='label'))) ]), saved_model_paths=self.saved_model_paths, predict_fn=_test_predict_fn, ensemble_size=2, metric=tf.keras.metrics.MeanSquaredError(), goal='minimize') es_size_4 = ensemble_selection.EnsembleSelection( problem_statement=ps_pb2.ProblemStatement(tasks=[ ps_pb2.Task( type=ps_pb2.Type( one_dimensional_regression=ps_pb2.OneDimensionalRegression( label='label'))) ]), saved_model_paths=self.saved_model_paths, predict_fn=_test_predict_fn, ensemble_size=4, metric=tf.keras.metrics.MeanSquaredError(), goal='minimize') metrics = [tf.keras.metrics.MeanSquaredError()] es_size_2.fit(self.fit_examples, self.fit_label) es_size_4.fit(self.fit_examples, self.fit_label) es_2_mse = es_size_2.evaluate(self.fit_examples, self.fit_label, metrics)[0] es_4_mse = es_size_4.evaluate(self.fit_examples, self.fit_label, metrics)[0] self.assertLessEqual(es_4_mse, es_2_mse)
def _get_task_type(self): """Creates a `ps_pb2.Type` from the number of classes.""" if self.num_classes == 0: return ps_pb2.Type( one_dimensional_regression=ps_pb2.OneDimensionalRegression( label=self._label_key)) if self.num_classes == 2: return ps_pb2.Type( binary_classification=ps_pb2.BinaryClassification( label=self._label_key)) return ps_pb2.Type( multi_class_classification=ps_pb2.MultiClassClassification( label=self._label_key))
def testDoWithMajoritVoting(self): exec_properties = self._exec_properties.copy() exec_properties['tuner_fn'] = '%s.%s' % ( tuner_module.tuner_fn.__module__, tuner_module.tuner_fn.__name__) exec_properties['metalearning_algorithm'] = 'majority_voting' input_dict = self._input_dict.copy() ps_type = ps_pb2.Type( binary_classification=ps_pb2.BinaryClassification(label='class')) ps = ps_pb2.ProblemStatement( owner=['nitroml'], tasks=[ps_pb2.Task( name='mockdata_1', type=ps_type, )]) exec_properties['custom_config'] = json_utils.dumps({ 'problem_statement': text_format.MessageToString(message=ps, as_utf8=True), }) hps_artifact = artifacts.KCandidateHyperParameters() hps_artifact.uri = os.path.join(self._testdata_dir, 'MetaLearner.majority_voting', 'hparams_out') input_dict['warmup_hyperparameters'] = [hps_artifact] tuner = executor.Executor(self._context) tuner.Do(input_dict=input_dict, output_dict=self._output_dict, exec_properties=exec_properties) self._verify_output()
def testDoWithTunerFn(self): self._exec_properties['tuner_fn'] = '%s.%s' % ( tuner_module.tuner_fn.__module__, tuner_module.tuner_fn.__name__) ps_type = ps_pb2.Type( binary_classification=ps_pb2.BinaryClassification(label='class')) ps = ps_pb2.ProblemStatement( owner=['nitroml'], tasks=[ps_pb2.Task( name='mockdata_1', type=ps_type, )]) self._exec_properties['custom_config'] = json_utils.dumps({ 'problem_statement': text_format.MessageToString(message=ps, as_utf8=True), }) tuner = executor.Executor(self._context) tuner.Do(input_dict=self._input_dict, output_dict=self._output_dict, exec_properties=self._exec_properties) self._verify_output()
def problem_statement(self) -> ps_pb2.ProblemStatement: """Returns the ProblemStatement associated with this BenchmarkTask.""" return ps_pb2.ProblemStatement( owner=['nitroml'], tasks=[ ps_pb2.Task( name='Test', type=ps_pb2.Type(one_dimensional_regression=ps_pb2. OneDimensionalRegression(label='test')), ) ])
def test_lifecycle(self): es = ensemble_selection.EnsembleSelection( problem_statement=ps_pb2.ProblemStatement(tasks=[ ps_pb2.Task( type=ps_pb2.Type( one_dimensional_regression=ps_pb2.OneDimensionalRegression( label='label'))) ]), saved_model_paths=self.saved_model_paths, predict_fn=_test_predict_fn, ensemble_size=3, metric=tf.keras.metrics.MeanSquaredError(), goal='minimize') test_dir = os.path.join(self.data_path, 'test_examples.tfrecord') test_examples = np.asarray( list(tf.data.TFRecordDataset(test_dir).as_numpy_iterator())) test_examples_tensor = tf.convert_to_tensor(test_examples) model_predictions = {} for model_id, path in self.saved_model_paths.items(): reloaded_model = tf.saved_model.load(path) model_predictions[model_id] = reloaded_model.signatures[ 'serving_default'](test_examples_tensor)['output_0'].numpy() want_weights = {'2': 0.3333333333333333, '4': 0.6666666666666666} want_prediction = want_weights['2'] * model_predictions['2'] + want_weights[ '4'] * model_predictions['4'] mse = tf.keras.metrics.MeanSquaredError() mse_scores = [] for pred in model_predictions.values(): mse_scores.append(mse(self.fit_label, pred)) mse.reset_states() export_dir = os.path.join( tempfile.mkdtemp(dir=absltest.get_default_test_tmpdir()), 'from_estimator') es.fit(self.fit_examples, self.fit_label) ensemble_predictions = es.predict(test_examples) ensemble_mse = es.evaluate(self.fit_examples, self.fit_label, [mse])[0] ensemble_path = es.save(export_dir) reloaded_ensemble = tf.saved_model.load(ensemble_path) loaded_ensemble_prediction = reloaded_ensemble.signatures[ 'serving_default'](input=test_examples_tensor)['output'].numpy() self.assertEqual(want_weights, es.weights) self.assertEqual((10, 1), ensemble_predictions.shape) np.testing.assert_array_almost_equal(want_prediction, ensemble_predictions, 1) self.assertLessEqual(ensemble_mse, min(mse_scores)) np.testing.assert_array_almost_equal(ensemble_predictions, loaded_ensemble_prediction, 1)
def problem_statement(self) -> ps_pb2.ProblemStatement: """Returns the ProblemStatement associated with this Task.""" # Supervised keys is a two-tuple. _, target_key = self._dataset_builder.info.supervised_keys return ps_pb2.ProblemStatement( owner=['nitroml'], tasks=[ ps_pb2.Task( name=self.name, type=ps_pb2.Type( binary_classification=ps_pb2.BinaryClassification( label=target_key)), ) ])
def test_get_predictions(self): # TODO(liumich): improve test predictions with the following steps # - reduce the number of samples to 4-5 # - manually compute MSE after each iteration for each partial ensemble # - also output the ground truth (labels) so that we can verify es = ensemble_selection.EnsembleSelection( problem_statement=ps_pb2.ProblemStatement(tasks=[ ps_pb2.Task( type=ps_pb2.Type( one_dimensional_regression=ps_pb2.OneDimensionalRegression( label='label'))) ]), saved_model_paths=self.saved_model_paths, predict_fn=_test_predict_fn, ensemble_size=3, metric=tf.keras.metrics.MeanSquaredError(), goal='minimize') want_predictions = { '0': np.array([[268520.7], [172055.8], [172840.52], [203374.36], [629715.5], [160393.], [242507.27], [156286.08], [262261.7], [221169.3]]), '1': np.array([[262822.53], [168104.17], [168874.69], [198855.67], [617477.56], [156652.53], [237280.08], [152620.], [256676.81], [216328.45]]), '2': np.array([[247936.98], [158487.19], [159214.84], [187528.2], [582864.9], [147672.52], [223815.3], [143864.3], [242133.11], [204029.08]]), '3': np.array([[268206.75], [171761.81], [172546.36], [203073.86], [629326.7], [160101.38], [242198.66], [155995.36], [261948.98], [220865.14]]), '4': np.array([[257493.5], [164639.19], [165394.55], [194785.5], [605169.06], [153412.9], [232453.73], [149459.73], [251468.73], [211914.42]]) } predictions = es._get_predictions_dict(self.fit_examples) for model_id in predictions.keys(): np.testing.assert_array_almost_equal(want_predictions[model_id], predictions[model_id], 1)
def test_predict_before_fit(self): es = ensemble_selection.EnsembleSelection( problem_statement=ps_pb2.ProblemStatement(tasks=[ ps_pb2.Task( type=ps_pb2.Type( one_dimensional_regression=ps_pb2.OneDimensionalRegression( label='label'))) ]), saved_model_paths=self.saved_model_paths, predict_fn=_test_predict_fn, ensemble_size=3, metric=tf.keras.metrics.MeanSquaredError(), goal='minimize') with self.assertRaisesRegex( ValueError, 'Weights cannot be empty. Must call `fit` before `predict`.'): _ = es.predict(self.fit_examples)
def test_calculate_weights(self): es = ensemble_selection.EnsembleSelection( problem_statement=ps_pb2.ProblemStatement(tasks=[ ps_pb2.Task( type=ps_pb2.Type( one_dimensional_regression=ps_pb2.OneDimensionalRegression( label='label'))) ]), saved_model_paths=self.saved_model_paths, predict_fn=_test_predict_fn, ensemble_size=4, metric=tf.keras.metrics.MeanSquaredError(), goal='minimize') ensemble_count = {'model_1': 1, 'model_2': 2, 'model_3': 1} want_weights = {'model_1': 0.25, 'model_2': 0.5, 'model_3': 0.25} es._calculate_weights(ensemble_count) self.assertEqual(want_weights, es.weights)
def test_evaluate_metrics(self): es = ensemble_selection.EnsembleSelection( problem_statement=ps_pb2.ProblemStatement(tasks=[ ps_pb2.Task( type=ps_pb2.Type( one_dimensional_regression=ps_pb2.OneDimensionalRegression( label='label'))) ]), saved_model_paths=self.saved_model_paths, predict_fn=_test_predict_fn, ensemble_size=3, metric=tf.keras.metrics.MeanSquaredError(), goal='minimize') metrics = [ tf.keras.metrics.MeanSquaredError(), tf.keras.metrics.MeanAbsoluteError(), tf.keras.metrics.RootMeanSquaredError() ] es.fit(self.fit_examples, self.fit_label) ensemble_metrics = es.evaluate(self.fit_examples, self.fit_label, metrics) self.assertLen(ensemble_metrics, len(metrics))