示例#1
0
def init_qwarp_inversion_wf(omp_nthreads=1, name="qwarp_invert_wf"):
    """
    Invert a warp produced by 3dqwarp and convert it to an ANTS formatted warp
    Workflow Graph
        .. workflow ::
            :graph2use: orig
            :simple_form: yes
            from sdcflows.workflows.base import init_qwarp_inversion_wf
            wf = init_qwarp_inversion_wf()
    Parameters
    ----------
    name : str
        Name for this workflow
    omp_nthreads : int
        Parallelize internal tasks across the number of CPUs given by this option.
    Inputs
    ------
    warp : pathlike
        The warp you want to invert.
    in_reference : pathlike
        The baseline reference image (must correspond to ``epi_pe_dir``).
    Outputs
    -------
    out_warp : pathlike
        The corresponding inverted :abbr:`DFM (displacements field map)` compatible with
        ANTs.
    """
    from ..interfaces.afni import InvertWarp
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
A warp produced by 3dQwarp was inverted by `3dNwarpCat` @afni (AFNI {afni_ver}).
""".format(afni_ver=''.join(['%02d' % v for v in afni.Info().version() or []]))

    inputnode = pe.Node(niu.IdentityInterface(fields=['warp', 'in_reference']),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=['out_warp']),
                         name='outputnode')

    invert = pe.Node(InvertWarp(), name='invert', n_procs=omp_nthreads)
    invert.inputs.outputtype = 'NIFTI_GZ'
    to_ants = pe.Node(niu.Function(function=_fix_hdr),
                      name='to_ants',
                      mem_gb=0.01)

    cphdr_warp = pe.Node(CopyHeader(), name='cphdr_warp', mem_gb=0.01)

    workflow.connect([
        (inputnode, invert, [('warp', 'in_file')]),
        (invert, cphdr_warp, [('out_file', 'in_file')]),
        (inputnode, cphdr_warp, [('in_reference', 'hdr_file')]),
        (cphdr_warp, to_ants, [('out_file', 'in_file')]),
        (to_ants, outputnode, [('out', 'out_warp')]),
    ])

    return workflow
示例#2
0
def init_phdiff_wf(omp_nthreads, phasetype='phasediff', name='phdiff_wf'):
    """
    Estimates the fieldmap using a phase-difference image and one or more
    magnitude images corresponding to two or more :abbr:`GRE (Gradient Echo sequence)`
    acquisitions. The `original code was taken from nipype
    <https://github.com/nipy/nipype/blob/master/nipype/workflows/dmri/fsl/artifacts.py#L514>`_.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.fieldmap.phdiff import init_phdiff_wf
        wf = init_phdiff_wf(omp_nthreads=1)


    Outputs::

      outputnode.fmap_ref - The average magnitude image, skull-stripped
      outputnode.fmap_mask - The brain mask applied to the fieldmap
      outputnode.fmap - The estimated fieldmap in Hz


    """

    workflow = Workflow(name=name)
    workflow.__desc__ = """\
A deformation field to correct for susceptibility distortions was estimated
based on a field map that was co-registered to the BOLD reference,
using a custom workflow of *fMRIPrep* derived from D. Greve's `epidewarp.fsl`
[script](http://www.nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl) and
further improvements of HCP Pipelines [@hcppipelines].
"""

    inputnode = pe.Node(
        niu.IdentityInterface(fields=['magnitude', 'phasediff']),
        name='inputnode')

    outputnode = pe.Node(
        niu.IdentityInterface(fields=['fmap', 'fmap_ref', 'fmap_mask']),
        name='outputnode')

    def _pick1st(inlist):
        return inlist[0]

    # Read phasediff echo times
    meta = pe.Node(ReadSidecarJSON(),
                   name='meta',
                   mem_gb=0.01,
                   run_without_submitting=True)

    # Merge input magnitude images
    magmrg = pe.Node(IntraModalMerge(), name='magmrg')

    # de-gradient the fields ("bias/illumination artifact")
    n4 = pe.Node(ants.N4BiasFieldCorrection(dimension=3, copy_header=True),
                 name='n4',
                 n_procs=omp_nthreads)
    bet = pe.Node(BETRPT(generate_report=True, frac=0.6, mask=True),
                  name='bet')
    ds_report_fmap_mask = pe.Node(DerivativesDataSink(desc='brain',
                                                      suffix='mask'),
                                  name='ds_report_fmap_mask',
                                  mem_gb=0.01,
                                  run_without_submitting=True)

    # uses mask from bet; outputs a mask
    # dilate = pe.Node(fsl.maths.MathsCommand(
    #     nan2zeros=True, args='-kernel sphere 5 -dilM'), name='MskDilate')

    # phase diff -> radians
    pha2rads = pe.Node(niu.Function(function=siemens2rads), name='pha2rads')

    # FSL PRELUDE will perform phase-unwrapping
    prelude = pe.Node(fsl.PRELUDE(), name='prelude')

    denoise = pe.Node(fsl.SpatialFilter(operation='median',
                                        kernel_shape='sphere',
                                        kernel_size=5),
                      name='denoise')

    demean = pe.Node(niu.Function(function=demean_image), name='demean')

    cleanup_wf = cleanup_edge_pipeline(name="cleanup_wf")

    compfmap = pe.Node(Phasediff2Fieldmap(), name='compfmap')

    # The phdiff2fmap interface is equivalent to:
    # rad2rsec (using rads2radsec from nipype.workflows.dmri.fsl.utils)
    # pre_fugue = pe.Node(fsl.FUGUE(save_fmap=True), name='ComputeFieldmapFUGUE')
    # rsec2hz (divide by 2pi)

    if phasetype == "phasediff":
        # Read phasediff echo times
        meta = pe.Node(ReadSidecarJSON(), name='meta', mem_gb=0.01)

        # phase diff -> radians
        pha2rads = pe.Node(niu.Function(function=siemens2rads),
                           name='pha2rads')
        # Read phasediff echo times
        meta = pe.Node(ReadSidecarJSON(),
                       name='meta',
                       mem_gb=0.01,
                       run_without_submitting=True)
        workflow.connect([
            (meta, compfmap, [('out_dict', 'metadata')]),
            (inputnode, pha2rads, [('phasediff', 'in_file')]),
            (pha2rads, prelude, [('out', 'phase_file')]),
            (inputnode, ds_report_fmap_mask, [('phasediff', 'source_file')]),
        ])

    elif phasetype == "phase":
        workflow.__desc__ += """\
The phase difference used for unwarping was calculated using two separate phase measurements
 [@pncprocessing].
    """
        # Special case for phase1, phase2 images
        meta = pe.MapNode(ReadSidecarJSON(),
                          name='meta',
                          mem_gb=0.01,
                          run_without_submitting=True,
                          iterfield=['in_file'])
        phases2fmap = pe.Node(Phases2Fieldmap(), name='phases2fmap')
        workflow.connect([
            (meta, phases2fmap, [('out_dict', 'metadatas')]),
            (inputnode, phases2fmap, [('phasediff', 'phase_files')]),
            (phases2fmap, prelude, [('out_file', 'phase_file')]),
            (phases2fmap, compfmap, [('phasediff_metadata', 'metadata')]),
            (phases2fmap, ds_report_fmap_mask, [('out_file', 'source_file')])
        ])

    workflow.connect([
        (inputnode, meta, [('phasediff', 'in_file')]),
        (inputnode, magmrg, [('magnitude', 'in_files')]),
        (magmrg, n4, [('out_avg', 'input_image')]),
        (n4, prelude, [('output_image', 'magnitude_file')]),
        (n4, bet, [('output_image', 'in_file')]),
        (bet, prelude, [('mask_file', 'mask_file')]),
        (prelude, denoise, [('unwrapped_phase_file', 'in_file')]),
        (denoise, demean, [('out_file', 'in_file')]),
        (demean, cleanup_wf, [('out', 'inputnode.in_file')]),
        (bet, cleanup_wf, [('mask_file', 'inputnode.in_mask')]),
        (cleanup_wf, compfmap, [('outputnode.out_file', 'in_file')]),
        (compfmap, outputnode, [('out_file', 'fmap')]),
        (bet, outputnode, [('mask_file', 'fmap_mask'),
                           ('out_file', 'fmap_ref')]),
        (bet, ds_report_fmap_mask, [('out_report', 'in_file')]),
    ])

    return workflow
def init_bbreg_wf(use_bbr,
                  bold2t1w_dof,
                  bold2t1w_init,
                  omp_nthreads,
                  name='bbreg_wf'):
    """
    Build a workflow to run FreeSurfer's ``bbregister``.

    This workflow uses FreeSurfer's ``bbregister`` to register a BOLD image to
    a T1-weighted structural image.

    It is a counterpart to :py:func:`~fmriprep.workflows.bold.registration.init_fsl_bbr_wf`,
    which performs the same task using FSL's FLIRT with a BBR cost function.
    The ``use_bbr`` option permits a high degree of control over registration.
    If ``False``, standard, affine coregistration will be performed using
    FreeSurfer's ``mri_coreg`` tool.
    If ``True``, ``bbregister`` will be seeded with the initial transform found
    by ``mri_coreg`` (equivalent to running ``bbregister --init-coreg``).
    If ``None``, after ``bbregister`` is run, the resulting affine transform
    will be compared to the initial transform found by ``mri_coreg``.
    Excessive deviation will result in rejecting the BBR refinement and
    accepting the original, affine registration.

    Workflow Graph
        .. workflow ::
            :graph2use: orig
            :simple_form: yes

            from fmriprep.workflows.bold.registration import init_bbreg_wf
            wf = init_bbreg_wf(use_bbr=True, bold2t1w_dof=9,
                               bold2t1w_init='register', omp_nthreads=1)


    Parameters
    ----------
    use_bbr : :obj:`bool` or None
        Enable/disable boundary-based registration refinement.
        If ``None``, test BBR result for distortion before accepting.
    bold2t1w_dof : 6, 9 or 12
        Degrees-of-freedom for BOLD-T1w registration
    bold2t1w_init : str, 'header' or 'register'
        If ``'header'``, use header information for initialization of BOLD and T1 images.
        If ``'register'``, align volumes by their centers.
    name : :obj:`str`, optional
        Workflow name (default: bbreg_wf)

    Inputs
    ------
    in_file
        Reference BOLD image to be registered
    fsnative2t1w_xfm
        FSL-style affine matrix translating from FreeSurfer T1.mgz to T1w
    subjects_dir
        FreeSurfer SUBJECTS_DIR
    subject_id
        FreeSurfer subject ID (must have folder in SUBJECTS_DIR)
    t1w_brain
        Unused (see :py:func:`~fmriprep.workflows.bold.registration.init_fsl_bbr_wf`)
    t1w_dseg
        Unused (see :py:func:`~fmriprep.workflows.bold.registration.init_fsl_bbr_wf`)

    Outputs
    -------
    itk_bold_to_t1
        Affine transform from ``ref_bold_brain`` to T1 space (ITK format)
    itk_t1_to_bold
        Affine transform from T1 space to BOLD space (ITK format)
    out_report
        Reportlet for assessing registration quality
    fallback
        Boolean indicating whether BBR was rejected (mri_coreg registration returned)

    """
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    # See https://github.com/nipreps/fmriprep/issues/768
    from niworkflows.interfaces.freesurfer import (
        PatchedBBRegisterRPT as BBRegisterRPT, PatchedMRICoregRPT as
        MRICoregRPT, PatchedLTAConvert as LTAConvert)
    from niworkflows.interfaces.nitransforms import ConcatenateXFMs

    workflow = Workflow(name=name)
    workflow.__desc__ = """\
The BOLD reference was then co-registered to the T1w reference using
`bbregister` (FreeSurfer) which implements boundary-based registration [@bbr].
Co-registration was configured with {dof} degrees of freedom{reason}.
""".format(dof={
        6: 'six',
        9: 'nine',
        12: 'twelve'
    }[bold2t1w_dof],
           reason='' if bold2t1w_dof == 6 else
           'to account for distortions remaining in the BOLD reference')

    inputnode = pe.Node(
        niu.IdentityInterface([
            'in_file',
            'fsnative2t1w_xfm',
            'subjects_dir',
            'subject_id',  # BBRegister
            't1w_dseg',
            't1w_brain'
        ]),  # FLIRT BBR
        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(
        ['itk_bold_to_t1', 'itk_t1_to_bold', 'out_report', 'fallback']),
                         name='outputnode')

    if bold2t1w_init not in ("register", "header"):
        raise ValueError(
            f"Unknown BOLD-T1w initialization option: {bold2t1w_init}")

    # For now make BBR unconditional - in the future, we can fall back to identity,
    # but adding the flexibility without testing seems a bit dangerous
    if bold2t1w_init == "header":
        if use_bbr is False:
            raise ValueError("Cannot disable BBR and use header registration")
        if use_bbr is None:
            LOGGER.warning(
                "Initializing BBR with header; affine fallback disabled")
            use_bbr = True

    merge_ltas = pe.Node(niu.Merge(2),
                         name='merge_ltas',
                         run_without_submitting=True)
    concat_xfm = pe.Node(ConcatenateXFMs(inverse=True), name='concat_xfm')

    workflow.connect([
        # Output ITK transforms
        (inputnode, merge_ltas, [('fsnative2t1w_xfm', 'in2')]),
        (merge_ltas, concat_xfm, [('out', 'in_xfms')]),
        (concat_xfm, outputnode, [('out_xfm', 'itk_bold_to_t1')]),
        (concat_xfm, outputnode, [('out_inv', 'itk_t1_to_bold')]),
    ])

    # Define both nodes, but only connect conditionally
    mri_coreg = pe.Node(MRICoregRPT(dof=bold2t1w_dof,
                                    sep=[4],
                                    ftol=0.0001,
                                    linmintol=0.01,
                                    generate_report=not use_bbr),
                        name='mri_coreg',
                        n_procs=omp_nthreads,
                        mem_gb=5)

    bbregister = pe.Node(BBRegisterRPT(dof=bold2t1w_dof,
                                       contrast_type='t2',
                                       registered_file=True,
                                       out_lta_file=True,
                                       generate_report=True),
                         name='bbregister',
                         mem_gb=12)

    # Use mri_coreg
    if bold2t1w_init == "register":
        workflow.connect([
            (inputnode, mri_coreg, [('subjects_dir', 'subjects_dir'),
                                    ('subject_id', 'subject_id'),
                                    ('in_file', 'source_file')]),
        ])

        # Short-circuit workflow building, use initial registration
        if use_bbr is False:
            workflow.connect([
                (mri_coreg, outputnode, [('out_report', 'out_report')]),
                (mri_coreg, merge_ltas, [('out_lta_file', 'in1')])
            ])
            outputnode.inputs.fallback = True

            return workflow

    # Use bbregister
    workflow.connect([
        (inputnode, bbregister, [('subjects_dir', 'subjects_dir'),
                                 ('subject_id', 'subject_id'),
                                 ('in_file', 'source_file')]),
    ])

    if bold2t1w_init == "header":
        bbregister.inputs.init = "header"
    else:
        workflow.connect([(mri_coreg, bbregister, [('out_lta_file',
                                                    'init_reg_file')])])

    # Short-circuit workflow building, use boundary-based registration
    if use_bbr is True:
        workflow.connect([(bbregister, outputnode, [('out_report',
                                                     'out_report')]),
                          (bbregister, merge_ltas, [('out_lta_file', 'in1')])])
        outputnode.inputs.fallback = False

        return workflow

    # Only reach this point if bold2t1w_init is "register" and use_bbr is None

    transforms = pe.Node(niu.Merge(2),
                         run_without_submitting=True,
                         name='transforms')
    reports = pe.Node(niu.Merge(2),
                      run_without_submitting=True,
                      name='reports')

    lta_ras2ras = pe.MapNode(LTAConvert(out_lta=True),
                             iterfield=['in_lta'],
                             name='lta_ras2ras',
                             mem_gb=2)
    compare_transforms = pe.Node(niu.Function(function=compare_xforms),
                                 name='compare_transforms')

    select_transform = pe.Node(niu.Select(),
                               run_without_submitting=True,
                               name='select_transform')
    select_report = pe.Node(niu.Select(),
                            run_without_submitting=True,
                            name='select_report')

    workflow.connect([
        (bbregister, transforms, [('out_lta_file', 'in1')]),
        (mri_coreg, transforms, [('out_lta_file', 'in2')]),
        # Normalize LTA transforms to RAS2RAS (inputs are VOX2VOX) and compare
        (transforms, lta_ras2ras, [('out', 'in_lta')]),
        (lta_ras2ras, compare_transforms, [('out_lta', 'lta_list')]),
        (compare_transforms, outputnode, [('out', 'fallback')]),
        # Select output transform
        (transforms, select_transform, [('out', 'inlist')]),
        (compare_transforms, select_transform, [('out', 'index')]),
        (select_transform, merge_ltas, [('out', 'in1')]),
        # Select output report
        (bbregister, reports, [('out_report', 'in1')]),
        (mri_coreg, reports, [('out_report', 'in2')]),
        (reports, select_report, [('out', 'inlist')]),
        (compare_transforms, select_report, [('out', 'index')]),
        (select_report, outputnode, [('out', 'out_report')]),
    ])

    return workflow
示例#4
0
def init_phdiff_wf(omp_nthreads, name='phdiff_wf'):
    r"""
    Distortion correction of EPI sequences using phase-difference maps.

    Estimates the fieldmap using a phase-difference image and one or more
    magnitude images corresponding to two or more :abbr:`GRE (Gradient Echo sequence)`
    acquisitions.
    The most delicate bit of this workflow is the phase-unwrapping process: phase maps
    are clipped in the range :math:`[0 \dotsb 2\pi )`.
    To find the integer number of offsets that make a region continously smooth with
    its neighbour, FSL PRELUDE is run [Jenkinson2003]_.
    FSL PRELUDE takes wrapped maps in the range 0 to 6.28, `as per the user guide
    <https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FUGUE/Guide#Step_2_-_Getting_.28wrapped.29_phase_in_radians>`__.
    For the phase-difference maps, recentering back to :math:`[-\pi \dotsb \pi )` is necessary.
    After some massaging and the application of the effective echo spacing parameter,
    the phase-difference maps can be converted into a *B0 field map* in Hz units.
    The `original code was taken from nipype
    <https://github.com/nipy/nipype/blob/0.12.1/nipype/workflows/dmri/fsl/artifacts.py#L514>`_.

    Workflow Graph
        .. workflow ::
            :graph2use: orig
            :simple_form: yes

            from sdcflows.workflows.phdiff import init_phdiff_wf
            wf = init_phdiff_wf(omp_nthreads=1)

    Parameters
    ----------
    omp_nthreads : int
        Maximum number of threads an individual process may use

    Inputs
    ------
    magnitude : list of os.pathlike
        List of path(s) the GRE magnitude maps.
    phasediff : list of tuple(os.pathlike, dict)
        List containing one GRE phase-difference map with its corresponding metadata
        (requires ``EchoTime1`` and ``EchoTime2``), or the phase maps for the two
        subsequent echoes, with their metadata (requires ``EchoTime``).

    Outputs
    -------
    fmap_ref : pathlike
        The average magnitude image, skull-stripped
    fmap_mask : pathlike
        The brain mask applied to the fieldmap
    fmap : pathlike
        The estimated fieldmap in Hz

    References
    ----------
    .. [Jenkinson2003] Jenkinson, M. (2003) Fast, automated, N-dimensional phase-unwrapping
        algorithm. MRM 49(1):193-197. doi:`10.1002/mrm.10354 <10.1002/mrm.10354>`__.

    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
A B0-nonuniformity map (or *fieldmap*) was estimated based on a phase-difference map
calculated with a dual-echo GRE (gradient-recall echo) sequence, processed with a
custom workflow of *SDCFlows* inspired by the
[`epidewarp.fsl` script](http://www.nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl)
and further improvements in HCP Pipelines [@hcppipelines].
"""

    inputnode = pe.Node(niu.IdentityInterface(fields=['magnitude', 'phasediff']),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(
        fields=['fmap', 'fmap_ref', 'fmap_mask']), name='outputnode')

    split = pe.MapNode(niu.Function(function=_split, output_names=['map_file', 'meta']),
                       iterfield=['phasediff'], run_without_submitting=True, name='split')

    magnitude_wf = init_magnitude_wf(omp_nthreads=omp_nthreads)

    # phase diff -> radians
    phmap2rads = pe.MapNode(PhaseMap2rads(), name='phmap2rads',
                            iterfield=['in_file'], run_without_submitting=True)
    # FSL PRELUDE will perform phase-unwrapping
    prelude = pe.Node(fsl.PRELUDE(), name='prelude')

    calc_phdiff = pe.Node(SubtractPhases(), name='calc_phdiff',
                          run_without_submitting=True)

    fmap_postproc_wf = init_fmap_postproc_wf(omp_nthreads=omp_nthreads,
                                             fmap_bspline=False)
    compfmap = pe.Node(Phasediff2Fieldmap(), name='compfmap')

    workflow.connect([
        (inputnode, split, [('phasediff', 'phasediff')]),
        (inputnode, magnitude_wf, [('magnitude', 'inputnode.magnitude')]),
        (magnitude_wf, prelude, [('outputnode.fmap_ref', 'magnitude_file'),
                                 ('outputnode.fmap_mask', 'mask_file')]),
        (split, phmap2rads, [('map_file', 'in_file')]),
        (phmap2rads, calc_phdiff, [('out_file', 'in_phases')]),
        (split, calc_phdiff, [('meta', 'in_meta')]),
        (calc_phdiff, prelude, [('phase_diff', 'phase_file')]),
        (prelude, fmap_postproc_wf, [('unwrapped_phase_file', 'inputnode.fmap')]),
        (calc_phdiff, fmap_postproc_wf, [('metadata', 'inputnode.metadata')]),
        (magnitude_wf, fmap_postproc_wf, [
            ('outputnode.fmap_mask', 'inputnode.fmap_mask'),
            ('outputnode.fmap_ref', 'inputnode.fmap_ref')]),
        (fmap_postproc_wf, compfmap, [('outputnode.out_fmap', 'in_file'),
                                      ('outputnode.metadata', 'metadata')]),
        (compfmap, outputnode, [('out_file', 'fmap')]),
        (magnitude_wf, outputnode, [('outputnode.fmap_ref', 'fmap_ref'),
                                    ('outputnode.fmap_mask', 'fmap_mask')]),
    ])

    return workflow
示例#5
0
def init_bold_mni_trans_wf(template,
                           freesurfer,
                           mem_gb,
                           omp_nthreads,
                           name='bold_mni_trans_wf',
                           template_out_grid='2mm',
                           use_compression=True,
                           use_fieldwarp=False):
    """
    This workflow samples functional images to the MNI template in a "single shot"
    from the original BOLD series.

    .. workflow::
        :graph2use: colored
        :simple_form: yes

        from fmriprep.workflows.bold import init_bold_mni_trans_wf
        wf = init_bold_mni_trans_wf(template='MNI152NLin2009cAsym',
                                    freesurfer=True,
                                    mem_gb=3,
                                    omp_nthreads=1,
                                    template_out_grid='native')

    **Parameters**

        template : str
            Name of template targeted by ``template`` output space
        freesurfer : bool
            Enable sampling of FreeSurfer files
        mem_gb : float
            Size of BOLD file in GB
        omp_nthreads : int
            Maximum number of threads an individual process may use
        name : str
            Name of workflow (default: ``bold_mni_trans_wf``)
        template_out_grid : str
            Keyword ('native', '1mm' or '2mm') or path of custom reference
            image for normalization.
        use_compression : bool
            Save registered BOLD series as ``.nii.gz``
        use_fieldwarp : bool
            Include SDC warp in single-shot transform from BOLD to MNI

    **Inputs**

        itk_bold_to_t1
            Affine transform from ``ref_bold_brain`` to T1 space (ITK format)
        t1_2_mni_forward_transform
            ANTs-compatible affine-and-warp transform file
        bold_split
            Individual 3D volumes, not motion corrected
        bold_mask
            Skull-stripping mask of reference image
        bold_aseg
            FreeSurfer's ``aseg.mgz`` atlas projected into the T1w reference
            (only if ``recon-all`` was run).
        bold_aparc
            FreeSurfer's ``aparc+aseg.mgz`` atlas projected into the T1w reference
            (only if ``recon-all`` was run).
        name_source
            BOLD series NIfTI file
            Used to recover original information lost during processing
        hmc_xforms
            List of affine transforms aligning each volume to ``ref_image`` in ITK format
        fieldwarp
            a :abbr:`DFM (displacements field map)` in ITK format

    **Outputs**

        bold_mni
            BOLD series, resampled to template space
        bold_mni_ref
            Reference, contrast-enhanced summary of the BOLD series, resampled to template space
        bold_mask_mni
            BOLD series mask in template space
        bold_aseg_mni
            FreeSurfer's ``aseg.mgz`` atlas, in template space at the BOLD resolution
            (only if ``recon-all`` was run)
        bold_aparc_mni
            FreeSurfer's ``aparc+aseg.mgz`` atlas, in template space at the BOLD resolution
            (only if ``recon-all`` was run)

    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
The BOLD time-series were resampled to {tpl} standard space,
generating a *preprocessed BOLD run in {tpl} space*.
""".format(tpl=template)

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'itk_bold_to_t1', 't1_2_mni_forward_transform', 'name_source',
        'bold_split', 'bold_mask', 'bold_aseg', 'bold_aparc', 'hmc_xforms',
        'fieldwarp'
    ]),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'bold_mni', 'bold_mni_ref', 'bold_mask_mni', 'bold_aseg_mni',
        'bold_aparc_mni'
    ]),
                         name='outputnode')

    def _aslist(in_value):
        if isinstance(in_value, list):
            return in_value
        return [in_value]

    gen_ref = pe.Node(GenerateSamplingReference(), name='gen_ref',
                      mem_gb=0.3)  # 256x256x256 * 64 / 8 ~ 150MB)
    # Account for template aliases
    template_name = TEMPLATE_ALIASES.get(template, template)
    # Template path
    template_dir = get_template(template_name)

    gen_ref.inputs.fixed_image = str(
        template_dir / ('tpl-%s_space-MNI_res-01_T1w.nii.gz' % template_name))

    mask_mni_tfm = pe.Node(ApplyTransforms(interpolation='MultiLabel',
                                           float=True),
                           name='mask_mni_tfm',
                           mem_gb=1)

    # Write corrected file in the designated output dir
    mask_merge_tfms = pe.Node(niu.Merge(2),
                              name='mask_merge_tfms',
                              run_without_submitting=True,
                              mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, gen_ref, [(('bold_split', _first), 'moving_image')]),
        (inputnode, mask_mni_tfm, [('bold_mask', 'input_image')]),
        (inputnode, mask_merge_tfms, [('t1_2_mni_forward_transform', 'in1'),
                                      (('itk_bold_to_t1', _aslist), 'in2')]),
        (mask_merge_tfms, mask_mni_tfm, [('out', 'transforms')]),
        (mask_mni_tfm, outputnode, [('output_image', 'bold_mask_mni')]),
    ])

    nxforms = 4 if use_fieldwarp else 3
    merge_xforms = pe.Node(niu.Merge(nxforms),
                           name='merge_xforms',
                           run_without_submitting=True,
                           mem_gb=DEFAULT_MEMORY_MIN_GB)
    workflow.connect([(inputnode, merge_xforms, [('hmc_xforms',
                                                  'in%d' % nxforms)])])

    if use_fieldwarp:
        workflow.connect([(inputnode, merge_xforms, [('fieldwarp', 'in3')])])

    bold_to_mni_transform = pe.Node(MultiApplyTransforms(
        interpolation="LanczosWindowedSinc", float=True, copy_dtype=True),
                                    name='bold_to_mni_transform',
                                    mem_gb=mem_gb * 3 * omp_nthreads,
                                    n_procs=omp_nthreads)

    merge = pe.Node(Merge(compress=use_compression),
                    name='merge',
                    mem_gb=mem_gb * 3)

    # Generate a reference on the target T1w space
    gen_final_ref = init_bold_reference_wf(omp_nthreads=omp_nthreads,
                                           pre_mask=True)

    workflow.connect([
        (inputnode, merge_xforms, [('t1_2_mni_forward_transform', 'in1'),
                                   (('itk_bold_to_t1', _aslist), 'in2')]),
        (merge_xforms, bold_to_mni_transform, [('out', 'transforms')]),
        (inputnode, merge, [('name_source', 'header_source')]),
        (inputnode, bold_to_mni_transform, [('bold_split', 'input_image')]),
        (bold_to_mni_transform, merge, [('out_files', 'in_files')]),
        (merge, gen_final_ref, [('out_file', 'inputnode.bold_file')]),
        (mask_mni_tfm, gen_final_ref, [('output_image', 'inputnode.bold_mask')
                                       ]),
        (merge, outputnode, [('out_file', 'bold_mni')]),
        (gen_final_ref, outputnode, [('outputnode.ref_image', 'bold_mni_ref')
                                     ]),
    ])

    if template_out_grid == 'native':
        workflow.connect([
            (gen_ref, mask_mni_tfm, [('out_file', 'reference_image')]),
            (gen_ref, bold_to_mni_transform, [('out_file', 'reference_image')
                                              ]),
        ])
    elif template_out_grid in ['1mm', '2mm']:
        res = int(template_out_grid[0])
        mask_mni_tfm.inputs.reference_image = str(
            template_dir / ('tpl-%s_space-MNI_res-%02d_brainmask.nii.gz' %
                            (template_name, res)))
        bold_to_mni_transform.inputs.reference_image = str(
            template_dir / ('tpl-%s_space-MNI_res-%02d_T1w.nii.gz' %
                            (template_name, res)))
    else:
        mask_mni_tfm.inputs.reference_image = template_out_grid
        bold_to_mni_transform.inputs.reference_image = template_out_grid

    if freesurfer:
        # Sample the parcellation files to functional space
        aseg_mni_tfm = pe.Node(ApplyTransforms(interpolation='MultiLabel',
                                               float=True),
                               name='aseg_mni_tfm',
                               mem_gb=1)
        aparc_mni_tfm = pe.Node(ApplyTransforms(interpolation='MultiLabel',
                                                float=True),
                                name='aparc_mni_tfm',
                                mem_gb=1)

        workflow.connect([
            (inputnode, aseg_mni_tfm, [('bold_aseg', 'input_image'),
                                       ('t1_2_mni_forward_transform',
                                        'transforms')]),
            (inputnode, aparc_mni_tfm, [('bold_aparc', 'input_image'),
                                        ('t1_2_mni_forward_transform',
                                         'transforms')]),
            (aseg_mni_tfm, outputnode, [('output_image', 'bold_aseg_mni')]),
            (aparc_mni_tfm, outputnode, [('output_image', 'bold_aparc_mni')]),
        ])
        if template_out_grid == 'native':
            workflow.connect([
                (gen_ref, aseg_mni_tfm, [('out_file', 'reference_image')]),
                (gen_ref, aparc_mni_tfm, [('out_file', 'reference_image')]),
            ])
        elif template_out_grid in ['1mm', '2mm']:
            res = int(template_out_grid[0])
            aseg_mni_tfm.inputs.reference_image = str(
                template_dir / ('tpl-%s_space-MNI_res-%02d_brainmask.nii.gz' %
                                (template_name, res)))
            aparc_mni_tfm.inputs.reference_image = str(
                template_dir / ('tpl-%s_space-MNI_res-%02d_T1w.nii.gz' %
                                (template_name, res)))
        else:
            aseg_mni_tfm.inputs.reference_image = template_out_grid
            aparc_mni_tfm.inputs.reference_image = template_out_grid

    return workflow
示例#6
0
def init_anat_template_wf(longitudinal,
                          omp_nthreads,
                          num_t1w,
                          name='anat_template_wf'):
    """
    Generate a canonically-oriented, structural average from all input T1w images.

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from smriprep.workflows.anatomical import init_anat_template_wf
            wf = init_anat_template_wf(
                longitudinal=False, omp_nthreads=1, num_t1w=1)

    Parameters
    ----------
    longitudinal : bool
        Create unbiased structural average, regardless of number of inputs
        (may increase runtime)
    omp_nthreads : int
        Maximum number of threads an individual process may use
    num_t1w : int
        Number of T1w images
    name : str, optional
        Workflow name (default: anat_template_wf)

    Inputs
    ------
    t1w
        List of T1-weighted structural images

    Outputs
    -------
    t1w_ref
        Structural reference averaging input T1w images, defining the T1w space.
    t1w_realign_xfm
        List of affine transforms to realign input T1w images
    out_report
        Conformation report

    """
    workflow = Workflow(name=name)

    if num_t1w > 1:
        workflow.__desc__ = """\
A T1w-reference map was computed after registration of
{num_t1w} T1w images (after INU-correction) using
`mri_robust_template` [FreeSurfer {fs_ver}, @fs_template].
""".format(num_t1w=num_t1w, fs_ver=fs.Info().looseversion() or '<ver>')

    inputnode = pe.Node(niu.IdentityInterface(fields=['t1w']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(
        fields=['t1w_ref', 't1w_valid_list', 't1w_realign_xfm', 'out_report']),
                         name='outputnode')

    # 0. Reorient T1w image(s) to RAS and resample to common voxel space
    t1w_ref_dimensions = pe.Node(TemplateDimensions(),
                                 name='t1w_ref_dimensions')
    t1w_conform = pe.MapNode(Conform(),
                             iterfield='in_file',
                             name='t1w_conform')

    workflow.connect([
        (inputnode, t1w_ref_dimensions, [('t1w', 't1w_list')]),
        (t1w_ref_dimensions, t1w_conform, [('t1w_valid_list', 'in_file'),
                                           ('target_zooms', 'target_zooms'),
                                           ('target_shape', 'target_shape')]),
        (t1w_ref_dimensions, outputnode, [('out_report', 'out_report'),
                                          ('t1w_valid_list', 't1w_valid_list')
                                          ]),
    ])

    if num_t1w == 1:
        get1st = pe.Node(niu.Select(index=[0]), name='get1st')
        outputnode.inputs.t1w_realign_xfm = [
            pkgr('smriprep', 'data/itkIdentityTransform.txt')
        ]

        workflow.connect([
            (t1w_conform, get1st, [('out_file', 'inlist')]),
            (get1st, outputnode, [('out', 't1w_ref')]),
        ])

        return workflow

    t1w_conform_xfm = pe.MapNode(LTAConvert(in_lta='identity.nofile',
                                            out_lta=True),
                                 iterfield=['source_file', 'target_file'],
                                 name='t1w_conform_xfm')

    # 1. Template (only if several T1w images)
    # 1a. Correct for bias field: the bias field is an additive factor
    #     in log-transformed intensity units. Therefore, it is not a linear
    #     combination of fields and N4 fails with merged images.
    # 1b. Align and merge if several T1w images are provided
    n4_correct = pe.MapNode(N4BiasFieldCorrection(dimension=3,
                                                  copy_header=True),
                            iterfield='input_image',
                            name='n4_correct',
                            n_procs=1)  # n_procs=1 for reproducibility
    # StructuralReference is fs.RobustTemplate if > 1 volume, copying otherwise
    t1w_merge = pe.Node(
        StructuralReference(
            auto_detect_sensitivity=True,
            initial_timepoint=1,  # For deterministic behavior
            intensity_scaling=True,  # 7-DOF (rigid + intensity)
            subsample_threshold=200,
            fixed_timepoint=not longitudinal,
            no_iteration=not longitudinal,
            transform_outputs=True,
        ),
        mem_gb=2 * num_t1w - 1,
        name='t1w_merge')

    # 2. Reorient template to RAS, if needed (mri_robust_template may set to LIA)
    t1w_reorient = pe.Node(image.Reorient(), name='t1w_reorient')

    concat_affines = pe.MapNode(ConcatenateLTA(out_type='RAS2RAS',
                                               invert_out=True),
                                iterfield=['in_lta1', 'in_lta2'],
                                name='concat_affines')

    lta_to_itk = pe.MapNode(LTAConvert(out_itk=True),
                            iterfield=['in_lta'],
                            name='lta_to_itk')

    def _set_threads(in_list, maximum):
        return min(len(in_list), maximum)

    workflow.connect([
        (t1w_ref_dimensions, t1w_conform_xfm, [('t1w_valid_list',
                                                'source_file')]),
        (t1w_conform, t1w_conform_xfm, [('out_file', 'target_file')]),
        (t1w_conform, n4_correct, [('out_file', 'input_image')]),
        (t1w_conform, t1w_merge,
         [(('out_file', _set_threads, omp_nthreads), 'num_threads'),
          (('out_file', add_suffix, '_template'), 'out_file')]),
        (n4_correct, t1w_merge, [('output_image', 'in_files')]),
        (t1w_merge, t1w_reorient, [('out_file', 'in_file')]),
        # Combine orientation and template transforms
        (t1w_conform_xfm, concat_affines, [('out_lta', 'in_lta1')]),
        (t1w_merge, concat_affines, [('transform_outputs', 'in_lta2')]),
        (concat_affines, lta_to_itk, [('out_file', 'in_lta')]),
        # Output
        (t1w_reorient, outputnode, [('out_file', 't1w_ref')]),
        (lta_to_itk, outputnode, [('out_itk', 't1w_realign_xfm')]),
    ])

    return workflow
示例#7
0
def init_bold_preproc_trans_wf(mem_gb,
                               omp_nthreads,
                               name='bold_preproc_trans_wf',
                               use_compression=True,
                               use_fieldwarp=False,
                               split_file=False,
                               interpolation='LanczosWindowedSinc'):
    """
    This workflow resamples the input fMRI in its native (original)
    space in a "single shot" from the original BOLD series.

    .. workflow::
        :graph2use: colored
        :simple_form: yes

        from fmriprep.workflows.bold import init_bold_preproc_trans_wf
        wf = init_bold_preproc_trans_wf(mem_gb=3, omp_nthreads=1)

    **Parameters**

        mem_gb : float
            Size of BOLD file in GB
        omp_nthreads : int
            Maximum number of threads an individual process may use
        name : str
            Name of workflow (default: ``bold_std_trans_wf``)
        use_compression : bool
            Save registered BOLD series as ``.nii.gz``
        use_fieldwarp : bool
            Include SDC warp in single-shot transform from BOLD to MNI
        split_file : bool
            Whether the input file should be splitted (it is a 4D file)
            or it is a list of 3D files (default ``False``, do not split)
        interpolation : str
            Interpolation type to be used by ANTs' ``applyTransforms``
            (default ``'LanczosWindowedSinc'``)

    **Inputs**

        bold_file
            Individual 3D volumes, not motion corrected
        bold_mask
            Skull-stripping mask of reference image
        name_source
            BOLD series NIfTI file
            Used to recover original information lost during processing
        hmc_xforms
            List of affine transforms aligning each volume to ``ref_image`` in ITK format
        fieldwarp
            a :abbr:`DFM (displacements field map)` in ITK format

    **Outputs**

        bold
            BOLD series, resampled in native space, including all preprocessing
        bold_mask
            BOLD series mask calculated with the new time-series
        bold_ref
            BOLD reference image: an average-like 3D image of the time-series
        bold_ref_brain
            Same as ``bold_ref``, but once the brain mask has been applied

    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
The BOLD time-series (including slice-timing correction when applied)
were resampled onto their original, native space by applying
{transforms}.
These resampled BOLD time-series will be referred to as *preprocessed
BOLD in original space*, or just *preprocessed BOLD*.
""".format(transforms="""\
a single, composite transform to correct for head-motion and
susceptibility distortions""" if use_fieldwarp else """\
the transforms to correct for head-motion""")

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'name_source', 'bold_file', 'bold_mask', 'hmc_xforms', 'fieldwarp'
    ]),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(
        fields=['bold', 'bold_mask', 'bold_ref', 'bold_ref_brain']),
                         name='outputnode')

    bold_transform = pe.Node(MultiApplyTransforms(interpolation=interpolation,
                                                  float=True,
                                                  copy_dtype=True),
                             name='bold_transform',
                             mem_gb=mem_gb * 3 * omp_nthreads,
                             n_procs=omp_nthreads)

    merge = pe.Node(Merge(compress=use_compression),
                    name='merge',
                    mem_gb=mem_gb * 3)

    # Generate a new BOLD reference
    bold_reference_wf = init_bold_reference_wf(omp_nthreads=omp_nthreads)
    bold_reference_wf.__desc__ = None  # Unset description to avoid second appearance

    workflow.connect([
        (inputnode, merge, [('name_source', 'header_source')]),
        (bold_transform, merge, [('out_files', 'in_files')]),
        (merge, bold_reference_wf, [('out_file', 'inputnode.bold_file')]),
        (merge, outputnode, [('out_file', 'bold')]),
        (bold_reference_wf, outputnode,
         [('outputnode.ref_image', 'bold_ref'),
          ('outputnode.ref_image_brain', 'bold_ref_brain'),
          ('outputnode.bold_mask', 'bold_mask')]),
    ])

    # Input file is not splitted
    if split_file:
        bold_split = pe.Node(FSLSplit(dimension='t'),
                             name='bold_split',
                             mem_gb=mem_gb * 3)
        workflow.connect([(inputnode, bold_split, [('bold_file', 'in_file')]),
                          (bold_split, bold_transform, [
                              ('out_files', 'input_image'),
                              (('out_files', _first), 'reference_image'),
                          ])])
    else:
        workflow.connect([
            (inputnode, bold_transform, [('bold_file', 'input_image'),
                                         (('bold_file', _first),
                                          'reference_image')]),
        ])

    if use_fieldwarp:
        merge_xforms = pe.Node(niu.Merge(2),
                               name='merge_xforms',
                               run_without_submitting=True,
                               mem_gb=DEFAULT_MEMORY_MIN_GB)
        workflow.connect([
            (inputnode, merge_xforms, [('fieldwarp', 'in1'),
                                       ('hmc_xforms', 'in2')]),
            (merge_xforms, bold_transform, [('out', 'transforms')]),
        ])
    else:

        def _aslist(val):
            return [val]

        workflow.connect([
            (inputnode, bold_transform, [(('hmc_xforms', _aslist),
                                          'transforms')]),
        ])

    # Code ready to generate a pre/post processing report
    # bold_bold_report_wf = init_bold_preproc_report_wf(
    #     mem_gb=mem_gb['resampled'],
    #     reportlets_dir=reportlets_dir
    # )
    # workflow.connect([
    #     (inputnode, bold_bold_report_wf, [
    #         ('bold_file', 'inputnode.name_source'),
    #         ('bold_file', 'inputnode.in_pre')]),  # This should be after STC
    #     (bold_bold_trans_wf, bold_bold_report_wf, [
    #         ('outputnode.bold', 'inputnode.in_post')]),
    # ])

    return workflow
示例#8
0
def init_surface_recon_wf(omp_nthreads, hires, name='surface_recon_wf'):
    r"""
    Reconstruct anatomical surfaces using FreeSurfer's ``recon-all``.

    Reconstruction is performed in three phases.
    The first phase initializes the subject with T1w and T2w (if available)
    structural images and performs basic reconstruction (``autorecon1``) with the
    exception of skull-stripping.
    For example, a subject with only one session with T1w and T2w images
    would be processed by the following command::

        $ recon-all -sd <output dir>/freesurfer -subjid sub-<subject_label> \
            -i <bids-root>/sub-<subject_label>/anat/sub-<subject_label>_T1w.nii.gz \
            -T2 <bids-root>/sub-<subject_label>/anat/sub-<subject_label>_T2w.nii.gz \
            -autorecon1 \
            -noskullstrip

    The second phase imports an externally computed skull-stripping mask.
    This workflow refines the external brainmask using the internal mask
    implicit the the FreeSurfer's ``aseg.mgz`` segmentation,
    to reconcile ANTs' and FreeSurfer's brain masks.

    First, the ``aseg.mgz`` mask from FreeSurfer is refined in two
    steps, using binary morphological operations:

      1. With a binary closing operation the sulci are included
         into the mask. This results in a smoother brain mask
         that does not exclude deep, wide sulci.

      2. Fill any holes (typically, there could be a hole next to
         the pineal gland and the corpora quadrigemina if the great
         cerebral brain is segmented out).

    Second, the brain mask is grown, including pixels that have a high likelihood
    to the GM tissue distribution:

      3. Dilate and substract the brain mask, defining the region to search for candidate
         pixels that likely belong to cortical GM.

      4. Pixels found in the search region that are labeled as GM by ANTs
         (during ``antsBrainExtraction.sh``) are directly added to the new mask.

      5. Otherwise, estimate GM tissue parameters locally in  patches of ``ww`` size,
         and test the likelihood of the pixel to belong in the GM distribution.

    This procedure is inspired on mindboggle's solution to the problem:
    https://github.com/nipy/mindboggle/blob/7f91faaa7664d820fe12ccc52ebaf21d679795e2/mindboggle/guts/segment.py#L1660


    The final phase resumes reconstruction, using the T2w image to assist
    in finding the pial surface, if available.
    See :py:func:`~smriprep.workflows.surfaces.init_autorecon_resume_wf` for details.


    Memory annotations for FreeSurfer are based off `their documentation
    <https://surfer.nmr.mgh.harvard.edu/fswiki/SystemRequirements>`_.
    They specify an allocation of 4GB per subject. Here we define 5GB
    to have a certain margin.



    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from smriprep.workflows.surfaces import init_surface_recon_wf
        wf = init_surface_recon_wf(omp_nthreads=1, hires=True)

    **Parameters**

        omp_nthreads : int
            Maximum number of threads an individual process may use
        hires : bool
            Enable sub-millimeter preprocessing in FreeSurfer

    **Inputs**

        t1w
            List of T1-weighted structural images
        t2w
            List of T2-weighted structural images (only first used)
        flair
            List of FLAIR images
        skullstripped_t1
            Skull-stripped T1-weighted image (or mask of image)
        ants_segs
            Brain tissue segmentation from ANTS ``antsBrainExtraction.sh``
        corrected_t1
            INU-corrected, merged T1-weighted image
        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID

    **Outputs**

        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID
        t1w2fsnative_xfm
            LTA-style affine matrix translating from T1w to FreeSurfer-conformed subject space
        fsnative2t1w_xfm
            LTA-style affine matrix translating from FreeSurfer-conformed subject space to T1w
        surfaces
            GIFTI surfaces for gray/white matter boundary, pial surface,
            midthickness (or graymid) surface, and inflated surfaces
        out_brainmask
            Refined brainmask, derived from FreeSurfer's ``aseg`` volume
        out_aseg
            FreeSurfer's aseg segmentation, in native T1w space
        out_aparc
            FreeSurfer's aparc+aseg segmentation, in native T1w space

    **Subworkflows**

        * :py:func:`~smriprep.workflows.surfaces.init_autorecon_resume_wf`
        * :py:func:`~smriprep.workflows.surfaces.init_gifti_surface_wf`
    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
Brain surfaces were reconstructed using `recon-all` [FreeSurfer {fs_ver},
RRID:SCR_001847, @fs_reconall], and the brain mask estimated
previously was refined with a custom variation of the method to reconcile
ANTs-derived and FreeSurfer-derived segmentations of the cortical
gray-matter of Mindboggle [RRID:SCR_002438, @mindboggle].
""".format(fs_ver=fs.Info().looseversion() or '<ver>')

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        't1w', 't2w', 'flair', 'skullstripped_t1', 'corrected_t1', 'ants_segs',
        'subjects_dir', 'subject_id'
    ]),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'subjects_dir', 'subject_id', 't1w2fsnative_xfm', 'fsnative2t1w_xfm',
        'surfaces', 'out_brainmask', 'out_aseg', 'out_aparc'
    ]),
                         name='outputnode')

    recon_config = pe.Node(FSDetectInputs(hires_enabled=hires),
                           name='recon_config')

    fov_check = pe.Node(niu.Function(function=_check_cw256), name='fov_check')

    autorecon1 = pe.Node(fs.ReconAll(directive='autorecon1',
                                     openmp=omp_nthreads),
                         name='autorecon1',
                         n_procs=omp_nthreads,
                         mem_gb=5)
    autorecon1.interface._can_resume = False
    autorecon1.interface._always_run = True

    skull_strip_extern = pe.Node(FSInjectBrainExtracted(),
                                 name='skull_strip_extern')

    fsnative2t1w_xfm = pe.Node(RobustRegister(auto_sens=True,
                                              est_int_scale=True),
                               name='fsnative2t1w_xfm')
    t1w2fsnative_xfm = pe.Node(LTAConvert(out_lta=True, invert=True),
                               name='t1w2fsnative_xfm')

    autorecon_resume_wf = init_autorecon_resume_wf(omp_nthreads=omp_nthreads)
    gifti_surface_wf = init_gifti_surface_wf()

    aseg_to_native_wf = init_segs_to_native_wf()
    aparc_to_native_wf = init_segs_to_native_wf(segmentation='aparc_aseg')
    refine = pe.Node(RefineBrainMask(), name='refine')

    workflow.connect([
        # Configuration
        (inputnode, recon_config, [('t1w', 't1w_list'), ('t2w', 't2w_list'),
                                   ('flair', 'flair_list')]),
        # Passing subjects_dir / subject_id enforces serial order
        (inputnode, autorecon1, [('subjects_dir', 'subjects_dir'),
                                 ('subject_id', 'subject_id')]),
        (autorecon1, skull_strip_extern, [('subjects_dir', 'subjects_dir'),
                                          ('subject_id', 'subject_id')]),
        (skull_strip_extern, autorecon_resume_wf,
         [('subjects_dir', 'inputnode.subjects_dir'),
          ('subject_id', 'inputnode.subject_id')]),
        (autorecon_resume_wf, gifti_surface_wf,
         [('outputnode.subjects_dir', 'inputnode.subjects_dir'),
          ('outputnode.subject_id', 'inputnode.subject_id')]),
        # Reconstruction phases
        (inputnode, autorecon1, [('t1w', 'T1_files')]),
        (inputnode, fov_check, [('t1w', 'in_files')]),
        (fov_check, autorecon1, [('out', 'flags')]),
        (
            recon_config,
            autorecon1,
            [
                ('t2w', 'T2_file'),
                ('flair', 'FLAIR_file'),
                ('hires', 'hires'),
                # First run only (recon-all saves expert options)
                ('mris_inflate', 'mris_inflate')
            ]),
        (inputnode, skull_strip_extern, [('skullstripped_t1', 'in_brain')]),
        (recon_config, autorecon_resume_wf, [('use_t2w', 'inputnode.use_T2'),
                                             ('use_flair',
                                              'inputnode.use_FLAIR')]),
        # Construct transform from FreeSurfer conformed image to sMRIPrep
        # reoriented image
        (inputnode, fsnative2t1w_xfm, [('t1w', 'target_file')]),
        (autorecon1, fsnative2t1w_xfm, [('T1', 'source_file')]),
        (fsnative2t1w_xfm, gifti_surface_wf, [('out_reg_file',
                                               'inputnode.fsnative2t1w_xfm')]),
        (fsnative2t1w_xfm, t1w2fsnative_xfm, [('out_reg_file', 'in_lta')]),
        # Refine ANTs mask, deriving new mask from FS' aseg
        (inputnode, refine, [('corrected_t1', 'in_anat'),
                             ('ants_segs', 'in_ants')]),
        (inputnode, aseg_to_native_wf, [('corrected_t1', 'inputnode.in_file')
                                        ]),
        (autorecon_resume_wf, aseg_to_native_wf,
         [('outputnode.subjects_dir', 'inputnode.subjects_dir'),
          ('outputnode.subject_id', 'inputnode.subject_id')]),
        (inputnode, aparc_to_native_wf, [('corrected_t1', 'inputnode.in_file')
                                         ]),
        (autorecon_resume_wf, aparc_to_native_wf,
         [('outputnode.subjects_dir', 'inputnode.subjects_dir'),
          ('outputnode.subject_id', 'inputnode.subject_id')]),
        (aseg_to_native_wf, refine, [('outputnode.out_file', 'in_aseg')]),

        # Output
        (autorecon_resume_wf, outputnode,
         [('outputnode.subjects_dir', 'subjects_dir'),
          ('outputnode.subject_id', 'subject_id')]),
        (gifti_surface_wf, outputnode, [('outputnode.surfaces', 'surfaces')]),
        (t1w2fsnative_xfm, outputnode, [('out_lta', 't1w2fsnative_xfm')]),
        (fsnative2t1w_xfm, outputnode, [('out_reg_file', 'fsnative2t1w_xfm')]),
        (refine, outputnode, [('out_file', 'out_brainmask')]),
        (aseg_to_native_wf, outputnode, [('outputnode.out_file', 'out_aseg')]),
        (aparc_to_native_wf, outputnode, [('outputnode.out_file', 'out_aparc')
                                          ]),
    ])

    return workflow
示例#9
0
def init_single_subject_wf(subject_id, task_id, echo_idx, name, reportlets_dir, output_dir,
                           bids_dir, ignore, debug, low_mem, anat_only, longitudinal, t2s_coreg,
                           omp_nthreads, skull_strip_template, skull_strip_fixed_seed,
                           freesurfer, output_spaces, template, medial_surface_nan,
                           cifti_output, hires, use_bbr, bold2t1w_dof, fmap_bspline, fmap_demean,
                           use_syn, force_syn, template_out_grid,
                           use_aroma, aroma_melodic_dim, ignore_aroma_err):
    """
    This workflow organizes the preprocessing pipeline for a single subject.
    It collects and reports information about the subject, and prepares
    sub-workflows to perform anatomical and functional preprocessing.

    Anatomical preprocessing is performed in a single workflow, regardless of
    the number of sessions.
    Functional preprocessing is performed using a separate workflow for each
    individual BOLD series.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.base import init_single_subject_wf
        wf = init_single_subject_wf(subject_id='test',
                                    task_id='',
                                    echo_idx=None,
                                    name='single_subject_wf',
                                    reportlets_dir='.',
                                    output_dir='.',
                                    bids_dir='.',
                                    ignore=[],
                                    debug=False,
                                    low_mem=False,
                                    anat_only=False,
                                    longitudinal=False,
                                    t2s_coreg=False,
                                    omp_nthreads=1,
                                    skull_strip_template='OASIS',
                                    skull_strip_fixed_seed=False,
                                    freesurfer=True,
                                    template='MNI152NLin2009cAsym',
                                    output_spaces=['T1w', 'fsnative',
                                                  'template', 'fsaverage5'],
                                    medial_surface_nan=False,
                                    cifti_output=False,
                                    hires=True,
                                    use_bbr=True,
                                    bold2t1w_dof=9,
                                    fmap_bspline=False,
                                    fmap_demean=True,
                                    use_syn=True,
                                    force_syn=True,
                                    template_out_grid='native',
                                    use_aroma=False,
                                    aroma_melodic_dim=-200,
                                    ignore_aroma_err=False)

    Parameters

        subject_id : str
            List of subject labels
        task_id : str or None
            Task ID of BOLD series to preprocess, or ``None`` to preprocess all
        echo_idx : int or None
            Index of echo to preprocess in multiecho BOLD series,
            or ``None`` to preprocess all
        name : str
            Name of workflow
        ignore : list
            Preprocessing steps to skip (may include "slicetiming", "fieldmaps")
        debug : bool
            Enable debugging outputs
        low_mem : bool
            Write uncompressed .nii files in some cases to reduce memory usage
        anat_only : bool
            Disable functional workflows
        longitudinal : bool
            Treat multiple sessions as longitudinal (may increase runtime)
            See sub-workflows for specific differences
        t2s_coreg : bool
            For multi-echo EPI, use the calculated T2*-map for T2*-driven coregistration
        omp_nthreads : int
            Maximum number of threads an individual process may use
        skull_strip_template : str
            Name of ANTs skull-stripping template ('OASIS' or 'NKI')
        skull_strip_fixed_seed : bool
            Do not use a random seed for skull-stripping - will ensure
            run-to-run replicability when used with --omp-nthreads 1
        reportlets_dir : str
            Directory in which to save reportlets
        output_dir : str
            Directory in which to save derivatives
        bids_dir : str
            Root directory of BIDS dataset
        freesurfer : bool
            Enable FreeSurfer surface reconstruction (may increase runtime)
        output_spaces : list
            List of output spaces functional images are to be resampled to.
            Some parts of pipeline will only be instantiated for some output spaces.

            Valid spaces:

             - T1w
             - template
             - fsnative
             - fsaverage (or other pre-existing FreeSurfer templates)
        template : str
            Name of template targeted by ``template`` output space
        medial_surface_nan : bool
            Replace medial wall values with NaNs on functional GIFTI files
        cifti_output : bool
            Generate bold CIFTI file in output spaces
        hires : bool
            Enable sub-millimeter preprocessing in FreeSurfer
        use_bbr : bool or None
            Enable/disable boundary-based registration refinement.
            If ``None``, test BBR result for distortion before accepting.
        bold2t1w_dof : 6, 9 or 12
            Degrees-of-freedom for BOLD-T1w registration
        fmap_bspline : bool
            **Experimental**: Fit B-Spline field using least-squares
        fmap_demean : bool
            Demean voxel-shift map during unwarp
        use_syn : bool
            **Experimental**: Enable ANTs SyN-based susceptibility distortion correction (SDC).
            If fieldmaps are present and enabled, this is not run, by default.
        force_syn : bool
            **Temporary**: Always run SyN-based SDC
        template_out_grid : str
            Keyword ('native', '1mm' or '2mm') or path of custom reference
            image for normalization
        use_aroma : bool
            Perform ICA-AROMA on MNI-resampled functional series
        ignore_aroma_err : bool
            Do not fail on ICA-AROMA errors

    Inputs

        subjects_dir
            FreeSurfer SUBJECTS_DIR

    """
    if name in ('single_subject_wf', 'single_subject_fmripreptest_wf'):
        # for documentation purposes
        subject_data = {
            't1w': ['/completely/made/up/path/sub-01_T1w.nii.gz'],
            'bold': ['/completely/made/up/path/sub-01_task-nback_bold.nii.gz']
        }
        layout = None
    else:
        subject_data, layout = collect_data(bids_dir, subject_id, task_id, echo_idx)

    # Make sure we always go through these two checks
    if not anat_only and subject_data['bold'] == []:
        raise Exception("No BOLD images found for participant {} and task {}. "
                        "All workflows require BOLD images.".format(
                            subject_id, task_id if task_id else '<all>'))

    if not subject_data['t1w']:
        raise Exception("No T1w images found for participant {}. "
                        "All workflows require T1w images.".format(subject_id))

    workflow = Workflow(name=name)
    workflow.__desc__ = """
Results included in this manuscript come from preprocessing
performed using *fMRIPprep* {fmriprep_ver}
(@fmriprep1; @fmriprep2; RRID:SCR_016216),
which is based on *Nipype* {nipype_ver}
(@nipype1; @nipype2; RRID:SCR_002502).

""".format(fmriprep_ver=__version__, nipype_ver=nipype_ver)
    workflow.__postdesc__ = """

Many internal operations of *fMRIPrep* use
*Nilearn* {nilearn_ver} [@nilearn, RRID:SCR_001362],
mostly within the functional processing workflow.
For more details of the pipeline, see [the section corresponding
to workflows in *fMRIPrep*'s documentation]\
(https://fmriprep.readthedocs.io/en/latest/workflows.html \
"FMRIPrep's documentation").


### References

""".format(nilearn_ver=nilearn_ver)

    inputnode = pe.Node(niu.IdentityInterface(fields=['subjects_dir']),
                        name='inputnode')

    bidssrc = pe.Node(BIDSDataGrabber(subject_data=subject_data, anat_only=anat_only),
                      name='bidssrc')

    bids_info = pe.Node(BIDSInfo(), name='bids_info', run_without_submitting=True)

    summary = pe.Node(SubjectSummary(output_spaces=output_spaces, template=template),
                      name='summary', run_without_submitting=True)

    about = pe.Node(AboutSummary(version=__version__,
                                 command=' '.join(sys.argv)),
                    name='about', run_without_submitting=True)

    ds_report_summary = pe.Node(
        DerivativesDataSink(base_directory=reportlets_dir,
                            suffix='summary'),
        name='ds_report_summary', run_without_submitting=True)

    ds_report_about = pe.Node(
        DerivativesDataSink(base_directory=reportlets_dir,
                            suffix='about'),
        name='ds_report_about', run_without_submitting=True)

    # Preprocessing of T1w (includes registration to MNI)
    anat_preproc_wf = init_anat_preproc_wf(name="anat_preproc_wf",
                                           skull_strip_template=skull_strip_template,
                                           skull_strip_fixed_seed=skull_strip_fixed_seed,
                                           output_spaces=output_spaces,
                                           template=template,
                                           debug=debug,
                                           longitudinal=longitudinal,
                                           omp_nthreads=omp_nthreads,
                                           freesurfer=freesurfer,
                                           hires=hires,
                                           reportlets_dir=reportlets_dir,
                                           output_dir=output_dir,
                                           num_t1w=len(subject_data['t1w']))

    workflow.connect([
        (inputnode, anat_preproc_wf, [('subjects_dir', 'inputnode.subjects_dir')]),
        (bidssrc, bids_info, [(('t1w', fix_multi_T1w_source_name), 'in_file')]),
        (inputnode, summary, [('subjects_dir', 'subjects_dir')]),
        (bidssrc, summary, [('t1w', 't1w'),
                            ('t2w', 't2w'),
                            ('bold', 'bold')]),
        (bids_info, summary, [('subject_id', 'subject_id')]),
        (bidssrc, anat_preproc_wf, [('t1w', 'inputnode.t1w'),
                                    ('t2w', 'inputnode.t2w'),
                                    ('roi', 'inputnode.roi'),
                                    ('flair', 'inputnode.flair')]),
        (summary, anat_preproc_wf, [('subject_id', 'inputnode.subject_id')]),
        (bidssrc, ds_report_summary, [(('t1w', fix_multi_T1w_source_name), 'source_file')]),
        (summary, ds_report_summary, [('out_report', 'in_file')]),
        (bidssrc, ds_report_about, [(('t1w', fix_multi_T1w_source_name), 'source_file')]),
        (about, ds_report_about, [('out_report', 'in_file')]),
    ])

    if anat_only:
        return workflow

    for bold_file in subject_data['bold']:
        func_preproc_wf = init_func_preproc_wf(bold_file=bold_file,
                                               layout=layout,
                                               ignore=ignore,
                                               freesurfer=freesurfer,
                                               use_bbr=use_bbr,
                                               t2s_coreg=t2s_coreg,
                                               bold2t1w_dof=bold2t1w_dof,
                                               reportlets_dir=reportlets_dir,
                                               output_spaces=output_spaces,
                                               template=template,
                                               medial_surface_nan=medial_surface_nan,
                                               cifti_output=cifti_output,
                                               output_dir=output_dir,
                                               omp_nthreads=omp_nthreads,
                                               low_mem=low_mem,
                                               fmap_bspline=fmap_bspline,
                                               fmap_demean=fmap_demean,
                                               use_syn=use_syn,
                                               force_syn=force_syn,
                                               debug=debug,
                                               template_out_grid=template_out_grid,
                                               use_aroma=use_aroma,
                                               aroma_melodic_dim=aroma_melodic_dim,
                                               ignore_aroma_err=ignore_aroma_err,
                                               num_bold=len(subject_data['bold']))

        workflow.connect([
            (anat_preproc_wf, func_preproc_wf,
             [('outputnode.t1_preproc', 'inputnode.t1_preproc'),
              ('outputnode.t1_brain', 'inputnode.t1_brain'),
              ('outputnode.t1_mask', 'inputnode.t1_mask'),
              ('outputnode.t1_seg', 'inputnode.t1_seg'),
              ('outputnode.t1_aseg', 'inputnode.t1_aseg'),
              ('outputnode.t1_aparc', 'inputnode.t1_aparc'),
              ('outputnode.t1_tpms', 'inputnode.t1_tpms'),
              ('outputnode.t1_2_mni_forward_transform', 'inputnode.t1_2_mni_forward_transform'),
              ('outputnode.t1_2_mni_reverse_transform', 'inputnode.t1_2_mni_reverse_transform'),
              # Undefined if --no-freesurfer, but this is safe
              ('outputnode.subjects_dir', 'inputnode.subjects_dir'),
              ('outputnode.subject_id', 'inputnode.subject_id'),
              ('outputnode.t1_2_fsnative_forward_transform',
               'inputnode.t1_2_fsnative_forward_transform'),
              ('outputnode.t1_2_fsnative_reverse_transform',
               'inputnode.t1_2_fsnative_reverse_transform')]),
        ])

    return workflow
def init_fsl_bbr_wf(use_bbr, bold2t1w_dof, name='fsl_bbr_wf'):
    """
    This workflow uses FSL FLIRT to register a BOLD image to a T1-weighted
    structural image, using a boundary-based registration (BBR) cost function.

    It is a counterpart to :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`,
    which performs the same task using FreeSurfer's ``bbregister``.

    The ``use_bbr`` option permits a high degree of control over registration.
    If ``False``, standard, rigid coregistration will be performed by FLIRT.
    If ``True``, FLIRT-BBR will be seeded with the initial transform found by
    the rigid coregistration.
    If ``None``, after FLIRT-BBR is run, the resulting affine transform
    will be compared to the initial transform found by FLIRT.
    Excessive deviation will result in rejecting the BBR refinement and
    accepting the original, affine registration.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.registration import init_fsl_bbr_wf
        wf = init_fsl_bbr_wf(use_bbr=True, bold2t1w_dof=9)


    Parameters

        use_bbr : bool or None
            Enable/disable boundary-based registration refinement.
            If ``None``, test BBR result for distortion before accepting.
        bold2t1w_dof : 6, 9 or 12
            Degrees-of-freedom for BOLD-T1w registration
        name : str, optional
            Workflow name (default: fsl_bbr_wf)


    Inputs

        in_file
            Reference BOLD image to be registered
        t1_brain
            Skull-stripped T1-weighted structural image
        t1_seg
            FAST segmentation of ``t1_brain``
        t1_2_fsnative_reverse_transform
            Unused (see :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`)
        subjects_dir
            Unused (see :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`)
        subject_id
            Unused (see :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`)


    Outputs

        itk_bold_to_t1
            Affine transform from ``ref_bold_brain`` to T1w space (ITK format)
        itk_t1_to_bold
            Affine transform from T1 space to BOLD space (ITK format)
        out_report
            Reportlet for assessing registration quality
        fallback
            Boolean indicating whether BBR was rejected (rigid FLIRT registration returned)

    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
The BOLD reference was then co-registered to the T1w reference using
`flirt` [FSL {fsl_ver}, @flirt] with the boundary-based registration [@bbr]
cost-function.
Co-registration was configured with nine degrees of freedom to account
for distortions remaining in the BOLD reference.
""".format(fsl_ver=FLIRTRPT().version or '<ver>')

    inputnode = pe.Node(
        niu.IdentityInterface([
            'in_file',
            't1_2_fsnative_reverse_transform', 'subjects_dir', 'subject_id',  # BBRegister
            't1_seg', 't1_brain']),  # FLIRT BBR
        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(['itk_bold_to_t1', 'itk_t1_to_bold', 'out_report', 'fallback']),
        name='outputnode')

    wm_mask = pe.Node(niu.Function(function=extract_wm), name='wm_mask')
    flt_bbr_init = pe.Node(FLIRTRPT(dof=6, generate_report=not use_bbr,
                                    uses_qform=True), name='flt_bbr_init')

    invt_bbr = pe.Node(fsl.ConvertXFM(invert_xfm=True), name='invt_bbr',
                       mem_gb=DEFAULT_MEMORY_MIN_GB)

    #  BOLD to T1 transform matrix is from fsl, using c3 tools to convert to
    #  something ANTs will like.
    fsl2itk_fwd = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_fwd', mem_gb=DEFAULT_MEMORY_MIN_GB)
    fsl2itk_inv = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_inv', mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, flt_bbr_init, [('in_file', 'in_file'),
                                   ('t1_brain', 'reference')]),
        (inputnode, fsl2itk_fwd, [('t1_brain', 'reference_file'),
                                  ('in_file', 'source_file')]),
        (inputnode, fsl2itk_inv, [('in_file', 'reference_file'),
                                  ('t1_brain', 'source_file')]),
        (invt_bbr, fsl2itk_inv, [('out_file', 'transform_file')]),
        (fsl2itk_fwd, outputnode, [('itk_transform', 'itk_bold_to_t1')]),
        (fsl2itk_inv, outputnode, [('itk_transform', 'itk_t1_to_bold')]),
    ])

    # Short-circuit workflow building, use rigid registration
    if use_bbr is False:
        workflow.connect([
            (flt_bbr_init, invt_bbr, [('out_matrix_file', 'in_file')]),
            (flt_bbr_init, fsl2itk_fwd, [('out_matrix_file', 'transform_file')]),
            (flt_bbr_init, outputnode, [('out_report', 'out_report')]),
        ])
        outputnode.inputs.fallback = True

        return workflow

    flt_bbr = pe.Node(
        FLIRTRPT(cost_func='bbr', dof=bold2t1w_dof, generate_report=True),
        name='flt_bbr')

    FSLDIR = os.getenv('FSLDIR')
    if FSLDIR:
        flt_bbr.inputs.schedule = op.join(FSLDIR, 'etc/flirtsch/bbr.sch')
    else:
        # Should mostly be hit while building docs
        LOGGER.warning("FSLDIR unset - using packaged BBR schedule")
        flt_bbr.inputs.schedule = pkgr.resource_filename('fmriprep', 'data/flirtsch/bbr.sch')

    workflow.connect([
        (inputnode, wm_mask, [('t1_seg', 'in_seg')]),
        (inputnode, flt_bbr, [('in_file', 'in_file'),
                              ('t1_brain', 'reference')]),
        (flt_bbr_init, flt_bbr, [('out_matrix_file', 'in_matrix_file')]),
        (wm_mask, flt_bbr, [('out', 'wm_seg')]),
    ])

    # Short-circuit workflow building, use boundary-based registration
    if use_bbr is True:
        workflow.connect([
            (flt_bbr, invt_bbr, [('out_matrix_file', 'in_file')]),
            (flt_bbr, fsl2itk_fwd, [('out_matrix_file', 'transform_file')]),
            (flt_bbr, outputnode, [('out_report', 'out_report')]),
        ])
        outputnode.inputs.fallback = False

        return workflow

    transforms = pe.Node(niu.Merge(2), run_without_submitting=True, name='transforms')
    reports = pe.Node(niu.Merge(2), run_without_submitting=True, name='reports')

    compare_transforms = pe.Node(niu.Function(function=compare_xforms), name='compare_transforms')

    select_transform = pe.Node(niu.Select(), run_without_submitting=True, name='select_transform')
    select_report = pe.Node(niu.Select(), run_without_submitting=True, name='select_report')

    fsl_to_lta = pe.MapNode(LTAConvert(out_lta=True), iterfield=['in_fsl'],
                            name='fsl_to_lta')

    workflow.connect([
        (flt_bbr, transforms, [('out_matrix_file', 'in1')]),
        (flt_bbr_init, transforms, [('out_matrix_file', 'in2')]),
        # Convert FSL transforms to LTA (RAS2RAS) transforms and compare
        (inputnode, fsl_to_lta, [('in_file', 'source_file'),
                                 ('t1_brain', 'target_file')]),
        (transforms, fsl_to_lta, [('out', 'in_fsl')]),
        (fsl_to_lta, compare_transforms, [('out_lta', 'lta_list')]),
        (compare_transforms, outputnode, [('out', 'fallback')]),
        # Select output transform
        (transforms, select_transform, [('out', 'inlist')]),
        (compare_transforms, select_transform, [('out', 'index')]),
        (select_transform, invt_bbr, [('out', 'in_file')]),
        (select_transform, fsl2itk_fwd, [('out', 'transform_file')]),
        (flt_bbr, reports, [('out_report', 'in1')]),
        (flt_bbr_init, reports, [('out_report', 'in2')]),
        (reports, select_report, [('out', 'inlist')]),
        (compare_transforms, select_report, [('out', 'index')]),
        (select_report, outputnode, [('out', 'out_report')]),
    ])

    return workflow
def init_bbreg_wf(use_bbr, bold2t1w_dof, omp_nthreads, name='bbreg_wf'):
    """
    This workflow uses FreeSurfer's ``bbregister`` to register a BOLD image to
    a T1-weighted structural image.

    It is a counterpart to :py:func:`~fmriprep.workflows.bold.registration.init_fsl_bbr_wf`,
    which performs the same task using FSL's FLIRT with a BBR cost function.

    The ``use_bbr`` option permits a high degree of control over registration.
    If ``False``, standard, affine coregistration will be performed using
    FreeSurfer's ``mri_coreg`` tool.
    If ``True``, ``bbregister`` will be seeded with the initial transform found
    by ``mri_coreg`` (equivalent to running ``bbregister --init-coreg``).
    If ``None``, after ``bbregister`` is run, the resulting affine transform
    will be compared to the initial transform found by ``mri_coreg``.
    Excessive deviation will result in rejecting the BBR refinement and
    accepting the original, affine registration.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.registration import init_bbreg_wf
        wf = init_bbreg_wf(use_bbr=True, bold2t1w_dof=9, omp_nthreads=1)


    Parameters

        use_bbr : bool or None
            Enable/disable boundary-based registration refinement.
            If ``None``, test BBR result for distortion before accepting.
        bold2t1w_dof : 6, 9 or 12
            Degrees-of-freedom for BOLD-T1w registration
        name : str, optional
            Workflow name (default: bbreg_wf)


    Inputs

        in_file
            Reference BOLD image to be registered
        t1_2_fsnative_reverse_transform
            FSL-style affine matrix translating from FreeSurfer T1.mgz to T1w
        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID (must have folder in SUBJECTS_DIR)
        t1_brain
            Unused (see :py:func:`~fmriprep.workflows.bold.registration.init_fsl_bbr_wf`)
        t1_seg
            Unused (see :py:func:`~fmriprep.workflows.bold.registration.init_fsl_bbr_wf`)


    Outputs

        itk_bold_to_t1
            Affine transform from ``ref_bold_brain`` to T1 space (ITK format)
        itk_t1_to_bold
            Affine transform from T1 space to BOLD space (ITK format)
        out_report
            Reportlet for assessing registration quality
        fallback
            Boolean indicating whether BBR was rejected (mri_coreg registration returned)

    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
The BOLD reference was then co-registered to the T1w reference using
`bbregister` (FreeSurfer) which implements boundary-based registration [@bbr].
Co-registration was configured with nine degrees of freedom to account
for distortions remaining in the BOLD reference.
"""

    inputnode = pe.Node(
        niu.IdentityInterface([
            'in_file',
            't1_2_fsnative_reverse_transform', 'subjects_dir', 'subject_id',  # BBRegister
            't1_seg', 't1_brain']),  # FLIRT BBR
        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(['itk_bold_to_t1', 'itk_t1_to_bold', 'out_report', 'fallback']),
        name='outputnode')

    mri_coreg = pe.Node(
        MRICoregRPT(dof=bold2t1w_dof, sep=[4], ftol=0.0001, linmintol=0.01,
                    generate_report=not use_bbr),
        name='mri_coreg', n_procs=omp_nthreads, mem_gb=5)

    lta_concat = pe.Node(ConcatenateLTA(out_file='out.lta'), name='lta_concat')
    # XXX LTA-FSL-ITK may ultimately be able to be replaced with a straightforward
    # LTA-ITK transform, but right now the translation parameters are off.
    lta2fsl_fwd = pe.Node(LTAConvert(out_fsl=True), name='lta2fsl_fwd')
    lta2fsl_inv = pe.Node(LTAConvert(out_fsl=True, invert=True), name='lta2fsl_inv')
    fsl2itk_fwd = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_fwd', mem_gb=DEFAULT_MEMORY_MIN_GB)
    fsl2itk_inv = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_inv', mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, mri_coreg, [('subjects_dir', 'subjects_dir'),
                                ('subject_id', 'subject_id'),
                                ('in_file', 'source_file')]),
        # Output ITK transforms
        (inputnode, lta_concat, [('t1_2_fsnative_reverse_transform', 'in_lta2')]),
        (lta_concat, lta2fsl_fwd, [('out_file', 'in_lta')]),
        (lta_concat, lta2fsl_inv, [('out_file', 'in_lta')]),
        (inputnode, fsl2itk_fwd, [('t1_brain', 'reference_file'),
                                  ('in_file', 'source_file')]),
        (inputnode, fsl2itk_inv, [('in_file', 'reference_file'),
                                  ('t1_brain', 'source_file')]),
        (lta2fsl_fwd, fsl2itk_fwd, [('out_fsl', 'transform_file')]),
        (lta2fsl_inv, fsl2itk_inv, [('out_fsl', 'transform_file')]),
        (fsl2itk_fwd, outputnode, [('itk_transform', 'itk_bold_to_t1')]),
        (fsl2itk_inv, outputnode, [('itk_transform', 'itk_t1_to_bold')]),
    ])

    # Short-circuit workflow building, use initial registration
    if use_bbr is False:
        workflow.connect([
            (mri_coreg, outputnode, [('out_report', 'out_report')]),
            (mri_coreg, lta_concat, [('out_lta_file', 'in_lta1')])])
        outputnode.inputs.fallback = True

        return workflow

    bbregister = pe.Node(
        BBRegisterRPT(dof=bold2t1w_dof, contrast_type='t2', registered_file=True,
                      out_lta_file=True, generate_report=True),
        name='bbregister', mem_gb=12)

    workflow.connect([
        (inputnode, bbregister, [('subjects_dir', 'subjects_dir'),
                                 ('subject_id', 'subject_id'),
                                 ('in_file', 'source_file')]),
        (mri_coreg, bbregister, [('out_lta_file', 'init_reg_file')]),
    ])

    # Short-circuit workflow building, use boundary-based registration
    if use_bbr is True:
        workflow.connect([
            (bbregister, outputnode, [('out_report', 'out_report')]),
            (bbregister, lta_concat, [('out_lta_file', 'in_lta1')])])
        outputnode.inputs.fallback = False

        return workflow

    transforms = pe.Node(niu.Merge(2), run_without_submitting=True, name='transforms')
    reports = pe.Node(niu.Merge(2), run_without_submitting=True, name='reports')

    lta_ras2ras = pe.MapNode(LTAConvert(out_lta=True), iterfield=['in_lta'],
                             name='lta_ras2ras', mem_gb=2)
    compare_transforms = pe.Node(niu.Function(function=compare_xforms), name='compare_transforms')

    select_transform = pe.Node(niu.Select(), run_without_submitting=True, name='select_transform')
    select_report = pe.Node(niu.Select(), run_without_submitting=True, name='select_report')

    workflow.connect([
        (bbregister, transforms, [('out_lta_file', 'in1')]),
        (mri_coreg, transforms, [('out_lta_file', 'in2')]),
        # Normalize LTA transforms to RAS2RAS (inputs are VOX2VOX) and compare
        (transforms, lta_ras2ras, [('out', 'in_lta')]),
        (lta_ras2ras, compare_transforms, [('out_lta', 'lta_list')]),
        (compare_transforms, outputnode, [('out', 'fallback')]),
        # Select output transform
        (transforms, select_transform, [('out', 'inlist')]),
        (compare_transforms, select_transform, [('out', 'index')]),
        (select_transform, lta_concat, [('out', 'in_lta1')]),
        # Select output report
        (bbregister, reports, [('out_report', 'in1')]),
        (mri_coreg, reports, [('out_report', 'in2')]),
        (reports, select_report, [('out', 'inlist')]),
        (compare_transforms, select_report, [('out', 'index')]),
        (select_report, outputnode, [('out', 'out_report')]),
    ])

    return workflow
示例#12
0
def init_bold_reference_wf(omp_nthreads, bold_file=None, pre_mask=False,
                           name='bold_reference_wf', gen_report=False):
    """
    This workflow generates reference BOLD images for a series

    The raw reference image is the target of :abbr:`HMC (head motion correction)`, and a
    contrast-enhanced reference is the subject of distortion correction, as well as
    boundary-based registration to T1w and template spaces.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold import init_bold_reference_wf
        wf = init_bold_reference_wf(omp_nthreads=1)

    **Parameters**

        bold_file : str
            BOLD series NIfTI file
        omp_nthreads : int
            Maximum number of threads an individual process may use
        name : str
            Name of workflow (default: ``bold_reference_wf``)
        gen_report : bool
            Whether a mask report node should be appended in the end
        enhance_t2 : bool
            Perform logarithmic transform of input BOLD image to improve contrast
            before calculating the preliminary mask

    **Inputs**

        bold_file
            BOLD series NIfTI file
        bold_mask : bool
            A tentative brain mask to initialize the workflow (requires ``pre_mask``
            parameter set ``True``).

    **Outputs**

        bold_file
            Validated BOLD series NIfTI file
        raw_ref_image
            Reference image to which BOLD series is motion corrected
        skip_vols
            Number of non-steady-state volumes detected at beginning of ``bold_file``
        ref_image
            Contrast-enhanced reference image
        ref_image_brain
            Skull-stripped reference image
        bold_mask
            Skull-stripping mask of reference image
        validation_report
            HTML reportlet indicating whether ``bold_file`` had a valid affine


    **Subworkflows**

        * :py:func:`~fmriprep.workflows.bold.util.init_enhance_and_skullstrip_wf`

    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
First, a reference volume and its skull-stripped version were generated
using a custom methodology of *fMRIPrep*.
"""
    inputnode = pe.Node(niu.IdentityInterface(fields=['bold_file', 'sbref_file', 'bold_mask']),
                        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(fields=['bold_file', 'raw_ref_image', 'skip_vols', 'ref_image',
                                      'ref_image_brain', 'bold_mask', 'validation_report',
                                      'mask_report']),
        name='outputnode')

    # Simplify manually setting input image
    if bold_file is not None:
        inputnode.inputs.bold_file = bold_file

    validate = pe.Node(ValidateImage(), name='validate', mem_gb=DEFAULT_MEMORY_MIN_GB)

    gen_ref = pe.Node(EstimateReferenceImage(), name="gen_ref",
                      mem_gb=1)  # OE: 128x128x128x50 * 64 / 8 ~ 900MB.
    # Re-run validation; no effect if no sbref; otherwise apply same validation to sbref as bold
    validate_ref = pe.Node(ValidateImage(), name='validate_ref', mem_gb=DEFAULT_MEMORY_MIN_GB)
    enhance_and_skullstrip_bold_wf = init_enhance_and_skullstrip_bold_wf(
        omp_nthreads=omp_nthreads, pre_mask=pre_mask)

    workflow.connect([
        (inputnode, enhance_and_skullstrip_bold_wf, [('bold_mask', 'inputnode.pre_mask')]),
        (inputnode, validate, [('bold_file', 'in_file')]),
        (inputnode, gen_ref, [('sbref_file', 'sbref_file')]),
        (validate, gen_ref, [('out_file', 'in_file')]),
        (gen_ref, validate_ref, [('ref_image', 'in_file')]),
        (validate_ref, enhance_and_skullstrip_bold_wf, [('out_file', 'inputnode.in_file')]),
        (validate, outputnode, [('out_file', 'bold_file'),
                                ('out_report', 'validation_report')]),
        (gen_ref, outputnode, [('n_volumes_to_discard', 'skip_vols')]),
        (validate_ref, outputnode, [('out_file', 'raw_ref_image')]),
        (enhance_and_skullstrip_bold_wf, outputnode, [
            ('outputnode.bias_corrected_file', 'ref_image'),
            ('outputnode.mask_file', 'bold_mask'),
            ('outputnode.skull_stripped_file', 'ref_image_brain')]),
    ])

    if gen_report:
        mask_reportlet = pe.Node(SimpleShowMaskRPT(), name='mask_reportlet')
        workflow.connect([
            (enhance_and_skullstrip_bold_wf, mask_reportlet, [
                ('outputnode.bias_corrected_file', 'background_file'),
                ('outputnode.mask_file', 'mask_file'),
            ]),
        ])

    return workflow
示例#13
0
def init_bold_stc_wf(metadata, name='bold_stc_wf'):
    """
    This workflow performs :abbr:`STC (slice-timing correction)` over the input
    :abbr:`BOLD (blood-oxygen-level dependent)` image.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold import init_bold_stc_wf
        wf = init_bold_stc_wf(
            metadata={"RepetitionTime": 2.0,
                      "SliceTiming": [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]},
            )

    **Parameters**

        metadata : dict
            BIDS metadata for BOLD file
        name : str
            Name of workflow (default: ``bold_stc_wf``)

    **Inputs**

        bold_file
            BOLD series NIfTI file
        skip_vols
            Number of non-steady-state volumes detected at beginning of ``bold_file``

    **Outputs**

        stc_file
            Slice-timing corrected BOLD series NIfTI file

    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
BOLD runs were slice-time corrected using `3dTshift` from
AFNI {afni_ver} [@afni, RRID:SCR_005927].
""".format(afni_ver=''.join(['%02d' % v for v in afni.Info().version() or []]))
    inputnode = pe.Node(niu.IdentityInterface(fields=['bold_file', 'skip_vols']), name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=['stc_file']), name='outputnode')

    LOGGER.log(25, 'Slice-timing correction will be included.')

    # It would be good to fingerprint memory use of afni.TShift
    slice_timing_correction = pe.Node(
        afni.TShift(outputtype='NIFTI_GZ',
                    tr='{}s'.format(metadata["RepetitionTime"]),
                    slice_timing=metadata['SliceTiming'],
                    slice_encoding_direction=metadata.get('SliceEncodingDirection', 'k')),
        name='slice_timing_correction')

    copy_xform = pe.Node(CopyXForm(), name='copy_xform', mem_gb=0.1)

    workflow.connect([
        (inputnode, slice_timing_correction, [('bold_file', 'in_file'),
                                              ('skip_vols', 'ignore')]),
        (slice_timing_correction, copy_xform, [('out_file', 'in_file')]),
        (inputnode, copy_xform, [('bold_file', 'hdr_file')]),
        (copy_xform, outputnode, [('out_file', 'stc_file')]),
    ])

    return workflow
示例#14
0
def init_pepolar_unwarp_wf(omp_nthreads=1,
                           matched_pe=False,
                           name="pepolar_unwarp_wf"):
    """
    Create the PE-Polar field estimation workflow.

    This workflow takes in a set of EPI files with opposite phase encoding
    direction than the target file and calculates a displacements field
    (in other words, an ANTs-compatible warp file).

    This procedure works if there is only one '_epi' file is present
    (as long as it has the opposite phase encoding direction to the target
    file). The target file will be used to estimate the field distortion.
    However, if there is another '_epi' file present with a matching
    phase encoding direction to the target it will be used instead.

    Currently, different phase encoding dimension in the target file and the
    '_epi' file(s) (for example 'i' and 'j') is not supported.

    The warp field correcting for the distortions is estimated using AFNI's
    3dQwarp, with displacement estimation limited to the target file phase
    encoding direction.

    It also calculates a new mask for the input dataset that takes into
    account the distortions.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from sdcflows.workflows.pepolar import init_pepolar_unwarp_wf
        wf = init_pepolar_unwarp_wf()


    **Parameters**:

        matched_pe : bool
            Whether the input ``fmaps_epi`` will contain images with matched
            PE blips or not. Please use :func:`sdcflows.workflows.pepolar.check_pes`
            to determine whether they exist or not.
        name : str
            Name for this workflow
        omp_nthreads : int
            Parallelize internal tasks across the number of CPUs given by this option.

    **Inputs**:

        fmaps_epi : list of tuple(pathlike, str)
            The list of EPI images that will be used in PE-Polar correction, and
            their corresponding ``PhaseEncodingDirection`` metadata.
            The workflow will use the ``bold_pe_dir`` input to separate out those
            EPI acquisitions with opposed PE blips and those with matched PE blips
            (the latter could be none, and ``in_reference_brain`` would then be
            used). The workflow raises a ``ValueError`` when no images with
            opposed PE blips are found.
        bold_pe_dir : str
            The baseline PE direction.
        in_reference : pathlike
            The baseline reference image (must correspond to ``bold_pe_dir``).
        in_reference_brain : pathlike
            The reference image above, but skullstripped.
        in_mask : pathlike
            Not used, present only for consistency across fieldmap estimation
            workflows.


    **Outputs**:

        out_reference : pathlike
            The ``in_reference`` after unwarping
        out_reference_brain : pathlike
            The ``in_reference`` after unwarping and skullstripping
        out_warp : pathlike
            The corresponding :abbr:`DFM (displacements field map)` compatible with
            ANTs.
        out_mask : pathlike
            Mask of the unwarped input file

    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
A deformation field to correct for susceptibility distortions was estimated
based on two echo-planar imaging (EPI) references with opposing phase-encoding
directions, using `3dQwarp` @afni (AFNI {afni_ver}).
""".format(afni_ver=''.join(['%02d' % v for v in afni.Info().version() or []]))

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'fmaps_epi', 'in_reference', 'in_reference_brain', 'in_mask',
        'bold_pe_dir'
    ]),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'out_reference', 'out_reference_brain', 'out_warp', 'out_mask'
    ]),
                         name='outputnode')

    prepare_epi_wf = init_prepare_epi_wf(omp_nthreads=omp_nthreads,
                                         matched_pe=matched_pe,
                                         name="prepare_epi_wf")

    qwarp = pe.Node(afni.QwarpPlusMinus(
        pblur=[0.05, 0.05],
        blur=[-1, -1],
        noweight=True,
        minpatch=9,
        nopadWARP=True,
        environ={'OMP_NUM_THREADS': '%d' % omp_nthreads}),
                    name='qwarp',
                    n_procs=omp_nthreads)

    to_ants = pe.Node(niu.Function(function=_fix_hdr),
                      name='to_ants',
                      mem_gb=0.01)

    cphdr_warp = pe.Node(CopyHeader(), name='cphdr_warp', mem_gb=0.01)

    unwarp_reference = pe.Node(ANTSApplyTransformsRPT(
        dimension=3,
        generate_report=False,
        float=True,
        interpolation='LanczosWindowedSinc'),
                               name='unwarp_reference')

    enhance_and_skullstrip_bold_wf = init_enhance_and_skullstrip_bold_wf(
        omp_nthreads=omp_nthreads)

    workflow.connect([
        (inputnode, qwarp, [(('bold_pe_dir', _qwarp_args), 'args')]),
        (inputnode, cphdr_warp, [('in_reference', 'hdr_file')]),
        (inputnode, prepare_epi_wf, [('fmaps_epi', 'inputnode.maps_pe'),
                                     ('bold_pe_dir', 'inputnode.epi_pe'),
                                     ('in_reference_brain',
                                      'inputnode.ref_brain')]),
        (prepare_epi_wf, qwarp, [('outputnode.opposed_pe', 'base_file'),
                                 ('outputnode.matched_pe', 'in_file')]),
        (qwarp, cphdr_warp, [('source_warp', 'in_file')]),
        (cphdr_warp, to_ants, [('out_file', 'in_file')]),
        (to_ants, unwarp_reference, [('out', 'transforms')]),
        (inputnode, unwarp_reference, [('in_reference', 'reference_image'),
                                       ('in_reference', 'input_image')]),
        (unwarp_reference, enhance_and_skullstrip_bold_wf,
         [('output_image', 'inputnode.in_file')]),
        (unwarp_reference, outputnode, [('output_image', 'out_reference')]),
        (enhance_and_skullstrip_bold_wf, outputnode,
         [('outputnode.mask_file', 'out_mask'),
          ('outputnode.skull_stripped_file', 'out_reference_brain')]),
        (to_ants, outputnode, [('out', 'out_warp')]),
    ])

    return workflow
def init_bold_confs_wf(mem_gb, metadata, name="bold_confs_wf"):
    """
    This workflow calculates confounds for a BOLD series, and aggregates them
    into a :abbr:`TSV (tab-separated value)` file, for use as nuisance
    regressors in a :abbr:`GLM (general linear model)`.

    The following confounds are calculated, with column headings in parentheses:

    #. Region-wise average signal (``csf``, ``white_matter``, ``global_signal``)
    #. DVARS - original and standardized variants (``dvars``, ``std_dvars``)
    #. Framewise displacement, based on head-motion parameters
       (``framewise_displacement``)
    #. Temporal CompCor (``t_comp_cor_XX``)
    #. Anatomical CompCor (``a_comp_cor_XX``)
    #. Cosine basis set for high-pass filtering w/ 0.008 Hz cut-off
       (``cosine_XX``)
    #. Non-steady-state volumes (``non_steady_state_XX``)
    #. Estimated head-motion parameters, in mm and rad
       (``trans_x``, ``trans_y``, ``trans_z``, ``rot_x``, ``rot_y``, ``rot_z``)


    Prior to estimating aCompCor and tCompCor, non-steady-state volumes are
    censored and high-pass filtered using a :abbr:`DCT (discrete cosine
    transform)` basis.
    The cosine basis, as well as one regressor per censored volume, are included
    for convenience.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.confounds import init_bold_confs_wf
        wf = init_bold_confs_wf(
            mem_gb=1,
            metadata={})

    **Parameters**

        mem_gb : float
            Size of BOLD file in GB - please note that this size
            should be calculated after resamplings that may extend
            the FoV
        metadata : dict
            BIDS metadata for BOLD file
        name : str
            Name of workflow (default: ``bold_confs_wf``)

    **Inputs**

        bold
            BOLD image, after the prescribed corrections (STC, HMC and SDC)
            when available.
        bold_mask
            BOLD series mask
        movpar_file
            SPM-formatted motion parameters file
        skip_vols
            number of non steady state volumes
        t1_mask
            Mask of the skull-stripped template image
        t1_tpms
            List of tissue probability maps in T1w space
        t1_bold_xform
            Affine matrix that maps the T1w space into alignment with
            the native BOLD space

    **Outputs**

        confounds_file
            TSV of all aggregated confounds
        rois_report
            Reportlet visualizing white-matter/CSF mask used for aCompCor,
            the ROI for tCompCor and the BOLD brain mask.

    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
Several confounding time-series were calculated based on the
*preprocessed BOLD*: framewise displacement (FD), DVARS and
three region-wise global signals.
FD and DVARS are calculated for each functional run, both using their
implementations in *Nipype* [following the definitions by @power_fd_dvars].
The three global signals are extracted within the CSF, the WM, and
the whole-brain masks.
Additionally, a set of physiological regressors were extracted to
allow for component-based noise correction [*CompCor*, @compcor].
Principal components are estimated after high-pass filtering the
*preprocessed BOLD* time-series (using a discrete cosine filter with
128s cut-off) for the two *CompCor* variants: temporal (tCompCor)
and anatomical (aCompCor).
Six tCompCor components are then calculated from the top 5% variable
voxels within a mask covering the subcortical regions.
This subcortical mask is obtained by heavily eroding the brain mask,
which ensures it does not include cortical GM regions.
For aCompCor, six components are calculated within the intersection of
the aforementioned mask and the union of CSF and WM masks calculated
in T1w space, after their projection to the native space of each
functional run (using the inverse BOLD-to-T1w transformation).
The head-motion estimates calculated in the correction step were also
placed within the corresponding confounds file.
"""
    inputnode = pe.Node(niu.IdentityInterface(
        fields=['bold', 'bold_mask', 'movpar_file', 'skip_vols',
                't1_mask', 't1_tpms', 't1_bold_xform']),
        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(
        fields=['confounds_file']),
        name='outputnode')

    # Get masks ready in T1w space
    acc_tpm = pe.Node(AddTPMs(indices=[0, 2]), name='tpms_add_csf_wm')  # acc stands for aCompCor
    csf_roi = pe.Node(TPM2ROI(erode_mm=0, mask_erode_mm=30), name='csf_roi')
    wm_roi = pe.Node(TPM2ROI(
        erode_prop=0.6, mask_erode_prop=0.6**3),  # 0.6 = radius; 0.6^3 = volume
        name='wm_roi')
    acc_roi = pe.Node(TPM2ROI(
        erode_prop=0.6, mask_erode_prop=0.6**3),  # 0.6 = radius; 0.6^3 = volume
        name='acc_roi')

    # Map ROIs in T1w space into BOLD space
    csf_tfm = pe.Node(ApplyTransforms(interpolation='NearestNeighbor', float=True),
                      name='csf_tfm', mem_gb=0.1)
    wm_tfm = pe.Node(ApplyTransforms(interpolation='NearestNeighbor', float=True),
                     name='wm_tfm', mem_gb=0.1)
    acc_tfm = pe.Node(ApplyTransforms(interpolation='NearestNeighbor', float=True),
                      name='acc_tfm', mem_gb=0.1)
    tcc_tfm = pe.Node(ApplyTransforms(interpolation='NearestNeighbor', float=True),
                      name='tcc_tfm', mem_gb=0.1)

    # Ensure ROIs don't go off-limits (reduced FoV)
    csf_msk = pe.Node(niu.Function(function=_maskroi), name='csf_msk')
    wm_msk = pe.Node(niu.Function(function=_maskroi), name='wm_msk')
    acc_msk = pe.Node(niu.Function(function=_maskroi), name='acc_msk')
    tcc_msk = pe.Node(niu.Function(function=_maskroi), name='tcc_msk')

    # DVARS
    dvars = pe.Node(nac.ComputeDVARS(save_nstd=True, save_std=True, remove_zerovariance=True),
                    name="dvars", mem_gb=mem_gb)

    # Frame displacement
    fdisp = pe.Node(nac.FramewiseDisplacement(parameter_source="SPM"),
                    name="fdisp", mem_gb=mem_gb)

    # a/t-CompCor
    tcompcor = pe.Node(
        TCompCor(components_file='tcompcor.tsv', header_prefix='t_comp_cor_', pre_filter='cosine',
                 save_pre_filter=True, percentile_threshold=.05),
        name="tcompcor", mem_gb=mem_gb)

    acompcor = pe.Node(
        ACompCor(components_file='acompcor.tsv', header_prefix='a_comp_cor_', pre_filter='cosine',
                 save_pre_filter=True),
        name="acompcor", mem_gb=mem_gb)

    # Set TR if present
    if 'RepetitionTime' in metadata:
        tcompcor.inputs.repetition_time = metadata['RepetitionTime']
        acompcor.inputs.repetition_time = metadata['RepetitionTime']

    # Global and segment regressors
    mrg_lbl = pe.Node(niu.Merge(3), name='merge_rois', run_without_submitting=True)
    signals = pe.Node(SignalExtraction(class_labels=["csf", "white_matter", "global_signal"]),
                      name="signals", mem_gb=mem_gb)

    # Arrange confounds
    add_dvars_header = pe.Node(
        AddTSVHeader(columns=["dvars"]),
        name="add_dvars_header", mem_gb=0.01, run_without_submitting=True)
    add_std_dvars_header = pe.Node(
        AddTSVHeader(columns=["std_dvars"]),
        name="add_std_dvars_header", mem_gb=0.01, run_without_submitting=True)
    add_motion_headers = pe.Node(
        AddTSVHeader(columns=["trans_x", "trans_y", "trans_z", "rot_x", "rot_y", "rot_z"]),
        name="add_motion_headers", mem_gb=0.01, run_without_submitting=True)
    concat = pe.Node(GatherConfounds(), name="concat", mem_gb=0.01, run_without_submitting=True)

    # Generate reportlet
    mrg_compcor = pe.Node(niu.Merge(2), name='merge_compcor', run_without_submitting=True)
    rois_plot = pe.Node(ROIsPlot(colors=['b', 'magenta'], generate_report=True),
                        name='rois_plot', mem_gb=mem_gb)

    ds_report_bold_rois = pe.Node(
        DerivativesDataSink(suffix='rois'),
        name='ds_report_bold_rois', run_without_submitting=True,
        mem_gb=DEFAULT_MEMORY_MIN_GB)

    def _pick_csf(files):
        return files[0]

    def _pick_wm(files):
        return files[-1]

    workflow.connect([
        # Massage ROIs (in T1w space)
        (inputnode, acc_tpm, [('t1_tpms', 'in_files')]),
        (inputnode, csf_roi, [(('t1_tpms', _pick_csf), 'in_tpm'),
                              ('t1_mask', 'in_mask')]),
        (inputnode, wm_roi, [(('t1_tpms', _pick_wm), 'in_tpm'),
                             ('t1_mask', 'in_mask')]),
        (inputnode, acc_roi, [('t1_mask', 'in_mask')]),
        (acc_tpm, acc_roi, [('out_file', 'in_tpm')]),
        # Map ROIs to BOLD
        (inputnode, csf_tfm, [('bold_mask', 'reference_image'),
                              ('t1_bold_xform', 'transforms')]),
        (csf_roi, csf_tfm, [('roi_file', 'input_image')]),
        (inputnode, wm_tfm, [('bold_mask', 'reference_image'),
                             ('t1_bold_xform', 'transforms')]),
        (wm_roi, wm_tfm, [('roi_file', 'input_image')]),
        (inputnode, acc_tfm, [('bold_mask', 'reference_image'),
                              ('t1_bold_xform', 'transforms')]),
        (acc_roi, acc_tfm, [('roi_file', 'input_image')]),
        (inputnode, tcc_tfm, [('bold_mask', 'reference_image'),
                              ('t1_bold_xform', 'transforms')]),
        (csf_roi, tcc_tfm, [('eroded_mask', 'input_image')]),
        # Mask ROIs with bold_mask
        (inputnode, csf_msk, [('bold_mask', 'in_mask')]),
        (inputnode, wm_msk, [('bold_mask', 'in_mask')]),
        (inputnode, acc_msk, [('bold_mask', 'in_mask')]),
        (inputnode, tcc_msk, [('bold_mask', 'in_mask')]),
        # connect inputnode to each non-anatomical confound node
        (inputnode, dvars, [('bold', 'in_file'),
                            ('bold_mask', 'in_mask')]),
        (inputnode, fdisp, [('movpar_file', 'in_file')]),

        # tCompCor
        (inputnode, tcompcor, [('bold', 'realigned_file')]),
        (inputnode, tcompcor, [('skip_vols', 'ignore_initial_volumes')]),
        (tcc_tfm, tcc_msk, [('output_image', 'roi_file')]),
        (tcc_msk, tcompcor, [('out', 'mask_files')]),

        # aCompCor
        (inputnode, acompcor, [('bold', 'realigned_file')]),
        (inputnode, acompcor, [('skip_vols', 'ignore_initial_volumes')]),
        (acc_tfm, acc_msk, [('output_image', 'roi_file')]),
        (acc_msk, acompcor, [('out', 'mask_files')]),

        # Global signals extraction (constrained by anatomy)
        (inputnode, signals, [('bold', 'in_file')]),
        (csf_tfm, csf_msk, [('output_image', 'roi_file')]),
        (csf_msk, mrg_lbl, [('out', 'in1')]),
        (wm_tfm, wm_msk, [('output_image', 'roi_file')]),
        (wm_msk, mrg_lbl, [('out', 'in2')]),
        (inputnode, mrg_lbl, [('bold_mask', 'in3')]),
        (mrg_lbl, signals, [('out', 'label_files')]),

        # Collate computed confounds together
        (inputnode, add_motion_headers, [('movpar_file', 'in_file')]),
        (dvars, add_dvars_header, [('out_nstd', 'in_file')]),
        (dvars, add_std_dvars_header, [('out_std', 'in_file')]),
        (signals, concat, [('out_file', 'signals')]),
        (fdisp, concat, [('out_file', 'fd')]),
        (tcompcor, concat, [('components_file', 'tcompcor'),
                            ('pre_filter_file', 'cos_basis')]),
        (acompcor, concat, [('components_file', 'acompcor')]),
        (add_motion_headers, concat, [('out_file', 'motion')]),
        (add_dvars_header, concat, [('out_file', 'dvars')]),
        (add_std_dvars_header, concat, [('out_file', 'std_dvars')]),

        # Set outputs
        (concat, outputnode, [('confounds_file', 'confounds_file')]),
        (inputnode, rois_plot, [('bold', 'in_file'),
                                ('bold_mask', 'in_mask')]),
        (tcompcor, mrg_compcor, [('high_variance_masks', 'in1')]),
        (acc_msk, mrg_compcor, [('out', 'in2')]),
        (mrg_compcor, rois_plot, [('out', 'in_rois')]),
        (rois_plot, ds_report_bold_rois, [('out_report', 'in_file')]),
    ])

    return workflow
示例#16
0
def init_topup_wf(
    grid_reference=0,
    omp_nthreads=1,
    sloppy=False,
    debug=False,
    name="pepolar_estimate_wf",
):
    """
    Create the PEPOLAR field estimation workflow based on FSL's ``topup``.

    Workflow Graph
        .. workflow ::
            :graph2use: orig
            :simple_form: yes

            from sdcflows.workflows.fit.pepolar import init_topup_wf
            wf = init_topup_wf()

    Parameters
    ----------
    grid_reference : :obj:`int`
        Index of the volume (after flattening) that will be taken for gridding reference.
    sloppy : :obj:`bool`
        Whether a fast configuration of topup (less accurate) should be applied.
    debug : :obj:`bool`
        Run in debug mode
    name : :obj:`str`
        Name for this workflow
    omp_nthreads : :obj:`int`
        Parallelize internal tasks across the number of CPUs given by this option.

    Inputs
    ------
    in_data : :obj:`list` of :obj:`str`
        A list of EPI files that will be fed into TOPUP.
    metadata : :obj:`list` of :obj:`dict`
        A list of dictionaries containing the metadata corresponding to each file
        in ``in_data``.

    Outputs
    -------
    fmap : :obj:`str`
        The path of the estimated fieldmap.
    fmap_ref : :obj:`str`
        The path of an unwarped conversion of files in ``in_data``.
    fmap_mask : :obj:`str`
        The path of mask corresponding to the ``fmap_ref`` output.
    fmap_coeff : :obj:`str` or :obj:`list` of :obj:`str`
        The path(s) of the B-Spline coefficients supporting the fieldmap.
    method: :obj:`str`
        Short description of the estimation method that was run.

    """
    from nipype.interfaces.fsl.epi import TOPUP
    from niworkflows.interfaces.nibabel import MergeSeries
    from niworkflows.interfaces.images import RobustAverage

    from ...utils.misc import front as _front
    from ...interfaces.epi import GetReadoutTime
    from ...interfaces.utils import Flatten, UniformGrid, PadSlices
    from ...interfaces.bspline import TOPUPCoeffReorient
    from ..ancillary import init_brainextraction_wf

    workflow = Workflow(name=name)
    workflow.__desc__ = f"""\
{_PEPOLAR_DESC} with `topup` (@topup; FSL {TOPUP().version}).
"""

    inputnode = pe.Node(niu.IdentityInterface(fields=INPUT_FIELDS),
                        name="inputnode")
    outputnode = pe.Node(
        niu.IdentityInterface(fields=[
            "fmap",
            "fmap_ref",
            "fmap_coeff",
            "fmap_mask",
            "jacobians",
            "xfms",
            "out_warps",
            "method",
        ]),
        name="outputnode",
    )
    outputnode.inputs.method = "PEB/PEPOLAR (phase-encoding based / PE-POLARity)"

    flatten = pe.Node(Flatten(), name="flatten")
    regrid = pe.Node(UniformGrid(reference=grid_reference), name="regrid")
    concat_blips = pe.Node(MergeSeries(), name="concat_blips")
    readout_time = pe.MapNode(
        GetReadoutTime(),
        name="readout_time",
        iterfield=["metadata", "in_file"],
        run_without_submitting=True,
    )
    pad_blip_slices = pe.Node(PadSlices(), name="pad_blip_slices")
    pad_ref_slices = pe.Node(PadSlices(), name="pad_ref_slices")

    topup = pe.Node(
        TOPUP(config=_pkg_fname(
            "sdcflows", f"data/flirtsch/b02b0{'_quick' * sloppy}.cnf")),
        name="topup",
    )
    ref_average = pe.Node(RobustAverage(), name="ref_average")

    fix_coeff = pe.Node(TOPUPCoeffReorient(),
                        name="fix_coeff",
                        run_without_submitting=True)

    brainextraction_wf = init_brainextraction_wf()

    # fmt: off
    workflow.connect([
        (inputnode, flatten, [("in_data", "in_data"),
                              ("metadata", "in_meta")]),
        (flatten, readout_time, [("out_data", "in_file"),
                                 ("out_meta", "metadata")]),
        (flatten, regrid, [("out_data", "in_data")]),
        (regrid, concat_blips, [("out_data", "in_files")]),
        (readout_time, topup, [("readout_time", "readout_times"),
                               ("pe_dir_fsl", "encoding_direction")]),
        (regrid, pad_ref_slices, [("reference", "in_file")]),
        (pad_ref_slices, fix_coeff, [("out_file", "fmap_ref")]),
        (readout_time, fix_coeff, [(("pe_direction", _front), "pe_dir")]),
        (topup, fix_coeff, [("out_fieldcoef", "in_coeff")]),
        (topup, outputnode, [("out_jacs", "jacobians"), ("out_mats", "xfms")]),
        (ref_average, brainextraction_wf, [("out_file", "inputnode.in_file")]),
        (brainextraction_wf, outputnode, [("outputnode.out_file", "fmap_ref"),
                                          ("outputnode.out_mask", "fmap_mask")
                                          ]),
        (fix_coeff, outputnode, [("out_coeff", "fmap_coeff")]),
    ])
    # fmt: on

    if not debug:
        # fmt: off
        workflow.connect([
            (concat_blips, pad_blip_slices, [("out_file", "in_file")]),
            (pad_blip_slices, topup, [("out_file", "in_file")]),
            (topup, ref_average, [("out_corrected", "in_file")]),
            (topup, outputnode, [("out_field", "fmap"),
                                 ("out_warps", "out_warps")]),
        ])
        # fmt: on
        return workflow

    from nipype.interfaces.afni.preprocess import Volreg
    from niworkflows.interfaces.nibabel import SplitSeries
    from ...interfaces.bspline import ApplyCoeffsField

    realign = pe.Node(
        Volreg(args=f"-base {grid_reference}", outputtype="NIFTI_GZ"),
        name="realign_blips",
    )
    split_blips = pe.Node(SplitSeries(), name="split_blips")
    unwarp = pe.Node(ApplyCoeffsField(), name="unwarp")
    unwarp.interface._always_run = True
    concat_corrected = pe.Node(MergeSeries(), name="concat_corrected")

    # fmt:off
    workflow.connect([
        (concat_blips, realign, [("out_file", "in_file")]),
        (realign, pad_blip_slices, [("out_file", "in_file")]),
        (pad_blip_slices, topup, [("out_file", "in_file")]),
        (fix_coeff, unwarp, [("out_coeff", "in_coeff")]),
        (realign, split_blips, [("out_file", "in_file")]),
        (split_blips, unwarp, [("out_files", "in_data")]),
        (readout_time, unwarp, [("readout_time", "ro_time"),
                                ("pe_direction", "pe_dir")]),
        (unwarp, outputnode, [("out_warp", "out_warps"),
                              ("out_field", "fmap")]),
        (unwarp, concat_corrected, [("out_corrected", "in_files")]),
        (concat_corrected, ref_average, [("out_file", "in_file")]),
    ])
    # fmt:on

    return workflow
示例#17
0
def init_syn_sdc_wf(omp_nthreads, bold_pe=None,
                    atlas_threshold=3, name='syn_sdc_wf'):
    """
    This workflow takes a skull-stripped T1w image and reference BOLD image and
    estimates a susceptibility distortion correction warp, using ANTs symmetric
    normalization (SyN) and the average fieldmap atlas described in
    [Treiber2016]_.

    SyN deformation is restricted to the phase-encoding (PE) direction.
    If no PE direction is specified, anterior-posterior PE is assumed.

    SyN deformation is also restricted to regions that are expected to have a
    >3mm (approximately 1 voxel) warp, based on the fieldmap atlas.

    This technique is a variation on those developed in [Huntenburg2014]_ and
    [Wang2017]_.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.fieldmap.syn import init_syn_sdc_wf
        wf = init_syn_sdc_wf(
            bold_pe='j',
            omp_nthreads=8)

    **Inputs**

        bold_ref
            reference image
        bold_ref_brain
            skull-stripped reference image
        template : str
            Name of template targeted by ``template`` output space
        t1_brain
            skull-stripped, bias-corrected structural image
        t1_2_mni_reverse_transform
            inverse registration transform of T1w image to MNI template

    **Outputs**

        out_reference
            the ``bold_ref`` image after unwarping
        out_reference_brain
            the ``bold_ref_brain`` image after unwarping
        out_warp
            the corresponding :abbr:`DFM (displacements field map)` compatible with
            ANTs
        out_mask
            mask of the unwarped input file

    """

    if bold_pe is None or bold_pe[0] not in ['i', 'j']:
        LOGGER.warning('Incorrect phase-encoding direction, assuming PA (posterior-to-anterior).')
        bold_pe = 'j'

    workflow = Workflow(name=name)
    workflow.__desc__ = """\
A deformation field to correct for susceptibility distortions was estimated
based on *fMRIPrep*'s *fieldmap-less* approach.
The deformation field is that resulting from co-registering the BOLD reference
to the same-subject T1w-reference with its intensity inverted [@fieldmapless1;
@fieldmapless2].
Registration is performed with `antsRegistration` (ANTs {ants_ver}), and
the process regularized by constraining deformation to be nonzero only
along the phase-encoding direction, and modulated with an average fieldmap
template [@fieldmapless3].
""".format(ants_ver=Registration().version or '<ver>')
    inputnode = pe.Node(
        niu.IdentityInterface(['bold_ref', 'bold_ref_brain', 'template',
                               't1_brain', 't1_2_mni_reverse_transform']),
        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(['out_reference', 'out_reference_brain',
                               'out_mask', 'out_warp']),
        name='outputnode')

    # Collect predefined data
    # Atlas image and registration affine
    atlas_img = pkgr.resource_filename('fmriprep', 'data/fmap_atlas.nii.gz')
    # Registration specifications
    affine_transform = pkgr.resource_filename('fmriprep', 'data/affine.json')
    syn_transform = pkgr.resource_filename('fmriprep', 'data/susceptibility_syn.json')

    invert_t1w = pe.Node(Rescale(invert=True), name='invert_t1w',
                         mem_gb=0.3)

    ref_2_t1 = pe.Node(Registration(from_file=affine_transform),
                       name='ref_2_t1', n_procs=omp_nthreads)
    t1_2_ref = pe.Node(ApplyTransforms(invert_transform_flags=[True]),
                       name='t1_2_ref', n_procs=omp_nthreads)

    # 1) BOLD -> T1; 2) MNI -> T1; 3) ATLAS -> MNI
    transform_list = pe.Node(niu.Merge(3), name='transform_list',
                             mem_gb=DEFAULT_MEMORY_MIN_GB)

    # Inverting (1), then applying in reverse order:
    #
    # ATLAS -> MNI -> T1 -> BOLD
    atlas_2_ref = pe.Node(
        ApplyTransforms(invert_transform_flags=[True, False, False]),
        name='atlas_2_ref', n_procs=omp_nthreads,
        mem_gb=0.3)
    atlas_2_ref.inputs.input_image = atlas_img

    threshold_atlas = pe.Node(
        fsl.maths.MathsCommand(args='-thr {:.8g} -bin'.format(atlas_threshold),
                               output_datatype='char'),
        name='threshold_atlas', mem_gb=0.3)

    fixed_image_masks = pe.Node(niu.Merge(2), name='fixed_image_masks',
                                mem_gb=DEFAULT_MEMORY_MIN_GB)
    fixed_image_masks.inputs.in1 = 'NULL'

    restrict = [[int(bold_pe[0] == 'i'), int(bold_pe[0] == 'j'), 0]] * 2
    syn = pe.Node(
        Registration(from_file=syn_transform, restrict_deformation=restrict),
        name='syn', n_procs=omp_nthreads)

    unwarp_ref = pe.Node(ApplyTransforms(
        dimension=3, float=True, interpolation='LanczosWindowedSinc'),
        name='unwarp_ref')

    skullstrip_bold_wf = init_skullstrip_bold_wf()

    workflow.connect([
        (inputnode, invert_t1w, [('t1_brain', 'in_file'),
                                 ('bold_ref', 'ref_file')]),
        (inputnode, ref_2_t1, [('bold_ref_brain', 'moving_image')]),
        (invert_t1w, ref_2_t1, [('out_file', 'fixed_image')]),
        (inputnode, t1_2_ref, [('bold_ref', 'reference_image')]),
        (invert_t1w, t1_2_ref, [('out_file', 'input_image')]),
        (ref_2_t1, t1_2_ref, [('forward_transforms', 'transforms')]),
        (ref_2_t1, transform_list, [('forward_transforms', 'in1')]),
        (inputnode, transform_list, [
            ('t1_2_mni_reverse_transform', 'in2'),
            (('template', _prior_path), 'in3')]),
        (inputnode, atlas_2_ref, [('bold_ref', 'reference_image')]),
        (transform_list, atlas_2_ref, [('out', 'transforms')]),
        (atlas_2_ref, threshold_atlas, [('output_image', 'in_file')]),
        (threshold_atlas, fixed_image_masks, [('out_file', 'in2')]),
        (inputnode, syn, [('bold_ref_brain', 'moving_image')]),
        (t1_2_ref, syn, [('output_image', 'fixed_image')]),
        (fixed_image_masks, syn, [('out', 'fixed_image_masks')]),
        (syn, outputnode, [('forward_transforms', 'out_warp')]),
        (syn, unwarp_ref, [('forward_transforms', 'transforms')]),
        (inputnode, unwarp_ref, [('bold_ref', 'reference_image'),
                                 ('bold_ref', 'input_image')]),
        (unwarp_ref, skullstrip_bold_wf, [
            ('output_image', 'inputnode.in_file')]),
        (unwarp_ref, outputnode, [('output_image', 'out_reference')]),
        (skullstrip_bold_wf, outputnode, [
            ('outputnode.skull_stripped_file', 'out_reference_brain'),
            ('outputnode.mask_file', 'out_mask')]),
    ])

    return workflow
示例#18
0
def init_bold_std_trans_wf(freesurfer,
                           mem_gb,
                           omp_nthreads,
                           standard_spaces,
                           name='bold_std_trans_wf',
                           use_compression=True,
                           use_fieldwarp=False):
    """
    This workflow samples functional images into standard space with a single
    resampling of the original BOLD series.

    .. workflow::
        :graph2use: colored
        :simple_form: yes

        from collections import OrderedDict
        from fmriprep.workflows.bold import init_bold_std_trans_wf
        wf = init_bold_std_trans_wf(
            freesurfer=True,
            mem_gb=3,
            omp_nthreads=1,
            standard_spaces=OrderedDict([('MNI152Lin', {}),
                                         ('fsaverage', {'density': '10k'})]),
        )

    **Parameters**

        freesurfer : bool
            Whether to generate FreeSurfer's aseg/aparc segmentations on BOLD space.
        mem_gb : float
            Size of BOLD file in GB
        omp_nthreads : int
            Maximum number of threads an individual process may use
        standard_spaces : OrderedDict
            Ordered dictionary where keys are TemplateFlow ID strings (e.g.,
            ``MNI152Lin``, ``MNI152NLin6Asym``, ``MNI152NLin2009cAsym``, or ``fsLR``),
            or paths pointing to custom templates organized in a TemplateFlow-like structure.
            Values of the dictionary aggregate modifiers (e.g., the value for the key ``MNI152Lin``
            could be ``{'resolution': 2}`` if one wants the resampling to be done on the 2mm
            resolution version of the selected template).
        name : str
            Name of workflow (default: ``bold_std_trans_wf``)
        use_compression : bool
            Save registered BOLD series as ``.nii.gz``
        use_fieldwarp : bool
            Include SDC warp in single-shot transform from BOLD to MNI

    **Inputs**

        anat2std_xfm
            List of anatomical-to-standard space transforms generated during
            spatial normalization.
        bold_aparc
            FreeSurfer's ``aparc+aseg.mgz`` atlas projected into the T1w reference
            (only if ``recon-all`` was run).
        bold_aseg
            FreeSurfer's ``aseg.mgz`` atlas projected into the T1w reference
            (only if ``recon-all`` was run).
        bold_mask
            Skull-stripping mask of reference image
        bold_split
            Individual 3D volumes, not motion corrected
        fieldwarp
            a :abbr:`DFM (displacements field map)` in ITK format
        hmc_xforms
            List of affine transforms aligning each volume to ``ref_image`` in ITK format
        itk_bold_to_t1
            Affine transform from ``ref_bold_brain`` to T1 space (ITK format)
        name_source
            BOLD series NIfTI file
            Used to recover original information lost during processing
        templates
            List of templates that were applied as targets during
            spatial normalization.

    **Outputs** - Two outputnodes are available. One output node (with name ``poutputnode``)
    will be parameterized in a Nipype sense (see `Nipype iterables
    <https://miykael.github.io/nipype_tutorial/notebooks/basic_iteration.html>`__), and a
    second node (``outputnode``) will collapse the parameterized outputs into synchronous
    lists of the following fields:

        bold_std
            BOLD series, resampled to template space
        bold_std_ref
            Reference, contrast-enhanced summary of the BOLD series, resampled to template space
        bold_mask_std
            BOLD series mask in template space
        bold_aseg_std
            FreeSurfer's ``aseg.mgz`` atlas, in template space at the BOLD resolution
            (only if ``recon-all`` was run)
        bold_aparc_std
            FreeSurfer's ``aparc+aseg.mgz`` atlas, in template space at the BOLD resolution
            (only if ``recon-all`` was run)
        templates
            Template identifiers synchronized correspondingly to previously
            described outputs.

    """

    # Filter ``standard_spaces``
    vol_std_spaces = [
        k for k in standard_spaces.keys() if not k.startswith('fs')
    ]

    workflow = Workflow(name=name)

    if len(vol_std_spaces) == 1:
        workflow.__desc__ = """\
The BOLD time-series were resampled into standard space,
generating a *preprocessed BOLD run in {tpl} space*.
""".format(tpl=vol_std_spaces)
    else:
        workflow.__desc__ = """\
The BOLD time-series were resampled into several standard spaces,
correspondingly generating the following *spatially-normalized,
preprocessed BOLD runs*: {tpl}.
""".format(tpl=', '.join(vol_std_spaces))

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'anat2std_xfm',
        'bold_aparc',
        'bold_aseg',
        'bold_mask',
        'bold_split',
        'fieldwarp',
        'hmc_xforms',
        'itk_bold_to_t1',
        'name_source',
        'templates',
    ]),
                        name='inputnode')

    select_std = pe.Node(KeySelect(fields=['resolution', 'anat2std_xfm']),
                         name='select_std',
                         run_without_submitting=True)

    select_std.inputs.resolution = [
        v.get('resolution') or v.get('res') or 'native'
        for k, v in list(standard_spaces.items()) if k in vol_std_spaces
    ]
    select_std.iterables = ('key', vol_std_spaces)

    select_tpl = pe.Node(niu.Function(function=_select_template),
                         name='select_tpl',
                         run_without_submitting=True)
    select_tpl.inputs.template_specs = standard_spaces

    gen_ref = pe.Node(GenerateSamplingReference(), name='gen_ref',
                      mem_gb=0.3)  # 256x256x256 * 64 / 8 ~ 150MB)

    mask_std_tfm = pe.Node(ApplyTransforms(interpolation='MultiLabel',
                                           float=True),
                           name='mask_std_tfm',
                           mem_gb=1)

    # Write corrected file in the designated output dir
    mask_merge_tfms = pe.Node(niu.Merge(2),
                              name='mask_merge_tfms',
                              run_without_submitting=True,
                              mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, select_std, [('templates', 'keys'),
                                 ('anat2std_xfm', 'anat2std_xfm')]),
        (inputnode, mask_std_tfm, [('bold_mask', 'input_image')]),
        (inputnode, gen_ref, [(('bold_split', _first), 'moving_image')]),
        (inputnode, mask_merge_tfms, [(('itk_bold_to_t1', _aslist), 'in2')]),
        (select_std, select_tpl, [('key', 'template')]),
        (select_std, mask_merge_tfms, [('anat2std_xfm', 'in1')]),
        (select_std, gen_ref, [(('resolution', _is_native), 'keep_native')]),
        (select_tpl, gen_ref, [('out', 'fixed_image')]),
        (mask_merge_tfms, mask_std_tfm, [('out', 'transforms')]),
        (gen_ref, mask_std_tfm, [('out_file', 'reference_image')]),
    ])

    nxforms = 4 if use_fieldwarp else 3
    merge_xforms = pe.Node(niu.Merge(nxforms),
                           name='merge_xforms',
                           run_without_submitting=True,
                           mem_gb=DEFAULT_MEMORY_MIN_GB)
    workflow.connect([(inputnode, merge_xforms, [('hmc_xforms',
                                                  'in%d' % nxforms)])])

    if use_fieldwarp:
        workflow.connect([(inputnode, merge_xforms, [('fieldwarp', 'in3')])])

    bold_to_std_transform = pe.Node(MultiApplyTransforms(
        interpolation="LanczosWindowedSinc", float=True, copy_dtype=True),
                                    name='bold_to_std_transform',
                                    mem_gb=mem_gb * 3 * omp_nthreads,
                                    n_procs=omp_nthreads)

    merge = pe.Node(Merge(compress=use_compression),
                    name='merge',
                    mem_gb=mem_gb * 3)

    # Generate a reference on the target T1w space
    gen_final_ref = init_bold_reference_wf(omp_nthreads=omp_nthreads,
                                           pre_mask=True)

    workflow.connect([
        (inputnode, merge_xforms, [(('itk_bold_to_t1', _aslist), 'in2')]),
        (inputnode, merge, [('name_source', 'header_source')]),
        (inputnode, bold_to_std_transform, [('bold_split', 'input_image')]),
        (select_std, merge_xforms, [('anat2std_xfm', 'in1')]),
        (merge_xforms, bold_to_std_transform, [('out', 'transforms')]),
        (gen_ref, bold_to_std_transform, [('out_file', 'reference_image')]),
        (bold_to_std_transform, merge, [('out_files', 'in_files')]),
        (merge, gen_final_ref, [('out_file', 'inputnode.bold_file')]),
        (mask_std_tfm, gen_final_ref, [('output_image', 'inputnode.bold_mask')
                                       ]),
    ])

    # Connect output nodes
    output_names = ['bold_std', 'bold_std_ref', 'bold_mask_std', 'templates']
    if freesurfer:
        output_names += ['bold_aseg_std', 'bold_aparc_std']

    # poutputnode - parametric output node
    poutputnode = pe.Node(niu.IdentityInterface(fields=output_names),
                          name='poutputnode')

    workflow.connect([
        (gen_final_ref, poutputnode, [('outputnode.ref_image', 'bold_std_ref')
                                      ]),
        (merge, poutputnode, [('out_file', 'bold_std')]),
        (mask_std_tfm, poutputnode, [('output_image', 'bold_mask_std')]),
        (select_std, poutputnode, [('key', 'templates')]),
    ])

    if freesurfer:
        # Sample the parcellation files to functional space
        aseg_std_tfm = pe.Node(ApplyTransforms(interpolation='MultiLabel',
                                               float=True),
                               name='aseg_std_tfm',
                               mem_gb=1)
        aparc_std_tfm = pe.Node(ApplyTransforms(interpolation='MultiLabel',
                                                float=True),
                                name='aparc_std_tfm',
                                mem_gb=1)

        workflow.connect([
            (inputnode, aseg_std_tfm, [('bold_aseg', 'input_image')]),
            (inputnode, aparc_std_tfm, [('bold_aparc', 'input_image')]),
            (select_std, aseg_std_tfm, [('anat2std_xfm', 'transforms')]),
            (select_std, aparc_std_tfm, [('anat2std_xfm', 'transforms')]),
            (gen_ref, aseg_std_tfm, [('out_file', 'reference_image')]),
            (gen_ref, aparc_std_tfm, [('out_file', 'reference_image')]),
            (aseg_std_tfm, poutputnode, [('output_image', 'bold_aseg_std')]),
            (aparc_std_tfm, poutputnode, [('output_image', 'bold_aparc_std')]),
        ])

    # Connect outputnode to the parameterized outputnode
    outputnode = pe.JoinNode(niu.IdentityInterface(fields=output_names),
                             name='outputnode',
                             joinsource='select_std')
    workflow.connect([(poutputnode, outputnode, [(f, f)
                                                 for f in output_names])])

    return workflow
示例#19
0
def init_bold_std_trans_wf(
    freesurfer,
    mem_gb,
    omp_nthreads,
    spaces,
    name='bold_std_trans_wf',
    use_compression=True,
    use_fieldwarp=False,
):
    """
    Sample fMRI into standard space with a single-step resampling of the original BOLD series.

    .. important::
        This workflow provides two outputnodes.
        One output node (with name ``poutputnode``) will be parameterized in a Nipype sense
        (see `Nipype iterables
        <https://miykael.github.io/nipype_tutorial/notebooks/basic_iteration.html>`__), and a
        second node (``outputnode``) will collapse the parameterized outputs into synchronous
        lists of the output fields listed below.

    Workflow Graph
        .. workflow::
            :graph2use: colored
            :simple_form: yes

            from niworkflows.utils.spaces import SpatialReferences
            from fmriprep_rodents.workflows.bold import init_bold_std_trans_wf
            wf = init_bold_std_trans_wf(
                freesurfer=True,
                mem_gb=3,
                omp_nthreads=1,
                spaces=SpatialReferences(
                    spaces=['MNI152Lin',
                            ('MNIPediatricAsym', {'cohort': '6'})],
                    checkpoint=True),
            )

    Parameters
    ----------
    freesurfer : :obj:`bool`
        Whether to generate FreeSurfer's aseg/aparc segmentations on BOLD space.
    mem_gb : :obj:`float`
        Size of BOLD file in GB
    omp_nthreads : :obj:`int`
        Maximum number of threads an individual process may use
    spaces : :py:class:`~niworkflows.utils.spaces.SpatialReferences`
        A container for storing, organizing, and parsing spatial normalizations. Composed of
        :py:class:`~niworkflows.utils.spaces.Reference` objects representing spatial references.
        Each ``Reference`` contains a space, which is a string of either TemplateFlow template IDs
        (e.g., ``MNI152Lin``, ``MNI152NLin6Asym``, ``MNIPediatricAsym``), nonstandard references
        (e.g., ``T1w`` or ``anat``, ``sbref``, ``run``, etc.), or a custom template located in
        the TemplateFlow root directory. Each ``Reference`` may also contain a spec, which is a
        dictionary with template specifications (e.g., a specification of ``{'resolution': 2}``
        would lead to resampling on a 2mm resolution of the space).
    name : :obj:`str`
        Name of workflow (default: ``bold_std_trans_wf``)
    use_compression : :obj:`bool`
        Save registered BOLD series as ``.nii.gz``
    use_fieldwarp : :obj:`bool`
        Include SDC warp in single-shot transform from BOLD to MNI

    Inputs
    ------
    anat2std_xfm
        List of anatomical-to-standard space transforms generated during
        spatial normalization.
    bold_aparc
        FreeSurfer's ``aparc+aseg.mgz`` atlas projected into the T1w reference
        (only if ``recon-all`` was run).
    bold_aseg
        FreeSurfer's ``aseg.mgz`` atlas projected into the T1w reference
        (only if ``recon-all`` was run).
    bold_mask
        Skull-stripping mask of reference image
    bold_split
        Individual 3D volumes, not motion corrected
    fieldwarp
        a :abbr:`DFM (displacements field map)` in ITK format
    hmc_xforms
        List of affine transforms aligning each volume to ``ref_image`` in ITK format
    itk_bold_to_t1
        Affine transform from ``ref_bold_brain`` to T1 space (ITK format)
    name_source
        BOLD series NIfTI file
        Used to recover original information lost during processing
    templates
        List of templates that were applied as targets during
        spatial normalization.

    Outputs
    -------
    bold_std
        BOLD series, resampled to template space
    bold_std_ref
        Reference, contrast-enhanced summary of the BOLD series, resampled to template space
    bold_mask_std
        BOLD series mask in template space
    bold_aseg_std
        FreeSurfer's ``aseg.mgz`` atlas, in template space at the BOLD resolution
        (only if ``recon-all`` was run)
    bold_aparc_std
        FreeSurfer's ``aparc+aseg.mgz`` atlas, in template space at the BOLD resolution
        (only if ``recon-all`` was run)
    template
        Template identifiers synchronized correspondingly to previously
        described outputs.

    """
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.func.util import init_bold_reference_wf
    from niworkflows.interfaces.fixes import FixHeaderApplyTransforms as ApplyTransforms
    from niworkflows.interfaces.itk import MultiApplyTransforms
    from niworkflows.interfaces.utility import KeySelect
    from niworkflows.interfaces.utils import GenerateSamplingReference
    from niworkflows.interfaces.nilearn import Merge
    from niworkflows.utils.spaces import format_reference

    workflow = Workflow(name=name)
    output_references = spaces.cached.get_spaces(nonstandard=False, dim=(3, ))
    std_vol_references = [(s.fullname, s.spec) for s in spaces.references
                          if s.standard and s.dim == 3]

    if len(output_references) == 1:
        workflow.__desc__ = """\
The BOLD time-series were resampled into standard space,
generating a *preprocessed BOLD run in {tpl} space*.
""".format(tpl=output_references[0])
    elif len(output_references) > 1:
        workflow.__desc__ = """\
The BOLD time-series were resampled into several standard spaces,
correspondingly generating the following *spatially-normalized,
preprocessed BOLD runs*: {tpl}.
""".format(tpl=', '.join(output_references))

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'anat2std_xfm',
        'bold_aparc',
        'bold_aseg',
        'bold_mask',
        'bold_split',
        'fieldwarp',
        'hmc_xforms',
        'itk_bold_to_t1',
        'name_source',
        'templates',
    ]),
                        name='inputnode')

    iterablesource = pe.Node(niu.IdentityInterface(fields=['std_target']),
                             name='iterablesource')
    # Generate conversions for every template+spec at the input
    iterablesource.iterables = [('std_target', std_vol_references)]

    split_target = pe.Node(niu.Function(
        function=_split_spec,
        input_names=['in_target'],
        output_names=['space', 'template', 'spec']),
                           run_without_submitting=True,
                           name='split_target')

    select_std = pe.Node(KeySelect(fields=['anat2std_xfm']),
                         name='select_std',
                         run_without_submitting=True)

    select_tpl = pe.Node(niu.Function(function=_select_template),
                         name='select_tpl',
                         run_without_submitting=True)

    gen_ref = pe.Node(GenerateSamplingReference(), name='gen_ref',
                      mem_gb=0.3)  # 256x256x256 * 64 / 8 ~ 150MB)

    mask_std_tfm = pe.Node(ApplyTransforms(interpolation='MultiLabel'),
                           name='mask_std_tfm',
                           mem_gb=1)

    # Write corrected file in the designated output dir
    mask_merge_tfms = pe.Node(niu.Merge(2),
                              name='mask_merge_tfms',
                              run_without_submitting=True,
                              mem_gb=DEFAULT_MEMORY_MIN_GB)

    nxforms = 3 + use_fieldwarp
    merge_xforms = pe.Node(niu.Merge(nxforms),
                           name='merge_xforms',
                           run_without_submitting=True,
                           mem_gb=DEFAULT_MEMORY_MIN_GB)
    workflow.connect([(inputnode, merge_xforms, [('hmc_xforms',
                                                  'in%d' % nxforms)])])

    if use_fieldwarp:
        workflow.connect([(inputnode, merge_xforms, [('fieldwarp', 'in3')])])

    bold_to_std_transform = pe.Node(MultiApplyTransforms(
        interpolation="LanczosWindowedSinc", float=True, copy_dtype=True),
                                    name='bold_to_std_transform',
                                    mem_gb=mem_gb * 3 * omp_nthreads,
                                    n_procs=omp_nthreads)

    merge = pe.Node(Merge(compress=use_compression),
                    name='merge',
                    mem_gb=mem_gb * 3)

    # Generate a reference on the target standard space
    gen_final_ref = init_bold_reference_wf(omp_nthreads=omp_nthreads,
                                           pre_mask=True)

    workflow.connect([
        (iterablesource, split_target, [('std_target', 'in_target')]),
        (iterablesource, select_tpl, [('std_target', 'template')]),
        (inputnode, select_std, [('anat2std_xfm', 'anat2std_xfm'),
                                 ('templates', 'keys')]),
        (inputnode, mask_std_tfm, [('bold_mask', 'input_image')]),
        (inputnode, gen_ref, [(('bold_split', _first), 'moving_image')]),
        (inputnode, merge_xforms, [(('itk_bold_to_t1', _aslist), 'in2')]),
        (inputnode, merge, [('name_source', 'header_source')]),
        (inputnode, mask_merge_tfms, [(('itk_bold_to_t1', _aslist), 'in2')]),
        (inputnode, bold_to_std_transform, [('bold_split', 'input_image')]),
        (split_target, select_std, [('space', 'key')]),
        (select_std, merge_xforms, [('anat2std_xfm', 'in1')]),
        (select_std, mask_merge_tfms, [('anat2std_xfm', 'in1')]),
        (split_target, gen_ref, [(('spec', _is_native), 'keep_native')]),
        (select_tpl, gen_ref, [('out', 'fixed_image')]),
        (merge_xforms, bold_to_std_transform, [('out', 'transforms')]),
        (gen_ref, bold_to_std_transform, [('out_file', 'reference_image')]),
        (gen_ref, mask_std_tfm, [('out_file', 'reference_image')]),
        (mask_merge_tfms, mask_std_tfm, [('out', 'transforms')]),
        (mask_std_tfm, gen_final_ref, [('output_image', 'inputnode.bold_mask')
                                       ]),
        (bold_to_std_transform, merge, [('out_files', 'in_files')]),
        (merge, gen_final_ref, [('out_file', 'inputnode.bold_file')]),
    ])

    output_names = [
        'bold_mask_std',
        'bold_std',
        'bold_std_ref',
        'spatial_reference',
        'template',
    ] + freesurfer * ['bold_aseg_std', 'bold_aparc_std']

    poutputnode = pe.Node(niu.IdentityInterface(fields=output_names),
                          name='poutputnode')
    workflow.connect([
        # Connecting outputnode
        (iterablesource, poutputnode, [(('std_target', format_reference),
                                        'spatial_reference')]),
        (merge, poutputnode, [('out_file', 'bold_std')]),
        (gen_final_ref, poutputnode, [('outputnode.ref_image', 'bold_std_ref')
                                      ]),
        (mask_std_tfm, poutputnode, [('output_image', 'bold_mask_std')]),
        (select_std, poutputnode, [('key', 'template')]),
    ])

    if freesurfer:
        # Sample the parcellation files to functional space
        aseg_std_tfm = pe.Node(ApplyTransforms(interpolation='MultiLabel'),
                               name='aseg_std_tfm',
                               mem_gb=1)
        aparc_std_tfm = pe.Node(ApplyTransforms(interpolation='MultiLabel'),
                                name='aparc_std_tfm',
                                mem_gb=1)

        workflow.connect([
            (inputnode, aseg_std_tfm, [('bold_aseg', 'input_image')]),
            (inputnode, aparc_std_tfm, [('bold_aparc', 'input_image')]),
            (select_std, aseg_std_tfm, [('anat2std_xfm', 'transforms')]),
            (select_std, aparc_std_tfm, [('anat2std_xfm', 'transforms')]),
            (gen_ref, aseg_std_tfm, [('out_file', 'reference_image')]),
            (gen_ref, aparc_std_tfm, [('out_file', 'reference_image')]),
            (aseg_std_tfm, poutputnode, [('output_image', 'bold_aseg_std')]),
            (aparc_std_tfm, poutputnode, [('output_image', 'bold_aparc_std')]),
        ])

    # Connect parametric outputs to a Join outputnode
    outputnode = pe.JoinNode(niu.IdentityInterface(fields=output_names),
                             name='outputnode',
                             joinsource='iterablesource')
    workflow.connect([
        (poutputnode, outputnode, [(f, f) for f in output_names]),
    ])
    return workflow
示例#20
0
def init_func_preproc_wf(bold_file, ignore, freesurfer,
                         use_bbr, t2s_coreg, bold2t1w_dof, reportlets_dir,
                         output_spaces, template, output_dir, omp_nthreads,
                         fmap_bspline, fmap_demean, use_syn, force_syn,
                         use_aroma, ignore_aroma_err, aroma_melodic_dim,
                         medial_surface_nan, cifti_output,
                         debug, low_mem, template_out_grid,
                         layout=None, num_bold=1):
    """
    This workflow controls the functional preprocessing stages of FMRIPREP.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold import init_func_preproc_wf
        wf = init_func_preproc_wf('/completely/made/up/path/sub-01_task-nback_bold.nii.gz',
                                  omp_nthreads=1,
                                  ignore=[],
                                  freesurfer=True,
                                  reportlets_dir='.',
                                  output_dir='.',
                                  template='MNI152NLin2009cAsym',
                                  output_spaces=['T1w', 'fsnative',
                                                 'template', 'fsaverage5'],
                                  debug=False,
                                  use_bbr=True,
                                  t2s_coreg=False,
                                  bold2t1w_dof=9,
                                  fmap_bspline=True,
                                  fmap_demean=True,
                                  use_syn=True,
                                  force_syn=True,
                                  low_mem=False,
                                  template_out_grid='native',
                                  medial_surface_nan=False,
                                  cifti_output=False,
                                  use_aroma=False,
                                  ignore_aroma_err=False,
                                  aroma_melodic_dim=-200,
                                  num_bold=1)

    **Parameters**

        bold_file : str
            BOLD series NIfTI file
        ignore : list
            Preprocessing steps to skip (may include "slicetiming", "fieldmaps")
        freesurfer : bool
            Enable FreeSurfer functional registration (bbregister) and resampling
            BOLD series to FreeSurfer surface meshes.
        use_bbr : bool or None
            Enable/disable boundary-based registration refinement.
            If ``None``, test BBR result for distortion before accepting.
            When using ``t2s_coreg``, BBR will be enabled by default unless
            explicitly specified otherwise.
        t2s_coreg : bool
            For multiecho EPI, use the calculated T2*-map for T2*-driven coregistration
        bold2t1w_dof : 6, 9 or 12
            Degrees-of-freedom for BOLD-T1w registration
        reportlets_dir : str
            Directory in which to save reportlets
        output_spaces : list
            List of output spaces functional images are to be resampled to.
            Some parts of pipeline will only be instantiated for some output spaces.

            Valid spaces:

                - T1w
                - template
                - fsnative
                - fsaverage (or other pre-existing FreeSurfer templates)
        template : str
            Name of template targeted by ``template`` output space
        output_dir : str
            Directory in which to save derivatives
        omp_nthreads : int
            Maximum number of threads an individual process may use
        fmap_bspline : bool
            **Experimental**: Fit B-Spline field using least-squares
        fmap_demean : bool
            Demean voxel-shift map during unwarp
        use_syn : bool
            **Experimental**: Enable ANTs SyN-based susceptibility distortion correction (SDC).
            If fieldmaps are present and enabled, this is not run, by default.
        force_syn : bool
            **Temporary**: Always run SyN-based SDC
        use_aroma : bool
            Perform ICA-AROMA on MNI-resampled functional series
        ignore_aroma_err : bool
            Do not fail on ICA-AROMA errors
        medial_surface_nan : bool
            Replace medial wall values with NaNs on functional GIFTI files
        cifti_output : bool
            Generate bold CIFTI file in output spaces
        debug : bool
            Enable debugging outputs
        low_mem : bool
            Write uncompressed .nii files in some cases to reduce memory usage
        template_out_grid : str
            Keyword ('native', '1mm' or '2mm') or path of custom reference
            image for normalization
        layout : BIDSLayout
            BIDSLayout structure to enable metadata retrieval
        num_bold : int
            Total number of BOLD files that have been set for preprocessing
            (default is 1)

    **Inputs**

        bold_file
            BOLD series NIfTI file
        t1_preproc
            Bias-corrected structural template image
        t1_brain
            Skull-stripped ``t1_preproc``
        t1_mask
            Mask of the skull-stripped template image
        t1_seg
            Segmentation of preprocessed structural image, including
            gray-matter (GM), white-matter (WM) and cerebrospinal fluid (CSF)
        t1_tpms
            List of tissue probability maps in T1w space
        t1_2_mni_forward_transform
            ANTs-compatible affine-and-warp transform file
        t1_2_mni_reverse_transform
            ANTs-compatible affine-and-warp transform file (inverse)
        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID
        t1_2_fsnative_forward_transform
            LTA-style affine matrix translating from T1w to FreeSurfer-conformed subject space
        t1_2_fsnative_reverse_transform
            LTA-style affine matrix translating from FreeSurfer-conformed subject space to T1w


    **Outputs**

        bold_t1
            BOLD series, resampled to T1w space
        bold_mask_t1
            BOLD series mask in T1w space
        bold_mni
            BOLD series, resampled to template space
        bold_mask_mni
            BOLD series mask in template space
        confounds
            TSV of confounds
        surfaces
            BOLD series, resampled to FreeSurfer surfaces
        aroma_noise_ics
            Noise components identified by ICA-AROMA
        melodic_mix
            FSL MELODIC mixing matrix
        bold_cifti
            BOLD CIFTI image
        cifti_variant
            combination of target spaces for `bold_cifti`


    **Subworkflows**

        * :py:func:`~fmriprep.workflows.bold.util.init_bold_reference_wf`
        * :py:func:`~fmriprep.workflows.bold.stc.init_bold_stc_wf`
        * :py:func:`~fmriprep.workflows.bold.hmc.init_bold_hmc_wf`
        * :py:func:`~fmriprep.workflows.bold.t2s.init_bold_t2s_wf`
        * :py:func:`~fmriprep.workflows.bold.registration.init_bold_t1_trans_wf`
        * :py:func:`~fmriprep.workflows.bold.registration.init_bold_reg_wf`
        * :py:func:`~fmriprep.workflows.bold.confounds.init_bold_confounds_wf`
        * :py:func:`~fmriprep.workflows.bold.confounds.init_ica_aroma_wf`
        * :py:func:`~fmriprep.workflows.bold.resampling.init_bold_mni_trans_wf`
        * :py:func:`~fmriprep.workflows.bold.resampling.init_bold_preproc_trans_wf`
        * :py:func:`~fmriprep.workflows.bold.resampling.init_bold_surf_wf`
        * :py:func:`~fmriprep.workflows.fieldmap.pepolar.init_pepolar_unwarp_wf`
        * :py:func:`~fmriprep.workflows.fieldmap.init_fmap_estimator_wf`
        * :py:func:`~fmriprep.workflows.fieldmap.init_sdc_unwarp_wf`
        * :py:func:`~fmriprep.workflows.fieldmap.init_nonlinear_sdc_wf`

    """
    from ..fieldmap.base import init_sdc_wf  # Avoid circular dependency (#1066)

    ref_file = bold_file
    mem_gb = {'filesize': 1, 'resampled': 1, 'largemem': 1}
    bold_tlen = 10
    multiecho = isinstance(bold_file, list)

    if multiecho:
        tes = [layout.get_metadata(echo)['EchoTime'] for echo in bold_file]
        ref_file = dict(zip(tes, bold_file))[min(tes)]

    if os.path.isfile(ref_file):
        bold_tlen, mem_gb = _create_mem_gb(ref_file)

    wf_name = _get_wf_name(ref_file)
    LOGGER.log(25, ('Creating bold processing workflow for "%s" (%.2f GB / %d TRs). '
                    'Memory resampled/largemem=%.2f/%.2f GB.'),
               ref_file, mem_gb['filesize'], bold_tlen, mem_gb['resampled'], mem_gb['largemem'])

    sbref_file = None
    # For doc building purposes
    if layout is None or bold_file == 'bold_preprocesing':
        LOGGER.log(25, 'No valid layout: building empty workflow.')
        metadata = {
            'RepetitionTime': 2.0,
            'SliceTiming': [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
            'PhaseEncodingDirection': 'j',
        }
        fmaps = [{
            'type': 'phasediff',
            'phasediff': 'sub-03/ses-2/fmap/sub-03_ses-2_run-1_phasediff.nii.gz',
            'magnitude1': 'sub-03/ses-2/fmap/sub-03_ses-2_run-1_magnitude1.nii.gz',
            'magnitude2': 'sub-03/ses-2/fmap/sub-03_ses-2_run-1_magnitude2.nii.gz',
        }]
        run_stc = True
        multiecho = False
    else:
        # Find associated sbref, if possible
        entities = layout.parse_file_entities(ref_file)
        entities['type'] = 'sbref'
        files = layout.get(**entities, extensions=['nii', 'nii.gz'])
        refbase = os.path.basename(ref_file)
        if 'sbref' in ignore:
            LOGGER.info("Single-band reference files ignored.")
        elif files and multiecho:
            LOGGER.warning("Single-band reference found, but not supported in "
                           "multi-echo workflows at this time. Ignoring.")
        elif files:
            sbref_file = files[0].filename
            sbbase = os.path.basename(sbref_file)
            if len(files) > 1:
                LOGGER.warning(
                    "Multiple single-band reference files found for {}; using "
                    "{}".format(refbase, sbbase))
            else:
                LOGGER.log(25, "Using single-band reference file {}".format(sbbase))
        else:
            LOGGER.log(25, "No single-band-reference found for {}".format(refbase))

        metadata = layout.get_metadata(ref_file)

        # Find fieldmaps. Options: (phase1|phase2|phasediff|epi|fieldmap|syn)
        fmaps = []
        if 'fieldmaps' not in ignore:
            fmaps = layout.get_fieldmap(ref_file, return_list=True)
            for fmap in fmaps:
                fmap['metadata'] = layout.get_metadata(fmap[fmap['type']])

        # Run SyN if forced or in the absence of fieldmap correction
        if force_syn or (use_syn and not fmaps):
            fmaps.append({'type': 'syn'})

        # Short circuits: (True and True and (False or 'TooShort')) == 'TooShort'
        run_stc = ("SliceTiming" in metadata and
                   'slicetiming' not in ignore and
                   (_get_series_len(ref_file) > 4 or "TooShort"))

    # Check if MEEPI for T2* coregistration target
    if t2s_coreg and not multiecho:
        LOGGER.warning("No multiecho BOLD images found for T2* coregistration. "
                       "Using standard EPI-T1 coregistration.")
        t2s_coreg = False

    # By default, force-bbr for t2s_coreg unless user specifies otherwise
    if t2s_coreg and use_bbr is None:
        use_bbr = True

    # Build workflow
    workflow = Workflow(name=wf_name)
    workflow.__desc__ = """

Functional data preprocessing

: For each of the {num_bold} BOLD runs found per subject (across all
tasks and sessions), the following preprocessing was performed.
""".format(num_bold=num_bold)

    workflow.__postdesc__ = """\
All resamplings can be performed with *a single interpolation
step* by composing all the pertinent transformations (i.e. head-motion
transform matrices, susceptibility distortion correction when available,
and co-registrations to anatomical and template spaces).
Gridded (volumetric) resamplings were performed using `antsApplyTransforms` (ANTs),
configured with Lanczos interpolation to minimize the smoothing
effects of other kernels [@lanczos].
Non-gridded (surface) resamplings were performed using `mri_vol2surf`
(FreeSurfer).
"""

    inputnode = pe.Node(niu.IdentityInterface(
        fields=['bold_file', 'sbref_file', 'subjects_dir', 'subject_id',
                't1_preproc', 't1_brain', 't1_mask', 't1_seg', 't1_tpms',
                't1_aseg', 't1_aparc',
                't1_2_mni_forward_transform', 't1_2_mni_reverse_transform',
                't1_2_fsnative_forward_transform', 't1_2_fsnative_reverse_transform']),
        name='inputnode')
    inputnode.inputs.bold_file = bold_file
    if sbref_file is not None:
        inputnode.inputs.sbref_file = sbref_file

    outputnode = pe.Node(niu.IdentityInterface(
        fields=['bold_t1', 'bold_t1_ref', 'bold_mask_t1', 'bold_aseg_t1', 'bold_aparc_t1',
                'bold_mni', 'bold_mni_ref' 'bold_mask_mni', 'bold_aseg_mni', 'bold_aparc_mni',
                'bold_cifti', 'cifti_variant', 'cifti_variant_key', 'confounds', 'surfaces',
                'aroma_noise_ics', 'melodic_mix', 'nonaggr_denoised_file']),
        name='outputnode')

    # BOLD buffer: an identity used as a pointer to either the original BOLD
    # or the STC'ed one for further use.
    boldbuffer = pe.Node(niu.IdentityInterface(fields=['bold_file']), name='boldbuffer')

    summary = pe.Node(
        FunctionalSummary(output_spaces=output_spaces,
                          slice_timing=run_stc,
                          registration='FreeSurfer' if freesurfer else 'FSL',
                          registration_dof=bold2t1w_dof,
                          pe_direction=metadata.get("PhaseEncodingDirection")),
        name='summary', mem_gb=DEFAULT_MEMORY_MIN_GB, run_without_submitting=True)

    func_derivatives_wf = init_func_derivatives_wf(output_dir=output_dir,
                                                   output_spaces=output_spaces,
                                                   template=template,
                                                   freesurfer=freesurfer,
                                                   use_aroma=use_aroma,
                                                   cifti_output=cifti_output)

    workflow.connect([
        (outputnode, func_derivatives_wf, [
            ('bold_t1', 'inputnode.bold_t1'),
            ('bold_t1_ref', 'inputnode.bold_t1_ref'),
            ('bold_aseg_t1', 'inputnode.bold_aseg_t1'),
            ('bold_aparc_t1', 'inputnode.bold_aparc_t1'),
            ('bold_mask_t1', 'inputnode.bold_mask_t1'),
            ('bold_mni', 'inputnode.bold_mni'),
            ('bold_mni_ref', 'inputnode.bold_mni_ref'),
            ('bold_aseg_mni', 'inputnode.bold_aseg_mni'),
            ('bold_aparc_mni', 'inputnode.bold_aparc_mni'),
            ('bold_mask_mni', 'inputnode.bold_mask_mni'),
            ('confounds', 'inputnode.confounds'),
            ('surfaces', 'inputnode.surfaces'),
            ('aroma_noise_ics', 'inputnode.aroma_noise_ics'),
            ('melodic_mix', 'inputnode.melodic_mix'),
            ('nonaggr_denoised_file', 'inputnode.nonaggr_denoised_file'),
            ('bold_cifti', 'inputnode.bold_cifti'),
            ('cifti_variant', 'inputnode.cifti_variant'),
            ('cifti_variant_key', 'inputnode.cifti_variant_key')
        ]),
    ])

    # Generate a tentative boldref
    bold_reference_wf = init_bold_reference_wf(omp_nthreads=omp_nthreads)

    # Top-level BOLD splitter
    bold_split = pe.Node(FSLSplit(dimension='t'), name='bold_split',
                         mem_gb=mem_gb['filesize'] * 3)

    # HMC on the BOLD
    bold_hmc_wf = init_bold_hmc_wf(name='bold_hmc_wf',
                                   mem_gb=mem_gb['filesize'],
                                   omp_nthreads=omp_nthreads)

    # calculate BOLD registration to T1w
    bold_reg_wf = init_bold_reg_wf(name='bold_reg_wf',
                                   freesurfer=freesurfer,
                                   use_bbr=use_bbr,
                                   bold2t1w_dof=bold2t1w_dof,
                                   mem_gb=mem_gb['resampled'],
                                   omp_nthreads=omp_nthreads,
                                   use_compression=False)

    # apply BOLD registration to T1w
    bold_t1_trans_wf = init_bold_t1_trans_wf(name='bold_t1_trans_wf',
                                             freesurfer=freesurfer,
                                             use_fieldwarp=(fmaps is not None or use_syn),
                                             multiecho=multiecho,
                                             mem_gb=mem_gb['resampled'],
                                             omp_nthreads=omp_nthreads,
                                             use_compression=False)

    # get confounds
    bold_confounds_wf = init_bold_confs_wf(
        mem_gb=mem_gb['largemem'],
        metadata=metadata,
        name='bold_confounds_wf')
    bold_confounds_wf.get_node('inputnode').inputs.t1_transform_flags = [False]

    # Apply transforms in 1 shot
    # Only use uncompressed output if AROMA is to be run
    bold_bold_trans_wf = init_bold_preproc_trans_wf(
        mem_gb=mem_gb['resampled'],
        omp_nthreads=omp_nthreads,
        use_compression=not low_mem,
        use_fieldwarp=(fmaps is not None or use_syn),
        name='bold_bold_trans_wf'
    )
    bold_bold_trans_wf.inputs.inputnode.name_source = ref_file

    # SLICE-TIME CORRECTION (or bypass) #############################################
    if run_stc is True:  # bool('TooShort') == True, so check True explicitly
        bold_stc_wf = init_bold_stc_wf(name='bold_stc_wf', metadata=metadata)
        workflow.connect([
            (bold_reference_wf, bold_stc_wf, [
                ('outputnode.skip_vols', 'inputnode.skip_vols')]),
            (bold_stc_wf, boldbuffer, [('outputnode.stc_file', 'bold_file')]),
        ])
        if not multiecho:
            workflow.connect([
                (bold_reference_wf, bold_stc_wf, [
                    ('outputnode.bold_file', 'inputnode.bold_file')])])
        else:  # for meepi, iterate through stc_wf for all workflows
            meepi_echos = boldbuffer.clone(name='meepi_echos')
            meepi_echos.iterables = ('bold_file', bold_file)
            workflow.connect([
                (meepi_echos, bold_stc_wf, [('bold_file', 'inputnode.bold_file')])])
    elif not multiecho:  # STC is too short or False
        # bypass STC from original BOLD to the splitter through boldbuffer
        workflow.connect([
            (bold_reference_wf, boldbuffer, [('outputnode.bold_file', 'bold_file')])])
    else:
        # for meepi, iterate over all meepi echos to boldbuffer
        boldbuffer.iterables = ('bold_file', bold_file)

    # SDC (SUSCEPTIBILITY DISTORTION CORRECTION) or bypass ##########################
    bold_sdc_wf = init_sdc_wf(
        fmaps, metadata, omp_nthreads=omp_nthreads,
        debug=debug, fmap_demean=fmap_demean, fmap_bspline=fmap_bspline)
    bold_sdc_wf.inputs.inputnode.template = template

    if not fmaps:
        LOGGER.warning('SDC: no fieldmaps found or they were ignored (%s).',
                       ref_file)
    elif fmaps[0]['type'] == 'syn':
        LOGGER.warning(
            'SDC: no fieldmaps found or they were ignored. '
            'Using EXPERIMENTAL "fieldmap-less SyN" correction '
            'for dataset %s.', ref_file)
    else:
        LOGGER.log(25, 'SDC: fieldmap estimation of type "%s" intended for %s found.',
                   fmaps[0]['type'], ref_file)

    # MULTI-ECHO EPI DATA #############################################
    if multiecho:
        from .util import init_skullstrip_bold_wf
        skullstrip_bold_wf = init_skullstrip_bold_wf(name='skullstrip_bold_wf')

        inputnode.inputs.bold_file = ref_file  # Replace reference w first echo

        join_echos = pe.JoinNode(niu.IdentityInterface(fields=['bold_files']),
                                 joinsource=('meepi_echos' if run_stc is True else 'boldbuffer'),
                                 joinfield=['bold_files'],
                                 name='join_echos')

        # create optimal combination, adaptive T2* map
        bold_t2s_wf = init_bold_t2s_wf(echo_times=tes,
                                       mem_gb=mem_gb['resampled'],
                                       omp_nthreads=omp_nthreads,
                                       t2s_coreg=t2s_coreg,
                                       name='bold_t2smap_wf')

        workflow.connect([
            (skullstrip_bold_wf, join_echos, [
                ('outputnode.skull_stripped_file', 'bold_files')]),
            (join_echos, bold_t2s_wf, [
                ('bold_files', 'inputnode.bold_file')]),
        ])

    # MAIN WORKFLOW STRUCTURE #######################################################
    workflow.connect([
        # Generate early reference
        (inputnode, bold_reference_wf, [('bold_file', 'inputnode.bold_file'),
                                        ('sbref_file', 'inputnode.sbref_file')]),
        # BOLD buffer has slice-time corrected if it was run, original otherwise
        (boldbuffer, bold_split, [('bold_file', 'in_file')]),
        # HMC
        (bold_reference_wf, bold_hmc_wf, [
            ('outputnode.raw_ref_image', 'inputnode.raw_ref_image'),
            ('outputnode.bold_file', 'inputnode.bold_file')]),
        # EPI-T1 registration workflow
        (inputnode, bold_reg_wf, [
            ('t1_brain', 'inputnode.t1_brain'),
            ('t1_seg', 'inputnode.t1_seg'),
            # Undefined if --no-freesurfer, but this is safe
            ('subjects_dir', 'inputnode.subjects_dir'),
            ('subject_id', 'inputnode.subject_id'),
            ('t1_2_fsnative_reverse_transform', 'inputnode.t1_2_fsnative_reverse_transform')]),
        (inputnode, bold_t1_trans_wf, [
            ('bold_file', 'inputnode.name_source'),
            ('t1_brain', 'inputnode.t1_brain'),
            ('t1_mask', 'inputnode.t1_mask'),
            ('t1_aseg', 'inputnode.t1_aseg'),
            ('t1_aparc', 'inputnode.t1_aparc')]),
        # unused if multiecho, but this is safe
        (bold_hmc_wf, bold_t1_trans_wf, [('outputnode.xforms', 'inputnode.hmc_xforms')]),
        (bold_reg_wf, bold_t1_trans_wf, [
            ('outputnode.itk_bold_to_t1', 'inputnode.itk_bold_to_t1')]),
        (bold_t1_trans_wf, outputnode, [('outputnode.bold_t1', 'bold_t1'),
                                        ('outputnode.bold_t1_ref', 'bold_t1_ref'),
                                        ('outputnode.bold_aseg_t1', 'bold_aseg_t1'),
                                        ('outputnode.bold_aparc_t1', 'bold_aparc_t1')]),
        (bold_reg_wf, summary, [('outputnode.fallback', 'fallback')]),
        # SDC (or pass-through workflow)
        (inputnode, bold_sdc_wf, [
            ('t1_brain', 'inputnode.t1_brain'),
            ('t1_2_mni_reverse_transform', 'inputnode.t1_2_mni_reverse_transform')]),
        (bold_reference_wf, bold_sdc_wf, [
            ('outputnode.ref_image', 'inputnode.bold_ref'),
            ('outputnode.ref_image_brain', 'inputnode.bold_ref_brain'),
            ('outputnode.bold_mask', 'inputnode.bold_mask')]),
        # For t2s_coreg, replace EPI-to-T1w registration inputs
        (bold_sdc_wf if not t2s_coreg else bold_t2s_wf, bold_reg_wf, [
            ('outputnode.bold_ref_brain', 'inputnode.ref_bold_brain')]),
        (bold_sdc_wf if not t2s_coreg else bold_t2s_wf, bold_t1_trans_wf, [
            ('outputnode.bold_ref_brain', 'inputnode.ref_bold_brain'),
            ('outputnode.bold_mask', 'inputnode.ref_bold_mask')]),
        (bold_sdc_wf, bold_t1_trans_wf, [
            ('outputnode.out_warp', 'inputnode.fieldwarp')]),
        (bold_sdc_wf, bold_bold_trans_wf, [
            ('outputnode.out_warp', 'inputnode.fieldwarp'),
            ('outputnode.bold_mask', 'inputnode.bold_mask')]),
        (bold_sdc_wf, summary, [('outputnode.method', 'distortion_correction')]),
        # Connect bold_confounds_wf
        (inputnode, bold_confounds_wf, [('t1_tpms', 'inputnode.t1_tpms'),
                                        ('t1_mask', 'inputnode.t1_mask')]),
        (bold_hmc_wf, bold_confounds_wf, [
            ('outputnode.movpar_file', 'inputnode.movpar_file')]),
        (bold_reg_wf, bold_confounds_wf, [
            ('outputnode.itk_t1_to_bold', 'inputnode.t1_bold_xform')]),
        (bold_reference_wf, bold_confounds_wf, [
            ('outputnode.skip_vols', 'inputnode.skip_vols')]),
        (bold_confounds_wf, outputnode, [
            ('outputnode.confounds_file', 'confounds'),
        ]),
        # Connect bold_bold_trans_wf
        (bold_split, bold_bold_trans_wf, [
            ('out_files', 'inputnode.bold_file')]),
        (bold_hmc_wf, bold_bold_trans_wf, [
            ('outputnode.xforms', 'inputnode.hmc_xforms')]),
        # Summary
        (outputnode, summary, [('confounds', 'confounds_file')]),
    ])

    # for standard EPI data, pass along correct file
    if not multiecho:
        workflow.connect([
            (inputnode, func_derivatives_wf, [
                ('bold_file', 'inputnode.source_file')]),
            (bold_bold_trans_wf, bold_confounds_wf, [
                ('outputnode.bold', 'inputnode.bold'),
                ('outputnode.bold_mask', 'inputnode.bold_mask')]),
            (bold_split, bold_t1_trans_wf, [
                ('out_files', 'inputnode.bold_split')]),
        ])
    else:  # for meepi, create and use optimal combination
        workflow.connect([
            # update name source for optimal combination
            (inputnode, func_derivatives_wf, [
                (('bold_file', combine_meepi_source), 'inputnode.source_file')]),
            (bold_bold_trans_wf, skullstrip_bold_wf, [
                ('outputnode.bold', 'inputnode.in_file')]),
            (bold_t2s_wf, bold_confounds_wf, [
                ('outputnode.bold', 'inputnode.bold'),
                ('outputnode.bold_mask', 'inputnode.bold_mask')]),
            (bold_t2s_wf, bold_t1_trans_wf, [
                ('outputnode.bold', 'inputnode.bold_split')]),
        ])

    if fmaps:
        from ..fieldmap.unwarp import init_fmap_unwarp_report_wf
        sdc_type = fmaps[0]['type']

        # Report on BOLD correction
        fmap_unwarp_report_wf = init_fmap_unwarp_report_wf(
            suffix='sdc_%s' % sdc_type)
        workflow.connect([
            (inputnode, fmap_unwarp_report_wf, [
                ('t1_seg', 'inputnode.in_seg')]),
            (bold_reference_wf, fmap_unwarp_report_wf, [
                ('outputnode.ref_image', 'inputnode.in_pre')]),
            (bold_reg_wf, fmap_unwarp_report_wf, [
                ('outputnode.itk_t1_to_bold', 'inputnode.in_xfm')]),
            (bold_sdc_wf, fmap_unwarp_report_wf, [
                ('outputnode.bold_ref', 'inputnode.in_post')]),
        ])

        if force_syn and sdc_type != 'syn':
            syn_unwarp_report_wf = init_fmap_unwarp_report_wf(
                suffix='forcedsyn', name='syn_unwarp_report_wf')
            workflow.connect([
                (inputnode, syn_unwarp_report_wf, [
                    ('t1_seg', 'inputnode.in_seg')]),
                (bold_reference_wf, syn_unwarp_report_wf, [
                    ('outputnode.ref_image', 'inputnode.in_pre')]),
                (bold_reg_wf, syn_unwarp_report_wf, [
                    ('outputnode.itk_t1_to_bold', 'inputnode.in_xfm')]),
                (bold_sdc_wf, syn_unwarp_report_wf, [
                    ('outputnode.syn_bold_ref', 'inputnode.in_post')]),
            ])

    # Map final BOLD mask into T1w space (if required)
    if 'T1w' in output_spaces:
        from niworkflows.interfaces.fixes import (
            FixHeaderApplyTransforms as ApplyTransforms
        )

        boldmask_to_t1w = pe.Node(
            ApplyTransforms(interpolation='MultiLabel', float=True),
            name='boldmask_to_t1w', mem_gb=0.1
        )
        workflow.connect([
            (bold_reg_wf, boldmask_to_t1w, [
                ('outputnode.itk_bold_to_t1', 'transforms')]),
            (bold_t1_trans_wf, boldmask_to_t1w, [
                ('outputnode.bold_mask_t1', 'reference_image')]),
            (bold_bold_trans_wf if not multiecho else bold_t2s_wf, boldmask_to_t1w, [
                ('outputnode.bold_mask', 'input_image')]),
            (boldmask_to_t1w, outputnode, [
                ('output_image', 'bold_mask_t1')]),
        ])

    if 'template' in output_spaces:
        # Apply transforms in 1 shot
        # Only use uncompressed output if AROMA is to be run
        bold_mni_trans_wf = init_bold_mni_trans_wf(
            template=template,
            freesurfer=freesurfer,
            mem_gb=mem_gb['resampled'],
            omp_nthreads=omp_nthreads,
            template_out_grid=template_out_grid,
            use_compression=not low_mem,
            use_fieldwarp=fmaps is not None,
            name='bold_mni_trans_wf'
        )
        carpetplot_wf = init_carpetplot_wf(
            mem_gb=mem_gb['resampled'],
            metadata=metadata,
            name='carpetplot_wf')

        workflow.connect([
            (inputnode, bold_mni_trans_wf, [
                ('bold_file', 'inputnode.name_source'),
                ('t1_2_mni_forward_transform', 'inputnode.t1_2_mni_forward_transform'),
                ('t1_aseg', 'inputnode.bold_aseg'),
                ('t1_aparc', 'inputnode.bold_aparc')]),
            (bold_hmc_wf, bold_mni_trans_wf, [
                ('outputnode.xforms', 'inputnode.hmc_xforms')]),
            (bold_reg_wf, bold_mni_trans_wf, [
                ('outputnode.itk_bold_to_t1', 'inputnode.itk_bold_to_t1')]),
            (bold_bold_trans_wf if not multiecho else bold_t2s_wf, bold_mni_trans_wf, [
                ('outputnode.bold_mask', 'inputnode.bold_mask')]),
            (bold_sdc_wf, bold_mni_trans_wf, [
                ('outputnode.out_warp', 'inputnode.fieldwarp')]),
            (bold_mni_trans_wf, outputnode, [('outputnode.bold_mni', 'bold_mni'),
                                             ('outputnode.bold_mni_ref', 'bold_mni_ref'),
                                             ('outputnode.bold_mask_mni', 'bold_mask_mni'),
                                             ('outputnode.bold_aseg_mni', 'bold_aseg_mni'),
                                             ('outputnode.bold_aparc_mni', 'bold_aparc_mni')]),
            (inputnode, carpetplot_wf, [
                ('t1_2_mni_reverse_transform', 'inputnode.t1_2_mni_reverse_transform')]),
            (bold_bold_trans_wf if not multiecho else bold_t2s_wf, carpetplot_wf, [
                ('outputnode.bold', 'inputnode.bold'),
                ('outputnode.bold_mask', 'inputnode.bold_mask')]),
            (bold_reg_wf, carpetplot_wf, [
                ('outputnode.itk_t1_to_bold', 'inputnode.t1_bold_xform')]),
            (bold_confounds_wf, carpetplot_wf, [
                ('outputnode.confounds_file', 'inputnode.confounds_file')]),
        ])

        if not multiecho:
            workflow.connect([
                (bold_split, bold_mni_trans_wf, [
                    ('out_files', 'inputnode.bold_split')])
            ])
        else:
            split_opt_comb = bold_split.clone(name='split_opt_comb')
            workflow.connect([
                (bold_t2s_wf, split_opt_comb, [
                    ('outputnode.bold', 'in_file')]),
                (split_opt_comb, bold_mni_trans_wf, [
                    ('out_files', 'inputnode.bold_split')
                ])
            ])

        if use_aroma:
            # ICA-AROMA workflow
            # Internally resamples to MNI152 Linear (2006)
            from .confounds import init_ica_aroma_wf
            from niworkflows.interfaces.utils import JoinTSVColumns

            ica_aroma_wf = init_ica_aroma_wf(
                template=template,
                metadata=metadata,
                mem_gb=mem_gb['resampled'],
                omp_nthreads=omp_nthreads,
                use_fieldwarp=fmaps is not None,
                ignore_aroma_err=ignore_aroma_err,
                aroma_melodic_dim=aroma_melodic_dim,
                name='ica_aroma_wf')

            join = pe.Node(JoinTSVColumns(), name='aroma_confounds')

            workflow.disconnect([
                (bold_confounds_wf, outputnode, [
                    ('outputnode.confounds_file', 'confounds'),
                ]),
            ])
            workflow.connect([
                (inputnode, ica_aroma_wf, [
                    ('bold_file', 'inputnode.name_source'),
                    ('t1_2_mni_forward_transform', 'inputnode.t1_2_mni_forward_transform')]),
                (bold_split, ica_aroma_wf, [
                    ('out_files', 'inputnode.bold_split')]),
                (bold_hmc_wf, ica_aroma_wf, [
                    ('outputnode.movpar_file', 'inputnode.movpar_file'),
                    ('outputnode.xforms', 'inputnode.hmc_xforms')]),
                (bold_reg_wf, ica_aroma_wf, [
                    ('outputnode.itk_bold_to_t1', 'inputnode.itk_bold_to_t1')]),
                (bold_bold_trans_wf if not multiecho else bold_t2s_wf, ica_aroma_wf, [
                    ('outputnode.bold_mask', 'inputnode.bold_mask')]),
                (bold_sdc_wf, ica_aroma_wf, [
                    ('outputnode.out_warp', 'inputnode.fieldwarp')]),
                (bold_reference_wf, ica_aroma_wf, [
                    ('outputnode.skip_vols', 'inputnode.skip_vols')]),
                (bold_confounds_wf, join, [
                    ('outputnode.confounds_file', 'in_file')]),
                (ica_aroma_wf, join,
                    [('outputnode.aroma_confounds', 'join_file')]),
                (ica_aroma_wf, outputnode,
                    [('outputnode.aroma_noise_ics', 'aroma_noise_ics'),
                     ('outputnode.melodic_mix', 'melodic_mix'),
                     ('outputnode.nonaggr_denoised_file', 'nonaggr_denoised_file')]),
                (join, outputnode, [('out_file', 'confounds')]),
            ])

    # SURFACES ##################################################################################
    surface_spaces = [space for space in output_spaces if space.startswith('fs')]
    if freesurfer and surface_spaces:
        LOGGER.log(25, 'Creating BOLD surface-sampling workflow.')
        bold_surf_wf = init_bold_surf_wf(mem_gb=mem_gb['resampled'],
                                         output_spaces=surface_spaces,
                                         medial_surface_nan=medial_surface_nan,
                                         name='bold_surf_wf')
        workflow.connect([
            (inputnode, bold_surf_wf, [
                ('t1_preproc', 'inputnode.t1_preproc'),
                ('subjects_dir', 'inputnode.subjects_dir'),
                ('subject_id', 'inputnode.subject_id'),
                ('t1_2_fsnative_forward_transform', 'inputnode.t1_2_fsnative_forward_transform')]),
            (bold_t1_trans_wf, bold_surf_wf, [('outputnode.bold_t1', 'inputnode.source_file')]),
            (bold_surf_wf, outputnode, [('outputnode.surfaces', 'surfaces')]),
        ])

        # CIFTI output
        if cifti_output and surface_spaces:
            bold_surf_wf.__desc__ += """\
*Grayordinates* files [@hcppipelines], which combine surface-sampled
data and volume-sampled data, were also generated.
"""
            gen_cifti = pe.MapNode(GenerateCifti(), iterfield=["surface_target", "gifti_files"],
                                   name="gen_cifti")
            gen_cifti.inputs.TR = metadata.get("RepetitionTime")
            gen_cifti.inputs.surface_target = [s for s in surface_spaces
                                               if s.startswith('fsaverage')]

            workflow.connect([
                (bold_surf_wf, gen_cifti, [
                    ('outputnode.surfaces', 'gifti_files')]),
                (inputnode, gen_cifti, [('subjects_dir', 'subjects_dir')]),
                (bold_mni_trans_wf, gen_cifti, [('outputnode.bold_mni', 'bold_file')]),
                (gen_cifti, outputnode, [('out_file', 'bold_cifti'),
                                         ('variant', 'cifti_variant'),
                                         ('variant_key', 'cifti_variant_key')]),
            ])

    # REPORTING ############################################################
    ds_report_summary = pe.Node(
        DerivativesDataSink(suffix='summary'),
        name='ds_report_summary', run_without_submitting=True,
        mem_gb=DEFAULT_MEMORY_MIN_GB)

    ds_report_validation = pe.Node(
        DerivativesDataSink(base_directory=reportlets_dir,
                            suffix='validation'),
        name='ds_report_validation', run_without_submitting=True,
        mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (summary, ds_report_summary, [('out_report', 'in_file')]),
        (bold_reference_wf, ds_report_validation, [
            ('outputnode.validation_report', 'in_file')]),
    ])

    # Fill-in datasinks of reportlets seen so far
    for node in workflow.list_node_names():
        if node.split('.')[-1].startswith('ds_report'):
            workflow.get_node(node).inputs.base_directory = reportlets_dir
            workflow.get_node(node).inputs.source_file = ref_file

    return workflow
示例#21
0
def init_bold_surf_wf(mem_gb,
                      surface_spaces,
                      medial_surface_nan,
                      name='bold_surf_wf'):
    """
    Sample functional images to FreeSurfer surfaces.

    For each vertex, the cortical ribbon is sampled at six points (spaced 20% of thickness apart)
    and averaged.
    Outputs are in GIFTI format.

    Workflow Graph
        .. workflow::
            :graph2use: colored
            :simple_form: yes

            from fmriprep_rodents.workflows.bold import init_bold_surf_wf
            wf = init_bold_surf_wf(mem_gb=0.1,
                                   surface_spaces=['fsnative', 'fsaverage5'],
                                   medial_surface_nan=False)

    Parameters
    ----------
    surface_spaces : :obj:`list`
        List of FreeSurfer surface-spaces (either ``fsaverage{3,4,5,6,}`` or ``fsnative``)
        the functional images are to be resampled to.
        For ``fsnative``, images will be resampled to the individual subject's
        native surface.
    medial_surface_nan : :obj:`bool`
        Replace medial wall values with NaNs on functional GIFTI files

    Inputs
    ------
    source_file
        Motion-corrected BOLD series in T1 space
    t1w_preproc
        Bias-corrected structural template image
    subjects_dir
        FreeSurfer SUBJECTS_DIR
    subject_id
        FreeSurfer subject ID
    t1w2fsnative_xfm
        LTA-style affine matrix translating from T1w to FreeSurfer-conformed subject space

    Outputs
    -------
    surfaces
        BOLD series, resampled to FreeSurfer surfaces

    """
    from nipype.interfaces.io import FreeSurferSource
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.interfaces.surf import GiftiSetAnatomicalStructure

    workflow = Workflow(name=name)
    workflow.__desc__ = """\
The BOLD time-series were resampled onto the following surfaces
(FreeSurfer reconstruction nomenclature):
{out_spaces}.
""".format(out_spaces=', '.join(['*%s*' % s for s in surface_spaces]))

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'source_file', 'subject_id', 'subjects_dir', 't1w2fsnative_xfm'
    ]),
                        name='inputnode')
    itersource = pe.Node(niu.IdentityInterface(fields=['target']),
                         name='itersource')
    itersource.iterables = [('target', surface_spaces)]

    get_fsnative = pe.Node(FreeSurferSource(),
                           name='get_fsnative',
                           run_without_submitting=True)

    def select_target(subject_id, space):
        """Get the target subject ID, given a source subject ID and a target space."""
        return subject_id if space == 'fsnative' else space

    targets = pe.Node(niu.Function(function=select_target),
                      name='targets',
                      run_without_submitting=True,
                      mem_gb=DEFAULT_MEMORY_MIN_GB)

    # Rename the source file to the output space to simplify naming later
    rename_src = pe.Node(niu.Rename(format_string='%(subject)s',
                                    keep_ext=True),
                         name='rename_src',
                         run_without_submitting=True,
                         mem_gb=DEFAULT_MEMORY_MIN_GB)
    itk2lta = pe.Node(niu.Function(function=_itk2lta),
                      name="itk2lta",
                      run_without_submitting=True)
    sampler = pe.MapNode(fs.SampleToSurface(
        cortex_mask=True,
        interp_method='trilinear',
        out_type='gii',
        override_reg_subj=True,
        sampling_method='average',
        sampling_range=(0, 1, 0.2),
        sampling_units='frac',
    ),
                         iterfield=['hemi'],
                         name='sampler',
                         mem_gb=mem_gb * 3)
    sampler.inputs.hemi = ['lh', 'rh']
    update_metadata = pe.MapNode(GiftiSetAnatomicalStructure(),
                                 iterfield=['in_file'],
                                 name='update_metadata',
                                 mem_gb=DEFAULT_MEMORY_MIN_GB)

    outputnode = pe.JoinNode(
        niu.IdentityInterface(fields=['surfaces', 'target']),
        joinsource='itersource',
        name='outputnode')

    workflow.connect([
        (inputnode, get_fsnative, [('subject_id', 'subject_id'),
                                   ('subjects_dir', 'subjects_dir')]),
        (inputnode, targets, [('subject_id', 'subject_id')]),
        (inputnode, rename_src, [('source_file', 'in_file')]),
        (inputnode, itk2lta, [('source_file', 'src_file'),
                              ('t1w2fsnative_xfm', 'in_file')]),
        (get_fsnative, itk2lta, [('T1', 'dst_file')]),
        (inputnode, sampler, [('subjects_dir', 'subjects_dir'),
                              ('subject_id', 'subject_id')]),
        (itersource, targets, [('target', 'space')]),
        (itersource, rename_src, [('target', 'subject')]),
        (itk2lta, sampler, [('out', 'reg_file')]),
        (targets, sampler, [('out', 'target_subject')]),
        (rename_src, sampler, [('out_file', 'source_file')]),
        (update_metadata, outputnode, [('out_file', 'surfaces')]),
        (itersource, outputnode, [('target', 'target')]),
    ])

    if not medial_surface_nan:
        workflow.connect(sampler, 'out_file', update_metadata, 'in_file')
        return workflow

    from niworkflows.interfaces.freesurfer import MedialNaNs
    # Refine if medial vertices should be NaNs
    medial_nans = pe.MapNode(MedialNaNs(),
                             iterfield=['in_file'],
                             name='medial_nans',
                             mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, medial_nans, [('subjects_dir', 'subjects_dir')]),
        (sampler, medial_nans, [('out_file', 'in_file')]),
        (medial_nans, update_metadata, [('out_file', 'in_file')]),
    ])
    return workflow
示例#22
0
def init_anat_average_wf(
    *,
    bspline_fitting_distance=200,
    longitudinal=False,
    name="anat_average_wf",
    num_maps=1,
    omp_nthreads=None,
    sloppy=False,
):
    """
    Create an average from several images of the same modality.

    Each image undergoes a clipping step, removing background noise and
    high-intensity outliers, which is required by INU correction with the
    N4 algorithm.
    Then INU correction is performed for each of the inputs and the range
    of the image clipped again to fit within uint8.
    Finally, each image is reoriented to have RAS+ data matrix and, if
    more than one inputs, aligned and averaged with FreeSurfer's
    ``mri_robust_template``.

    Parameters
    ----------
    bspline_fitting_distance : :obj:`float`
        Distance in mm between B-Spline control points for N4 INU estimation.
    longitudinal : :obj:`bool`
        Whether an unbiased middle point should be calculated.
    name : :obj:`str`
        This particular workflow's unique name (Nipype requirement).
    num_maps : :obj:`int`
        Then number of input 3D volumes to be averaged.
    omp_nthreads : :obj:`int`
        The number of threads for individual processes in this workflow.
    sloppy : :obj:`bool`
        Run in *sloppy* mode.

    Inputs
    ------
    in_files : :obj:`list`
        A list of one or more input files. They can be 3D or 4D.

    Outputs
    -------
    out_file : :obj:`str`
        The output averaged reference file.
    valid_list : :obj:`list`
        A list of accepted/discarded volumes from the input list.
    realign_xfms : :obj:`list`
        List of rigid-body transformation matrices that bring every volume
        into alignment with the average reference.
    out_report : :obj:`str`
        Path to a reportlet summarizing what happened in this workflow.

    """
    from pkg_resources import resource_filename as pkgr
    from nipype.interfaces.ants import N4BiasFieldCorrection
    from nipype.interfaces.image import Reorient

    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.interfaces.header import ValidateImage
    from niworkflows.interfaces.nibabel import IntensityClip, SplitSeries
    from niworkflows.interfaces.freesurfer import (
        StructuralReference,
        PatchedLTAConvert as LTAConvert,
    )
    from niworkflows.interfaces.images import TemplateDimensions, Conform
    from niworkflows.interfaces.nitransforms import ConcatenateXFMs
    from niworkflows.utils.misc import add_suffix

    wf = Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(fields=["in_files"]),
                        name="inputnode")
    outputnode = pe.Node(
        niu.IdentityInterface(
            fields=["out_file", "valid_list", "realign_xfms", "out_report"]),
        name="outputnode",
    )

    # 1. Validate each of the input images
    validate = pe.MapNode(
        ValidateImage(),
        iterfield="in_file",
        name="validate",
        run_without_submitting=True,
    )

    # 2. Ensure we don't have two timepoints and implicitly squeeze image
    split = pe.MapNode(SplitSeries(), iterfield="in_file", name="split")

    # 3. INU correction of all independent volumes
    clip_preinu = pe.MapNode(IntensityClip(p_min=50),
                             iterfield="in_file",
                             name="clip_preinu")
    correct_inu = pe.MapNode(
        N4BiasFieldCorrection(
            dimension=3,
            save_bias=False,
            copy_header=True,
            n_iterations=[50] * (5 - 2 * sloppy),
            convergence_threshold=1e-7,
            shrink_factor=4,
            bspline_fitting_distance=bspline_fitting_distance,
        ),
        iterfield="input_image",
        n_procs=omp_nthreads,
        name="correct_inu",
    )
    clip_postinu = pe.MapNode(IntensityClip(p_min=10.0, p_max=99.5),
                              iterfield="in_file",
                              name="clip_postinu")

    # 4. Reorient T2w image(s) to RAS and resample to common voxel space
    ref_dimensions = pe.Node(TemplateDimensions(), name="ref_dimensions")
    conform = pe.MapNode(Conform(), iterfield="in_file", name="conform")
    # fmt:off
    wf.connect([
        (inputnode, ref_dimensions, [("in_files", "t1w_list")]),
        (inputnode, validate, [("in_files", "in_file")]),
        (validate, split, [("out_file", "in_file")]),
        (split, clip_preinu, [(("out_files", _flatten), "in_file")]),
        (clip_preinu, correct_inu, [("out_file", "input_image")]),
        (correct_inu, clip_postinu, [("output_image", "in_file")]),
        (ref_dimensions, conform, [("t1w_valid_list", "in_file"),
                                   ("target_zooms", "target_zooms"),
                                   ("target_shape", "target_shape")]),
        (ref_dimensions, outputnode, [("out_report", "out_report"),
                                      ("t1w_valid_list", "valid_list")]),
    ])
    # fmt:on

    # 5. Reorient template to RAS, if needed (mri_robust_template may set to LIA)
    ensure_ras = pe.Node(Reorient(), name="ensure_ras")

    if num_maps == 1:
        get1st = pe.Node(niu.Select(index=[0]), name="get1st")
        outputnode.inputs.realign_xfms = [
            pkgr("smriprep", "data/itkIdentityTransform.txt")
        ]
        # fmt:off
        wf.connect([
            (conform, get1st, [("out_file", "inlist")]),
            (get1st, ensure_ras, [("out", "in_file")]),
            (ensure_ras, outputnode, [("out_file", "out_file")]),
        ])
        # fmt:on
        return wf

    from nipype.interfaces import freesurfer as fs

    wf.__desc__ = f"""\
An anatomical reference-map was computed after registration of
{num_maps} images (after INU-correction) using
`mri_robust_template` [FreeSurfer {fs.Info().looseversion() or "<ver>"}, @fs_template].
"""

    conform_xfm = pe.MapNode(
        LTAConvert(in_lta="identity.nofile", out_lta=True),
        iterfield=["source_file", "target_file"],
        name="conform_xfm",
    )

    # 6. StructuralReference is fs.RobustTemplate if > 1 volume, copying otherwise
    merge = pe.Node(
        StructuralReference(
            auto_detect_sensitivity=True,
            initial_timepoint=1,  # For deterministic behavior
            intensity_scaling=True,  # 7-DOF (rigid + intensity)
            subsample_threshold=200,
            fixed_timepoint=not longitudinal,
            no_iteration=not longitudinal,
            transform_outputs=True,
        ),
        mem_gb=2 * num_maps - 1,
        name="merge",
    )

    # 7. Final intensity equalization/conformation
    clip_final = pe.Node(IntensityClip(p_min=2.0, p_max=99.9),
                         name="clip_final")

    merge_xfm = pe.MapNode(
        niu.Merge(2),
        name="merge_xfm",
        iterfield=["in1", "in2"],
        run_without_submitting=True,
    )
    concat_xfms = pe.MapNode(
        ConcatenateXFMs(inverse=True),
        name="concat_xfms",
        iterfield=["in_xfms"],
        run_without_submitting=True,
    )

    def _set_threads(in_list, maximum):
        return min(len(in_list), maximum)

    # fmt:off
    wf.connect([
        (ref_dimensions, conform_xfm, [("t1w_valid_list", "source_file")]),
        (conform, conform_xfm, [("out_file", "target_file")]),
        (conform, merge,
         [("out_file", "in_files"),
          (("out_file", _set_threads, omp_nthreads), "num_threads"),
          (("out_file", add_suffix, "_template"), "out_file")]),
        (merge, ensure_ras, [("out_file", "in_file")]),
        # Combine orientation and template transforms
        (conform_xfm, merge_xfm, [("out_lta", "in1")]),
        (merge, merge_xfm, [("transform_outputs", "in2")]),
        (merge_xfm, concat_xfms, [("out", "in_xfms")]),
        # Output
        (ensure_ras, clip_final, [("out_file", "in_file")]),
        (clip_final, outputnode, [("out_file", "out_file")]),
        (concat_xfms, outputnode, [("out_xfm", "realign_xfms")]),
    ])
    # fmt:on

    return wf
示例#23
0
def init_bold_grayords_wf(grayord_density,
                          mem_gb,
                          repetition_time,
                          name='bold_grayords_wf'):
    """
    Sample Grayordinates files onto the fsLR atlas.

    Outputs are in CIFTI2 format.

    Workflow Graph
        .. workflow::
            :graph2use: colored
            :simple_form: yes

            from fmriprep_rodents.workflows.bold import init_bold_grayords_wf
            wf = init_bold_grayords_wf(mem_gb=0.1, grayord_density='91k')

    Parameters
    ----------
    grayord_density : :obj:`str`
        Either `91k` or `170k`, representing the total of vertices or *grayordinates*.
    mem_gb : :obj:`float`
        Size of BOLD file in GB
    name : :obj:`str`
        Unique name for the subworkflow (default: ``'bold_grayords_wf'``)

    Inputs
    ------
    bold_std : :obj:`str`
        List of BOLD conversions to standard spaces.
    spatial_reference :obj:`str`
        List of unique identifiers corresponding to the BOLD standard-conversions.
    subjects_dir : :obj:`str`
        FreeSurfer's subjects directory.
    surf_files : :obj:`str`
        List of BOLD files resampled on the fsaverage (ico7) surfaces.
    surf_refs :
        List of unique identifiers corresponding to the BOLD surface-conversions.

    Outputs
    -------
    cifti_bold : :obj:`str`
        List of BOLD grayordinates files - (L)eft and (R)ight.
    cifti_variant : :obj:`str`
        Only ``'HCP Grayordinates'`` is currently supported.
    cifti_metadata : :obj:`str`
        Path of metadata files corresponding to ``cifti_bold``.
    cifti_density : :obj:`str`
        Density (i.e., either `91k` or `170k`) of ``cifti_bold``.

    """
    import templateflow.api as tf
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.interfaces.cifti import GenerateCifti
    from niworkflows.interfaces.utility import KeySelect

    workflow = Workflow(name=name)
    workflow.__desc__ = """\
*Grayordinates* files [@hcppipelines] containing {density} samples were also
generated using the highest-resolution ``fsaverage`` as intermediate standardized
surface space.
""".format(density=grayord_density)

    fslr_density, mni_density = ('32k',
                                 '2') if grayord_density == '91k' else ('59k',
                                                                        '1')

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'bold_std',
        'spatial_reference',
        'subjects_dir',
        'surf_files',
        'surf_refs',
    ]),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'cifti_bold',
        'cifti_variant',
        'cifti_metadata',
        'cifti_density',
    ]),
                         name='outputnode')

    # extract out to BOLD base
    select_std = pe.Node(KeySelect(fields=['bold_std']),
                         name='select_std',
                         run_without_submitting=True,
                         nohash=True)
    select_std.inputs.key = 'MNI152NLin6Asym_res-%s' % mni_density

    select_fs_surf = pe.Node(KeySelect(fields=['surf_files']),
                             name='select_fs_surf',
                             run_without_submitting=True,
                             mem_gb=DEFAULT_MEMORY_MIN_GB)
    select_fs_surf.inputs.key = 'fsaverage'

    # Setup Workbench command. LR ordering for hemi can be assumed, as it is imposed
    # by the iterfield of the MapNode in the surface sampling workflow above.
    resample = pe.MapNode(wb.MetricResample(method='ADAP_BARY_AREA',
                                            area_metrics=True),
                          name='resample',
                          iterfield=[
                              'in_file', 'out_file', 'new_sphere', 'new_area',
                              'current_sphere', 'current_area'
                          ])
    resample.inputs.current_sphere = [
        str(
            tf.get('fsaverage',
                   hemi=hemi,
                   density='164k',
                   desc='std',
                   suffix='sphere')) for hemi in 'LR'
    ]
    resample.inputs.current_area = [
        str(
            tf.get('fsaverage',
                   hemi=hemi,
                   density='164k',
                   desc='vaavg',
                   suffix='midthickness')) for hemi in 'LR'
    ]
    resample.inputs.new_sphere = [
        str(
            tf.get('fsLR',
                   space='fsaverage',
                   hemi=hemi,
                   density=fslr_density,
                   suffix='sphere')) for hemi in 'LR'
    ]
    resample.inputs.new_area = [
        str(
            tf.get('fsLR',
                   hemi=hemi,
                   density=fslr_density,
                   desc='vaavg',
                   suffix='midthickness')) for hemi in 'LR'
    ]
    resample.inputs.out_file = [
        'space-fsLR_hemi-%s_den-%s_bold.gii' % (h, grayord_density)
        for h in 'LR'
    ]

    gen_cifti = pe.Node(GenerateCifti(
        volume_target='MNI152NLin6Asym',
        surface_target='fsLR',
        TR=repetition_time,
        surface_density=fslr_density,
    ),
                        name="gen_cifti")

    workflow.connect([
        (inputnode, gen_cifti, [('subjects_dir', 'subjects_dir')]),
        (inputnode, select_std, [('bold_std', 'bold_std'),
                                 ('spatial_reference', 'keys')]),
        (inputnode, select_fs_surf, [('surf_files', 'surf_files'),
                                     ('surf_refs', 'keys')]),
        (select_fs_surf, resample, [('surf_files', 'in_file')]),
        (select_std, gen_cifti, [('bold_std', 'bold_file')]),
        (resample, gen_cifti, [('out_file', 'surface_bolds')]),
        (gen_cifti, outputnode, [('out_file', 'cifti_bold'),
                                 ('variant', 'cifti_variant'),
                                 ('out_metadata', 'cifti_metadata'),
                                 ('density', 'cifti_density')]),
    ])
    return workflow
示例#24
0
def init_bold_t2s_wf(echo_times, mem_gb, omp_nthreads,
                     t2s_coreg=False, name='bold_t2s_wf'):
    """
    Combine multiple echos of :abbr:`ME-EPI (multi-echo echo-planar imaging)`.

    This workflow wraps the `tedana`_ `T2* workflow`_ to optimally
    combine multiple echos and derive a T2* map for optional use as a
    coregistration target.
    The following steps are performed:

    #. :abbr:`HMC (head motion correction)` on individual echo files.
    #. Compute the T2* map
    #. Create an optimally combined ME-EPI time series

    .. _tedana: https://github.com/me-ica/tedana
    .. _`T2* workflow`: https://tedana.readthedocs.io/en/latest/generated/tedana.workflows.t2smap_workflow.html#tedana.workflows.t2smap_workflow  # noqa

    Parameters
    ----------
    echo_times : :obj:`list`
        list of TEs associated with each echo
    mem_gb : :obj:`float`
        Size of BOLD file in GB
    omp_nthreads : :obj:`int`
        Maximum number of threads an individual process may use
    t2s_coreg : :obj:`bool`
        Use the calculated T2*-map for T2*-driven coregistration
    name : :obj:`str`
        Name of workflow (default: ``bold_t2s_wf``)

    Inputs
    ------
    bold_file
        list of individual echo files

    Outputs
    -------
    bold
        the optimally combined time series for all supplied echos
    bold_mask
        the binarized, skull-stripped adaptive T2* map
    bold_ref_brain
        the adaptive T2* map

    """
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.func.util import init_skullstrip_bold_wf

    workflow = Workflow(name=name)
    workflow.__desc__ = """\
A T2* map was estimated from the preprocessed BOLD by fitting to a monoexponential signal
decay model with log-linear regression.
For each voxel, the maximal number of echoes with reliable signal in that voxel were
used to fit the model.
The calculated T2* map was then used to optimally combine preprocessed BOLD across
echoes following the method described in [@posse_t2s].
The optimally combined time series was carried forward as the *preprocessed BOLD*{}.
""".format('' if not t2s_coreg else ', and the T2* map was also retained as the BOLD reference')

    inputnode = pe.Node(niu.IdentityInterface(fields=['bold_file']), name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=['bold', 'bold_mask', 'bold_ref_brain']),
                         name='outputnode')

    LOGGER.log(25, 'Generating T2* map and optimally combined ME-EPI time series.')

    t2smap_node = pe.Node(T2SMap(echo_times=echo_times), name='t2smap_node')
    skullstrip_t2smap_wf = init_skullstrip_bold_wf(name='skullstrip_t2smap_wf')

    workflow.connect([
        (inputnode, t2smap_node, [('bold_file', 'in_files')]),
        (t2smap_node, outputnode, [('optimal_comb', 'bold')]),
        (t2smap_node, skullstrip_t2smap_wf, [('t2star_map', 'inputnode.in_file')]),
        (skullstrip_t2smap_wf, outputnode, [
            ('outputnode.mask_file', 'bold_mask'),
            ('outputnode.skull_stripped_file', 'bold_ref_brain')]),
    ])

    return workflow
示例#25
0
def init_bbreg_wf(use_bbr, bold2t1w_dof, omp_nthreads, name='bbreg_wf'):
    """
    Build a workflow to run FreeSurfer's ``bbregister``.

    This workflow uses FreeSurfer's ``bbregister`` to register a BOLD image to
    a T1-weighted structural image.

    It is a counterpart to :py:func:`~fmriprep.workflows.bold.registration.init_fsl_bbr_wf`,
    which performs the same task using FSL's FLIRT with a BBR cost function.
    The ``use_bbr`` option permits a high degree of control over registration.
    If ``False``, standard, affine coregistration will be performed using
    FreeSurfer's ``mri_coreg`` tool.
    If ``True``, ``bbregister`` will be seeded with the initial transform found
    by ``mri_coreg`` (equivalent to running ``bbregister --init-coreg``).
    If ``None``, after ``bbregister`` is run, the resulting affine transform
    will be compared to the initial transform found by ``mri_coreg``.
    Excessive deviation will result in rejecting the BBR refinement and
    accepting the original, affine registration.

    Workflow Graph
        .. workflow ::
            :graph2use: orig
            :simple_form: yes

            from fmriprep.workflows.bold.registration import init_bbreg_wf
            wf = init_bbreg_wf(use_bbr=True, bold2t1w_dof=9, omp_nthreads=1)


    Parameters
    ----------
    use_bbr : bool or None
        Enable/disable boundary-based registration refinement.
        If ``None``, test BBR result for distortion before accepting.
    bold2t1w_dof : 6, 9 or 12
        Degrees-of-freedom for BOLD-T1w registration
    name : str, optional
        Workflow name (default: bbreg_wf)

    Inputs
    ------
    in_file
        Reference BOLD image to be registered
    fsnative2t1w_xfm
        FSL-style affine matrix translating from FreeSurfer T1.mgz to T1w
    subjects_dir
        FreeSurfer SUBJECTS_DIR
    subject_id
        FreeSurfer subject ID (must have folder in SUBJECTS_DIR)
    t1w_brain
        Unused (see :py:func:`~fmriprep.workflows.bold.registration.init_fsl_bbr_wf`)
    t1w_dseg
        Unused (see :py:func:`~fmriprep.workflows.bold.registration.init_fsl_bbr_wf`)

    Outputs
    -------
    itk_bold_to_t1
        Affine transform from ``ref_bold_brain`` to T1 space (ITK format)
    itk_t1_to_bold
        Affine transform from T1 space to BOLD space (ITK format)
    out_report
        Reportlet for assessing registration quality
    fallback
        Boolean indicating whether BBR was rejected (mri_coreg registration returned)

    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
The BOLD reference was then co-registered to the T1w reference using
`bbregister` (FreeSurfer) which implements boundary-based registration [@bbr].
Co-registration was configured with {dof} degrees of freedom{reason}.
""".format(dof={6: 'six', 9: 'nine', 12: 'twelve'}[bold2t1w_dof],
           reason='' if bold2t1w_dof == 6 else
                  'to account for distortions remaining in the BOLD reference')

    inputnode = pe.Node(
        niu.IdentityInterface([
            'in_file',
            'fsnative2t1w_xfm', 'subjects_dir', 'subject_id',  # BBRegister
            't1w_dseg', 't1w_brain']),  # FLIRT BBR
        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(['itk_bold_to_t1', 'itk_t1_to_bold', 'out_report', 'fallback']),
        name='outputnode')

    mri_coreg = pe.Node(
        MRICoregRPT(dof=bold2t1w_dof, sep=[4], ftol=0.0001, linmintol=0.01,
                    generate_report=not use_bbr),
        name='mri_coreg', n_procs=omp_nthreads, mem_gb=5)

    lta_concat = pe.Node(ConcatenateLTA(out_file='out.lta'), name='lta_concat')
    # XXX LTA-FSL-ITK may ultimately be able to be replaced with a straightforward
    # LTA-ITK transform, but right now the translation parameters are off.
    lta2fsl_fwd = pe.Node(LTAConvert(out_fsl=True), name='lta2fsl_fwd')
    lta2fsl_inv = pe.Node(LTAConvert(out_fsl=True, invert=True), name='lta2fsl_inv')
    fsl2itk_fwd = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_fwd', mem_gb=DEFAULT_MEMORY_MIN_GB)
    fsl2itk_inv = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_inv', mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, mri_coreg, [('subjects_dir', 'subjects_dir'),
                                ('subject_id', 'subject_id'),
                                ('in_file', 'source_file')]),
        # Output ITK transforms
        (inputnode, lta_concat, [('fsnative2t1w_xfm', 'in_lta2')]),
        (lta_concat, lta2fsl_fwd, [('out_file', 'in_lta')]),
        (lta_concat, lta2fsl_inv, [('out_file', 'in_lta')]),
        (inputnode, fsl2itk_fwd, [('t1w_brain', 'reference_file'),
                                  ('in_file', 'source_file')]),
        (inputnode, fsl2itk_inv, [('in_file', 'reference_file'),
                                  ('t1w_brain', 'source_file')]),
        (lta2fsl_fwd, fsl2itk_fwd, [('out_fsl', 'transform_file')]),
        (lta2fsl_inv, fsl2itk_inv, [('out_fsl', 'transform_file')]),
        (fsl2itk_fwd, outputnode, [('itk_transform', 'itk_bold_to_t1')]),
        (fsl2itk_inv, outputnode, [('itk_transform', 'itk_t1_to_bold')]),
    ])

    # Short-circuit workflow building, use initial registration
    if use_bbr is False:
        workflow.connect([
            (mri_coreg, outputnode, [('out_report', 'out_report')]),
            (mri_coreg, lta_concat, [('out_lta_file', 'in_lta1')])])
        outputnode.inputs.fallback = True

        return workflow

    bbregister = pe.Node(
        BBRegisterRPT(dof=bold2t1w_dof, contrast_type='t2', registered_file=True,
                      out_lta_file=True, generate_report=True),
        name='bbregister', mem_gb=12)

    workflow.connect([
        (inputnode, bbregister, [('subjects_dir', 'subjects_dir'),
                                 ('subject_id', 'subject_id'),
                                 ('in_file', 'source_file')]),
        (mri_coreg, bbregister, [('out_lta_file', 'init_reg_file')]),
    ])

    # Short-circuit workflow building, use boundary-based registration
    if use_bbr is True:
        workflow.connect([
            (bbregister, outputnode, [('out_report', 'out_report')]),
            (bbregister, lta_concat, [('out_lta_file', 'in_lta1')])])
        outputnode.inputs.fallback = False

        return workflow

    transforms = pe.Node(niu.Merge(2), run_without_submitting=True, name='transforms')
    reports = pe.Node(niu.Merge(2), run_without_submitting=True, name='reports')

    lta_ras2ras = pe.MapNode(LTAConvert(out_lta=True), iterfield=['in_lta'],
                             name='lta_ras2ras', mem_gb=2)
    compare_transforms = pe.Node(niu.Function(function=compare_xforms), name='compare_transforms')

    select_transform = pe.Node(niu.Select(), run_without_submitting=True, name='select_transform')
    select_report = pe.Node(niu.Select(), run_without_submitting=True, name='select_report')

    workflow.connect([
        (bbregister, transforms, [('out_lta_file', 'in1')]),
        (mri_coreg, transforms, [('out_lta_file', 'in2')]),
        # Normalize LTA transforms to RAS2RAS (inputs are VOX2VOX) and compare
        (transforms, lta_ras2ras, [('out', 'in_lta')]),
        (lta_ras2ras, compare_transforms, [('out_lta', 'lta_list')]),
        (compare_transforms, outputnode, [('out', 'fallback')]),
        # Select output transform
        (transforms, select_transform, [('out', 'inlist')]),
        (compare_transforms, select_transform, [('out', 'index')]),
        (select_transform, lta_concat, [('out', 'in_lta1')]),
        # Select output report
        (bbregister, reports, [('out_report', 'in1')]),
        (mri_coreg, reports, [('out_report', 'in2')]),
        (reports, select_report, [('out', 'inlist')]),
        (compare_transforms, select_report, [('out', 'index')]),
        (select_report, outputnode, [('out', 'out_report')]),
    ])

    return workflow
示例#26
0
def init_bold_stc_wf(metadata, name='bold_stc_wf'):
    """
    Create a workflow for :abbr:`STC (slice-timing correction)`.

    This workflow performs :abbr:`STC (slice-timing correction)` over the input
    :abbr:`BOLD (blood-oxygen-level dependent)` image.

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from fmriprep.workflows.bold import init_bold_stc_wf
            wf = init_bold_stc_wf(
                metadata={"RepetitionTime": 2.0,
                          "SliceTiming": [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]},
                )

    Parameters
    ----------
    metadata : :obj:`dict`
        BIDS metadata for BOLD file
    name : :obj:`str`
        Name of workflow (default: ``bold_stc_wf``)

    Inputs
    ------
    bold_file
        BOLD series NIfTI file
    skip_vols
        Number of non-steady-state volumes detected at beginning of ``bold_file``

    Outputs
    -------
    stc_file
        Slice-timing corrected BOLD series NIfTI file

    """
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.interfaces.utils import CopyXForm

    workflow = Workflow(name=name)
    workflow.__desc__ = """\
BOLD runs were slice-time corrected using `3dTshift` from
AFNI {afni_ver} [@afni, RRID:SCR_005927].
""".format(afni_ver=''.join(['%02d' % v for v in afni.Info().version() or []]))
    inputnode = pe.Node(
        niu.IdentityInterface(fields=['bold_file', 'skip_vols']),
        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=['stc_file']),
                         name='outputnode')

    LOGGER.log(25, 'Slice-timing correction will be included.')

    # It would be good to fingerprint memory use of afni.TShift
    slice_timing_correction = pe.Node(afni.TShift(
        outputtype='NIFTI_GZ',
        tr='{}s'.format(metadata["RepetitionTime"]),
        slice_timing=metadata['SliceTiming'],
        slice_encoding_direction=metadata.get('SliceEncodingDirection', 'k')),
                                      name='slice_timing_correction')

    copy_xform = pe.Node(CopyXForm(), name='copy_xform', mem_gb=0.1)

    workflow.connect([
        (inputnode, slice_timing_correction, [('bold_file', 'in_file'),
                                              ('skip_vols', 'ignore')]),
        (slice_timing_correction, copy_xform, [('out_file', 'in_file')]),
        (inputnode, copy_xform, [('bold_file', 'hdr_file')]),
        (copy_xform, outputnode, [('out_file', 'stc_file')]),
    ])

    return workflow
示例#27
0
def init_bold_hmc_wf(mem_gb, omp_nthreads, name='bold_hmc_wf'):
    """
    Build a workflow to estimate head-motion parameters.

    This workflow estimates the motion parameters to perform
    :abbr:`HMC (head motion correction)` over the input
    :abbr:`BOLD (blood-oxygen-level dependent)` image.

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from fmriprep.workflows.bold import init_bold_hmc_wf
            wf = init_bold_hmc_wf(
                mem_gb=3,
                omp_nthreads=1)

    Parameters
    ----------
    mem_gb : :obj:`float`
        Size of BOLD file in GB
    omp_nthreads : :obj:`int`
        Maximum number of threads an individual process may use
    name : :obj:`str`
        Name of workflow (default: ``bold_hmc_wf``)

    Inputs
    ------
    bold_file
        BOLD series NIfTI file
    raw_ref_image
        Reference image to which BOLD series is motion corrected

    Outputs
    -------
    xforms
        ITKTransform file aligning each volume to ``ref_image``
    movpar_file
        MCFLIRT motion parameters, normalized to SPM format (X, Y, Z, Rx, Ry, Rz)

    """
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.interfaces import NormalizeMotionParams
    from niworkflows.interfaces.itk import MCFLIRT2ITK

    workflow = Workflow(name=name)
    workflow.__desc__ = """\
Head-motion parameters with respect to the BOLD reference
(transformation matrices, and six corresponding rotation and translation
parameters) are estimated before any spatiotemporal filtering using
`mcflirt` [FSL {fsl_ver}, @mcflirt].
""".format(fsl_ver=fsl.Info().version() or '<ver>')

    inputnode = pe.Node(
        niu.IdentityInterface(fields=['bold_file', 'raw_ref_image']),
        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(fields=['xforms', 'movpar_file']),
        name='outputnode')

    # Head motion correction (hmc)
    mcflirt = pe.Node(fsl.MCFLIRT(save_mats=True, save_plots=True),
                      name='mcflirt',
                      mem_gb=mem_gb * 3)

    fsl2itk = pe.Node(MCFLIRT2ITK(),
                      name='fsl2itk',
                      mem_gb=0.05,
                      n_procs=omp_nthreads)

    normalize_motion = pe.Node(NormalizeMotionParams(format='FSL'),
                               name="normalize_motion",
                               mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, mcflirt, [('raw_ref_image', 'ref_file'),
                              ('bold_file', 'in_file')]),
        (inputnode, fsl2itk, [('raw_ref_image', 'in_source'),
                              ('raw_ref_image', 'in_reference')]),
        (mcflirt, fsl2itk, [('mat_file', 'in_files')]),
        (mcflirt, normalize_motion, [('par_file', 'in_file')]),
        (fsl2itk, outputnode, [('out_file', 'xforms')]),
        (normalize_motion, outputnode, [('out_file', 'movpar_file')]),
    ])

    return workflow
def init_fsl_bbr_wf(use_bbr,
                    bold2t1w_dof,
                    bold2t1w_init,
                    sloppy=False,
                    name='fsl_bbr_wf'):
    """
    Build a workflow to run FSL's ``flirt``.

    This workflow uses FSL FLIRT to register a BOLD image to a T1-weighted
    structural image, using a boundary-based registration (BBR) cost function.
    It is a counterpart to :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`,
    which performs the same task using FreeSurfer's ``bbregister``.

    The ``use_bbr`` option permits a high degree of control over registration.
    If ``False``, standard, rigid coregistration will be performed by FLIRT.
    If ``True``, FLIRT-BBR will be seeded with the initial transform found by
    the rigid coregistration.
    If ``None``, after FLIRT-BBR is run, the resulting affine transform
    will be compared to the initial transform found by FLIRT.
    Excessive deviation will result in rejecting the BBR refinement and
    accepting the original, affine registration.

    Workflow Graph
        .. workflow ::
            :graph2use: orig
            :simple_form: yes

            from fmriprep.workflows.bold.registration import init_fsl_bbr_wf
            wf = init_fsl_bbr_wf(use_bbr=True, bold2t1w_dof=9, bold2t1w_init='register')


    Parameters
    ----------
    use_bbr : :obj:`bool` or None
        Enable/disable boundary-based registration refinement.
        If ``None``, test BBR result for distortion before accepting.
    bold2t1w_dof : 6, 9 or 12
        Degrees-of-freedom for BOLD-T1w registration
    bold2t1w_init : str, 'header' or 'register'
        If ``'header'``, use header information for initialization of BOLD and T1 images.
        If ``'register'``, align volumes by their centers.
    name : :obj:`str`, optional
        Workflow name (default: fsl_bbr_wf)

    Inputs
    ------
    in_file
        Reference BOLD image to be registered
    t1w_brain
        Skull-stripped T1-weighted structural image
    t1w_dseg
        FAST segmentation of ``t1w_brain``
    fsnative2t1w_xfm
        Unused (see :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`)
    subjects_dir
        Unused (see :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`)
    subject_id
        Unused (see :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`)

    Outputs
    -------
    itk_bold_to_t1
        Affine transform from ``ref_bold_brain`` to T1w space (ITK format)
    itk_t1_to_bold
        Affine transform from T1 space to BOLD space (ITK format)
    out_report
        Reportlet for assessing registration quality
    fallback
        Boolean indicating whether BBR was rejected (rigid FLIRT registration returned)

    """
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.utils.images import dseg_label as _dseg_label
    from niworkflows.interfaces.freesurfer import PatchedLTAConvert as LTAConvert
    from niworkflows.interfaces.registration import FLIRTRPT
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
The BOLD reference was then co-registered to the T1w reference using
`flirt` [FSL {fsl_ver}, @flirt] with the boundary-based registration [@bbr]
cost-function.
Co-registration was configured with nine degrees of freedom to account
for distortions remaining in the BOLD reference.
""".format(fsl_ver=FLIRTRPT().version or '<ver>')

    inputnode = pe.Node(
        niu.IdentityInterface([
            'in_file',
            'fsnative2t1w_xfm',
            'subjects_dir',
            'subject_id',  # BBRegister
            't1w_dseg',
            't1w_brain'
        ]),  # FLIRT BBR
        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(
        ['itk_bold_to_t1', 'itk_t1_to_bold', 'out_report', 'fallback']),
                         name='outputnode')

    wm_mask = pe.Node(niu.Function(function=_dseg_label), name='wm_mask')
    wm_mask.inputs.label = 2  # BIDS default is WM=2
    flt_bbr_init = pe.Node(FLIRTRPT(dof=6,
                                    generate_report=not use_bbr,
                                    uses_qform=True),
                           name='flt_bbr_init')

    if bold2t1w_init not in ("register", "header"):
        raise ValueError(
            f"Unknown BOLD-T1w initialization option: {bold2t1w_init}")

    if bold2t1w_init == "header":
        raise NotImplementedError(
            "Header-based registration initialization not supported for FSL")

    invt_bbr = pe.Node(fsl.ConvertXFM(invert_xfm=True),
                       name='invt_bbr',
                       mem_gb=DEFAULT_MEMORY_MIN_GB)

    # BOLD to T1 transform matrix is from fsl, using c3 tools to convert to
    # something ANTs will like.
    fsl2itk_fwd = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_fwd',
                          mem_gb=DEFAULT_MEMORY_MIN_GB)
    fsl2itk_inv = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_inv',
                          mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, flt_bbr_init, [('in_file', 'in_file'),
                                   ('t1w_brain', 'reference')]),
        (inputnode, fsl2itk_fwd, [('t1w_brain', 'reference_file'),
                                  ('in_file', 'source_file')]),
        (inputnode, fsl2itk_inv, [('in_file', 'reference_file'),
                                  ('t1w_brain', 'source_file')]),
        (invt_bbr, fsl2itk_inv, [('out_file', 'transform_file')]),
        (fsl2itk_fwd, outputnode, [('itk_transform', 'itk_bold_to_t1')]),
        (fsl2itk_inv, outputnode, [('itk_transform', 'itk_t1_to_bold')]),
    ])

    # Short-circuit workflow building, use rigid registration
    if use_bbr is False:
        workflow.connect([
            (flt_bbr_init, invt_bbr, [('out_matrix_file', 'in_file')]),
            (flt_bbr_init, fsl2itk_fwd, [('out_matrix_file', 'transform_file')
                                         ]),
            (flt_bbr_init, outputnode, [('out_report', 'out_report')]),
        ])
        outputnode.inputs.fallback = True

        return workflow

    flt_bbr = pe.Node(FLIRTRPT(cost_func='bbr',
                               dof=bold2t1w_dof,
                               generate_report=True),
                      name='flt_bbr')

    FSLDIR = os.getenv('FSLDIR')
    if FSLDIR:
        flt_bbr.inputs.schedule = op.join(FSLDIR, 'etc/flirtsch/bbr.sch')
    else:
        # Should mostly be hit while building docs
        LOGGER.warning("FSLDIR unset - using packaged BBR schedule")
        flt_bbr.inputs.schedule = pkgr.resource_filename(
            'fmriprep', 'data/flirtsch/bbr.sch')

    workflow.connect([
        (inputnode, wm_mask, [('t1w_dseg', 'in_seg')]),
        (inputnode, flt_bbr, [('in_file', 'in_file')]),
        (flt_bbr_init, flt_bbr, [('out_matrix_file', 'in_matrix_file')]),
    ])

    if sloppy is True:
        downsample = pe.Node(niu.Function(
            function=_conditional_downsampling,
            output_names=["out_file", "out_mask"]),
                             name='downsample')
        workflow.connect([
            (inputnode, downsample, [("t1w_brain", "in_file")]),
            (wm_mask, downsample, [("out", "in_mask")]),
            (downsample, flt_bbr, [('out_file', 'reference'),
                                   ('out_mask', 'wm_seg')]),
        ])
    else:
        workflow.connect([
            (inputnode, flt_bbr, [('t1w_brain', 'reference')]),
            (wm_mask, flt_bbr, [('out', 'wm_seg')]),
        ])

    # Short-circuit workflow building, use boundary-based registration
    if use_bbr is True:
        workflow.connect([
            (flt_bbr, invt_bbr, [('out_matrix_file', 'in_file')]),
            (flt_bbr, fsl2itk_fwd, [('out_matrix_file', 'transform_file')]),
            (flt_bbr, outputnode, [('out_report', 'out_report')]),
        ])
        outputnode.inputs.fallback = False

        return workflow

    transforms = pe.Node(niu.Merge(2),
                         run_without_submitting=True,
                         name='transforms')
    reports = pe.Node(niu.Merge(2),
                      run_without_submitting=True,
                      name='reports')

    compare_transforms = pe.Node(niu.Function(function=compare_xforms),
                                 name='compare_transforms')

    select_transform = pe.Node(niu.Select(),
                               run_without_submitting=True,
                               name='select_transform')
    select_report = pe.Node(niu.Select(),
                            run_without_submitting=True,
                            name='select_report')

    fsl_to_lta = pe.MapNode(LTAConvert(out_lta=True),
                            iterfield=['in_fsl'],
                            name='fsl_to_lta')

    workflow.connect([
        (flt_bbr, transforms, [('out_matrix_file', 'in1')]),
        (flt_bbr_init, transforms, [('out_matrix_file', 'in2')]),
        # Convert FSL transforms to LTA (RAS2RAS) transforms and compare
        (inputnode, fsl_to_lta, [('in_file', 'source_file'),
                                 ('t1w_brain', 'target_file')]),
        (transforms, fsl_to_lta, [('out', 'in_fsl')]),
        (fsl_to_lta, compare_transforms, [('out_lta', 'lta_list')]),
        (compare_transforms, outputnode, [('out', 'fallback')]),
        # Select output transform
        (transforms, select_transform, [('out', 'inlist')]),
        (compare_transforms, select_transform, [('out', 'index')]),
        (select_transform, invt_bbr, [('out', 'in_file')]),
        (select_transform, fsl2itk_fwd, [('out', 'transform_file')]),
        (flt_bbr, reports, [('out_report', 'in1')]),
        (flt_bbr_init, reports, [('out_report', 'in2')]),
        (reports, select_report, [('out', 'inlist')]),
        (compare_transforms, select_report, [('out', 'index')]),
        (select_report, outputnode, [('out', 'out_report')]),
    ])

    return workflow
示例#29
0
def init_bold_hmc_wf(mem_gb, omp_nthreads, name='bold_hmc_wf'):
    """
    This workflow estimates the motion parameters to perform
    :abbr:`HMC (head motion correction)` over the input
    :abbr:`BOLD (blood-oxygen-level dependent)` image.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold import init_bold_hmc_wf
        wf = init_bold_hmc_wf(
            mem_gb=3,
            omp_nthreads=1)

    **Parameters**

        mem_gb : float
            Size of BOLD file in GB
        omp_nthreads : int
            Maximum number of threads an individual process may use
        name : str
            Name of workflow (default: ``bold_hmc_wf``)

    **Inputs**

        bold_file
            BOLD series NIfTI file
        raw_ref_image
            Reference image to which BOLD series is motion corrected

    **Outputs**

        xforms
            ITKTransform file aligning each volume to ``ref_image``
        movpar_file
            MCFLIRT motion parameters, normalized to SPM format (X, Y, Z, Rx, Ry, Rz)

    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
Head-motion parameters with respect to the BOLD reference
(transformation matrices, and six corresponding rotation and translation
parameters) are estimated before any spatiotemporal filtering using
`mcflirt` [FSL {fsl_ver}, @mcflirt].
""".format(fsl_ver=fsl.Info().version() or '<ver>')

    inputnode = pe.Node(niu.IdentityInterface(fields=['bold_file', 'raw_ref_image']),
                        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(fields=['xforms', 'movpar_file']),
        name='outputnode')

    # Head motion correction (hmc)
    mcflirt = pe.Node(fsl.MCFLIRT(save_mats=True, save_plots=True),
                      name='mcflirt', mem_gb=mem_gb * 3)

    fsl2itk = pe.Node(MCFLIRT2ITK(), name='fsl2itk',
                      mem_gb=0.05, n_procs=omp_nthreads)

    normalize_motion = pe.Node(NormalizeMotionParams(format='FSL'),
                               name="normalize_motion",
                               mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, mcflirt, [('raw_ref_image', 'ref_file'),
                              ('bold_file', 'in_file')]),
        (inputnode, fsl2itk, [('raw_ref_image', 'in_source'),
                              ('raw_ref_image', 'in_reference')]),
        (mcflirt, fsl2itk, [('mat_file', 'in_files')]),
        (mcflirt, normalize_motion, [('par_file', 'in_file')]),
        (fsl2itk, outputnode, [('out_file', 'xforms')]),
        (normalize_motion, outputnode, [('out_file', 'movpar_file')]),
    ])

    return workflow
示例#30
0
文件: base.py 项目: hensel-f/smriprep
def init_single_subject_wf(
    debug,
    freesurfer,
    fast_track,
    hires,
    layout,
    longitudinal,
    low_mem,
    name,
    omp_nthreads,
    output_dir,
    skull_strip_fixed_seed,
    skull_strip_mode,
    skull_strip_template,
    spaces,
    subject_id,
    bids_filters,
):
    """
    Create a single subject workflow.

    This workflow organizes the preprocessing pipeline for a single subject.
    It collects and reports information about the subject, and prepares
    sub-workflows to perform anatomical and functional preprocessing.

    Anatomical preprocessing is performed in a single workflow, regardless of
    the number of sessions.
    Functional preprocessing is performed using a separate workflow for each
    individual BOLD series.

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from collections import namedtuple
            from niworkflows.utils.spaces import SpatialReferences, Reference
            from smriprep.workflows.base import init_single_subject_wf
            BIDSLayout = namedtuple('BIDSLayout', ['root'])
            wf = init_single_subject_wf(
                debug=False,
                freesurfer=True,
                fast_track=False,
                hires=True,
                layout=BIDSLayout('.'),
                longitudinal=False,
                low_mem=False,
                name='single_subject_wf',
                omp_nthreads=1,
                output_dir='.',
                skull_strip_fixed_seed=False,
                skull_strip_mode='force',
                skull_strip_template=Reference('OASIS30ANTs'),
                spaces=SpatialReferences(spaces=['MNI152NLin2009cAsym', 'fsaverage5']),
                subject_id='test',
                bids_filters=None,
            )

    Parameters
    ----------
    debug : :obj:`bool`
        Enable debugging outputs
    freesurfer : :obj:`bool`
        Enable FreeSurfer surface reconstruction (may increase runtime)
    fast_track : :obj:`bool`
        If ``True``, attempt to collect previously run derivatives.
    hires : :obj:`bool`
        Enable sub-millimeter preprocessing in FreeSurfer
    layout : BIDSLayout object
        BIDS dataset layout
    longitudinal : :obj:`bool`
        Treat multiple sessions as longitudinal (may increase runtime)
        See sub-workflows for specific differences
    low_mem : :obj:`bool`
        Write uncompressed .nii files in some cases to reduce memory usage
    name : :obj:`str`
        Name of workflow
    omp_nthreads : :obj:`int`
        Maximum number of threads an individual process may use
    output_dir : :obj:`str`
        Directory in which to save derivatives
    skull_strip_fixed_seed : :obj:`bool`
        Do not use a random seed for skull-stripping - will ensure
        run-to-run replicability when used with --omp-nthreads 1
    skull_strip_mode : :obj:`str`
        Determiner for T1-weighted skull stripping (`force` ensures skull stripping,
        `skip` ignores skull stripping, and `auto` automatically ignores skull stripping
        if pre-stripped brains are detected).
    skull_strip_template : :py:class:`~niworkflows.utils.spaces.Reference`
        Spatial reference to use in atlas-based brain extraction.
    spaces : :py:class:`~niworkflows.utils.spaces.SpatialReferences`
        Object containing standard and nonstandard space specifications.
    subject_id : :obj:`str`
        List of subject labels
    bids_filters : dict
        Provides finer specification of the pipeline input files through pybids entities filters.
        A dict with the following structure {<suffix>:{<entity>:<filter>,...},...}

    Inputs
    ------
    subjects_dir
        FreeSurfer SUBJECTS_DIR

    """
    from ..interfaces.reports import AboutSummary, SubjectSummary
    if name in ('single_subject_wf', 'single_subject_smripreptest_wf'):
        # for documentation purposes
        subject_data = {
            't1w': ['/completely/made/up/path/sub-01_T1w.nii.gz'],
        }
    else:
        subject_data = collect_data(layout,
                                    subject_id,
                                    bids_filters=bids_filters)[0]

    if not subject_data['t1w']:
        raise Exception("No T1w images found for participant {}. "
                        "All workflows require T1w images.".format(subject_id))

    workflow = Workflow(name=name)
    workflow.__desc__ = """
Results included in this manuscript come from preprocessing
performed using *sMRIPprep* {smriprep_ver}
(@fmriprep1; @fmriprep2; RRID:SCR_016216),
which is based on *Nipype* {nipype_ver}
(@nipype1; @nipype2; RRID:SCR_002502).

""".format(smriprep_ver=__version__, nipype_ver=nipype_ver)
    workflow.__postdesc__ = """

For more details of the pipeline, see [the section corresponding
to workflows in *sMRIPrep*'s documentation]\
(https://smriprep.readthedocs.io/en/latest/workflows.html \
"sMRIPrep's documentation").


### References

"""

    deriv_cache = None
    if fast_track:
        from ..utils.bids import collect_derivatives
        std_spaces = spaces.get_spaces(nonstandard=False, dim=(3, ))
        deriv_cache = collect_derivatives(
            Path(output_dir) / 'smriprep', subject_id, std_spaces, freesurfer)

    inputnode = pe.Node(niu.IdentityInterface(fields=['subjects_dir']),
                        name='inputnode')

    bidssrc = pe.Node(BIDSDataGrabber(subject_data=subject_data,
                                      anat_only=True),
                      name='bidssrc')

    bids_info = pe.Node(BIDSInfo(bids_dir=layout.root),
                        name='bids_info',
                        run_without_submitting=True)

    summary = pe.Node(
        SubjectSummary(output_spaces=spaces.get_spaces(nonstandard=False)),
        name='summary',
        run_without_submitting=True)

    about = pe.Node(AboutSummary(version=__version__,
                                 command=' '.join(sys.argv)),
                    name='about',
                    run_without_submitting=True)

    ds_report_summary = pe.Node(DerivativesDataSink(
        base_directory=output_dir,
        dismiss_entities=("session", ),
        desc='summary',
        datatype="figures"),
                                name='ds_report_summary',
                                run_without_submitting=True)

    ds_report_about = pe.Node(DerivativesDataSink(
        base_directory=output_dir,
        dismiss_entities=("session", ),
        desc='about',
        datatype="figures"),
                              name='ds_report_about',
                              run_without_submitting=True)

    # Preprocessing of T1w (includes registration to MNI)
    anat_preproc_wf = init_anat_preproc_wf(
        bids_root=layout.root,
        debug=debug,
        existing_derivatives=deriv_cache,
        freesurfer=freesurfer,
        hires=hires,
        longitudinal=longitudinal,
        name="anat_preproc_wf",
        t1w=subject_data['t1w'],
        omp_nthreads=omp_nthreads,
        output_dir=output_dir,
        skull_strip_fixed_seed=skull_strip_fixed_seed,
        skull_strip_mode=skull_strip_mode,
        skull_strip_template=skull_strip_template,
        spaces=spaces,
    )

    workflow.connect([
        (inputnode, anat_preproc_wf, [('subjects_dir',
                                       'inputnode.subjects_dir')]),
        (bidssrc, bids_info, [(('t1w', fix_multi_T1w_source_name), 'in_file')
                              ]),
        (inputnode, summary, [('subjects_dir', 'subjects_dir')]),
        (bidssrc, summary, [('t1w', 't1w'), ('t2w', 't2w')]),
        (bids_info, summary, [('subject', 'subject_id')]),
        (bids_info, anat_preproc_wf, [(('subject', _prefix),
                                       'inputnode.subject_id')]),
        (bidssrc, anat_preproc_wf, [('t1w', 'inputnode.t1w'),
                                    ('t2w', 'inputnode.t2w'),
                                    ('roi', 'inputnode.roi'),
                                    ('flair', 'inputnode.flair')]),
        (bidssrc, ds_report_summary, [(('t1w', fix_multi_T1w_source_name),
                                       'source_file')]),
        (summary, ds_report_summary, [('out_report', 'in_file')]),
        (bidssrc, ds_report_about, [(('t1w', fix_multi_T1w_source_name),
                                     'source_file')]),
        (about, ds_report_about, [('out_report', 'in_file')]),
    ])

    return workflow
示例#31
0
def init_anat_norm_wf(
    *,
    debug,
    omp_nthreads,
    templates,
    name="anat_norm_wf",
):
    """
    Build an individual spatial normalization workflow using ``antsRegistration``.

    Workflow Graph
        .. workflow ::
            :graph2use: orig
            :simple_form: yes

            from smriprep.workflows.norm import init_anat_norm_wf
            wf = init_anat_norm_wf(
                debug=False,
                omp_nthreads=1,
                templates=['MNI152NLin2009cAsym', 'MNI152NLin6Asym'],
            )

    .. important::
        This workflow defines an iterable input over the input parameter ``templates``,
        so Nipype will produce one copy of the downstream workflows which connect
        ``poutputnode.template`` or ``poutputnode.template_spec`` to their inputs
        (``poutputnode`` stands for *parametric output node*).
        Nipype refers to this expansion of the graph as *parameterized execution*.
        If a joint list of values is required (and thus cutting off parameterization),
        please use the equivalent outputs of ``outputnode`` (which *joins* all the
        parameterized execution paths).

    Parameters
    ----------
    debug : :obj:`bool`
        Apply sloppy arguments to speed up processing. Use with caution,
        registration processes will be very inaccurate.
    omp_nthreads : :obj:`int`
        Maximum number of threads an individual process may use.
    templates : :obj:`list` of :obj:`str`
        List of standard space fullnames (e.g., ``MNI152NLin6Asym``
        or ``MNIPediatricAsym:cohort-4``) which are targets for spatial
        normalization.

    Inputs
    ------
    moving_image
        The input image that will be normalized to standard space.
    moving_mask
        A precise brain mask separating skull/skin/fat from brain
        structures.
    moving_segmentation
        A brain tissue segmentation of the ``moving_image``.
    moving_tpms
        tissue probability maps (TPMs) corresponding to the
        ``moving_segmentation``.
    lesion_mask
        (optional) A mask to exclude regions from the cost-function
        input domain to enable standardization of lesioned brains.
    orig_t1w
        The original T1w image from the BIDS structure.
    template
        Template name and specification

    Outputs
    -------
    standardized
        The T1w after spatial normalization, in template space.
    anat2std_xfm
        The T1w-to-template transform.
    std2anat_xfm
        The template-to-T1w transform.
    std_mask
        The ``moving_mask`` in template space (matches ``standardized`` output).
    std_dseg
        The ``moving_segmentation`` in template space (matches ``standardized``
        output).
    std_tpms
        The ``moving_tpms`` in template space (matches ``standardized`` output).
    template
        Template name extracted from the input parameter ``template``, for further
        use in downstream nodes.
    template_spec
        Template specifications extracted from the input parameter ``template``, for
        further use in downstream nodes.

    """
    ntpls = len(templates)
    workflow = Workflow(name=name)

    if templates:
        workflow.__desc__ = """\
Volume-based spatial normalization to {targets} ({targets_id}) was performed through
nonlinear registration with `antsRegistration` (ANTs {ants_ver}),
using brain-extracted versions of both T1w reference and the T1w template.
The following template{tpls} selected for spatial normalization:
""".format(
            ants_ver=ANTsInfo.version() or "(version unknown)",
            targets="%s standard space%s" % (
                defaultdict("several".format, {
                    1: "one",
                    2: "two",
                    3: "three",
                    4: "four"
                })[ntpls],
                "s" * (ntpls != 1),
            ),
            targets_id=", ".join(templates),
            tpls=(" was", "s were")[ntpls != 1],
        )

        # Append template citations to description
        for template in templates:
            template_meta = get_metadata(template.split(":")[0])
            template_refs = ["@%s" % template.split(":")[0].lower()]

            if template_meta.get("RRID", None):
                template_refs += ["RRID:%s" % template_meta["RRID"]]

            workflow.__desc__ += """\
*{template_name}* [{template_refs}; TemplateFlow ID: {template}]""".format(
                template=template,
                template_name=template_meta["Name"],
                template_refs=", ".join(template_refs),
            )
            workflow.__desc__ += ".\n" if template == templates[-1] else ", "

    inputnode = pe.Node(
        niu.IdentityInterface(fields=[
            "lesion_mask",
            "moving_image",
            "moving_mask",
            "moving_segmentation",
            "moving_tpms",
            "orig_t1w",
            "template",
        ]),
        name="inputnode",
    )
    inputnode.iterables = [("template", templates)]

    out_fields = [
        "anat2std_xfm",
        "standardized",
        "std2anat_xfm",
        "std_dseg",
        "std_mask",
        "std_tpms",
        "template",
        "template_spec",
    ]
    poutputnode = pe.Node(niu.IdentityInterface(fields=out_fields),
                          name="poutputnode")

    split_desc = pe.Node(TemplateDesc(),
                         run_without_submitting=True,
                         name="split_desc")

    tf_select = pe.Node(
        TemplateFlowSelect(resolution=1 + debug),
        name="tf_select",
        run_without_submitting=True,
    )

    # With the improvements from nipreps/niworkflows#342 this truncation is now necessary
    trunc_mov = pe.Node(
        ants.ImageMath(operation="TruncateImageIntensity",
                       op2="0.01 0.999 256"),
        name="trunc_mov",
    )

    registration = pe.Node(
        SpatialNormalization(
            float=True,
            flavor=["precise", "testing"][debug],
        ),
        name="registration",
        n_procs=omp_nthreads,
        mem_gb=2,
    )

    # Resample T1w-space inputs
    tpl_moving = pe.Node(
        ApplyTransforms(
            dimension=3,
            default_value=0,
            float=True,
            interpolation="LanczosWindowedSinc",
        ),
        name="tpl_moving",
    )

    std_mask = pe.Node(ApplyTransforms(interpolation="MultiLabel"),
                       name="std_mask")
    std_dseg = pe.Node(ApplyTransforms(interpolation="MultiLabel"),
                       name="std_dseg")

    std_tpms = pe.MapNode(
        ApplyTransforms(dimension=3,
                        default_value=0,
                        float=True,
                        interpolation="Gaussian"),
        iterfield=["input_image"],
        name="std_tpms",
    )

    # fmt:off
    workflow.connect([
        (inputnode, split_desc, [('template', 'template')]),
        (inputnode, poutputnode, [('template', 'template')]),
        (inputnode, trunc_mov, [('moving_image', 'op1')]),
        (inputnode, registration, [('moving_mask', 'moving_mask'),
                                   ('lesion_mask', 'lesion_mask')]),
        (inputnode, tpl_moving, [('moving_image', 'input_image')]),
        (inputnode, std_mask, [('moving_mask', 'input_image')]),
        (split_desc, tf_select, [('name', 'template'),
                                 ('spec', 'template_spec')]),
        (split_desc, registration, [('name', 'template'),
                                    ('spec', 'template_spec')]),
        (tf_select, tpl_moving, [('t1w_file', 'reference_image')]),
        (tf_select, std_mask, [('t1w_file', 'reference_image')]),
        (tf_select, std_dseg, [('t1w_file', 'reference_image')]),
        (tf_select, std_tpms, [('t1w_file', 'reference_image')]),
        (trunc_mov, registration, [('output_image', 'moving_image')]),
        (registration, tpl_moving, [('composite_transform', 'transforms')]),
        (registration, std_mask, [('composite_transform', 'transforms')]),
        (inputnode, std_dseg, [('moving_segmentation', 'input_image')]),
        (registration, std_dseg, [('composite_transform', 'transforms')]),
        (inputnode, std_tpms, [('moving_tpms', 'input_image')]),
        (registration, std_tpms, [('composite_transform', 'transforms')]),
        (registration, poutputnode, [('composite_transform', 'anat2std_xfm'),
                                     ('inverse_composite_transform',
                                      'std2anat_xfm')]),
        (tpl_moving, poutputnode, [('output_image', 'standardized')]),
        (std_mask, poutputnode, [('output_image', 'std_mask')]),
        (std_dseg, poutputnode, [('output_image', 'std_dseg')]),
        (std_tpms, poutputnode, [('output_image', 'std_tpms')]),
        (split_desc, poutputnode, [('spec', 'template_spec')]),
    ])
    # fmt:on

    # Provide synchronized output
    outputnode = pe.JoinNode(
        niu.IdentityInterface(fields=out_fields),
        name="outputnode",
        joinsource="inputnode",
    )
    # fmt:off
    workflow.connect([
        (poutputnode, outputnode, [(f, f) for f in out_fields]),
    ])
    # fmt:on

    return workflow
示例#32
0
def init_3dQwarp_wf(omp_nthreads=1, debug=False, name="pepolar_estimate_wf"):
    """
    Create the PEPOLAR field estimation workflow based on AFNI's ``3dQwarp``.

    This workflow takes in two EPI files that MUST have opposed
    :abbr:`PE (phase-encoding)` direction.
    Therefore, EPIs with orthogonal PE directions are not supported.

    Workflow Graph
        .. workflow ::
            :graph2use: orig
            :simple_form: yes

            from sdcflows.workflows.fit.pepolar import init_3dQwarp_wf
            wf = init_3dQwarp_wf()

    Parameters
    ----------
    debug : :obj:`bool`
        Whether a fast configuration of topup (less accurate) should be applied.
    name : :obj:`str`
        Name for this workflow
    omp_nthreads : :obj:`int`
        Parallelize internal tasks across the number of CPUs given by this option.

    Inputs
    ------
    in_data : :obj:`list` of :obj:`str`
        A list of two EPI files, the first of which will be taken as reference.

    Outputs
    -------
    fmap : :obj:`str`
        The path of the estimated fieldmap.
    fmap_ref : :obj:`str`
        The path of an unwarped conversion of the first element of ``in_data``.

    """
    from nipype.interfaces import afni
    from niworkflows.interfaces.header import CopyHeader
    from niworkflows.interfaces.fixes import (
        FixHeaderRegistration as Registration,
        FixHeaderApplyTransforms as ApplyTransforms,
    )
    from niworkflows.interfaces.freesurfer import StructuralReference
    from niworkflows.func.util import init_enhance_and_skullstrip_bold_wf
    from ...utils.misc import front as _front, last as _last
    from ...interfaces.utils import Flatten, ConvertWarp

    workflow = Workflow(name=name)
    workflow.__desc__ = f"""{_PEPOLAR_DESC} \
with `3dQwarp` (@afni; AFNI {''.join(['%02d' % v for v in afni.Info().version() or []])}).
"""

    inputnode = pe.Node(niu.IdentityInterface(fields=["in_data", "metadata"]),
                        name="inputnode")

    outputnode = pe.Node(niu.IdentityInterface(fields=["fmap", "fmap_ref"]),
                         name="outputnode")

    flatten = pe.Node(Flatten(), name="flatten")
    sort_pe = pe.Node(
        niu.Function(function=_sorted_pe,
                     output_names=["sorted", "qwarp_args"]),
        name="sort_pe",
        run_without_submitting=True,
    )

    merge_pes = pe.MapNode(
        StructuralReference(
            auto_detect_sensitivity=True,
            initial_timepoint=1,
            fixed_timepoint=True,  # Align to first image
            intensity_scaling=True,
            # 7-DOF (rigid + intensity)
            no_iteration=True,
            subsample_threshold=200,
            out_file="template.nii.gz",
        ),
        name="merge_pes",
        iterfield=["in_files"],
    )

    pe0_wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=omp_nthreads,
                                                 name="pe0_wf")
    pe1_wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=omp_nthreads,
                                                 name="pe1_wf")

    align_pes = pe.Node(
        Registration(
            from_file=_pkg_fname("sdcflows", "data/translation_rigid.json"),
            output_warped_image=True,
        ),
        name="align_pes",
        n_procs=omp_nthreads,
    )

    qwarp = pe.Node(
        afni.QwarpPlusMinus(
            blur=[-1, -1],
            environ={"OMP_NUM_THREADS": f"{min(omp_nthreads, 4)}"},
            minpatch=9,
            nopadWARP=True,
            noweight=True,
            pblur=[0.05, 0.05],
        ),
        name="qwarp",
        n_procs=min(omp_nthreads, 4),
    )

    to_ants = pe.Node(ConvertWarp(), name="to_ants", mem_gb=0.01)

    cphdr_warp = pe.Node(CopyHeader(), name="cphdr_warp", mem_gb=0.01)

    unwarp_reference = pe.Node(
        ApplyTransforms(
            dimension=3,
            float=True,
            interpolation="LanczosWindowedSinc",
        ),
        name="unwarp_reference",
    )

    # fmt: off
    workflow.connect([
        (inputnode, flatten, [("in_data", "in_data"),
                              ("metadata", "in_meta")]),
        (flatten, sort_pe, [("out_list", "inlist")]),
        (sort_pe, qwarp, [("qwarp_args", "args")]),
        (sort_pe, merge_pes, [("sorted", "in_files")]),
        (merge_pes, pe0_wf, [(("out_file", _front), "inputnode.in_file")]),
        (merge_pes, pe1_wf, [(("out_file", _last), "inputnode.in_file")]),
        (pe0_wf, align_pes, [("outputnode.skull_stripped_file", "fixed_image")
                             ]),
        (pe1_wf, align_pes, [("outputnode.skull_stripped_file", "moving_image")
                             ]),
        (pe0_wf, qwarp, [("outputnode.skull_stripped_file", "in_file")]),
        (align_pes, qwarp, [("warped_image", "base_file")]),
        (inputnode, cphdr_warp, [(("in_data", _front), "hdr_file")]),
        (qwarp, cphdr_warp, [("source_warp", "in_file")]),
        (cphdr_warp, to_ants, [("out_file", "in_file")]),
        (to_ants, unwarp_reference, [("out_file", "transforms")]),
        (inputnode, unwarp_reference, [("in_reference", "reference_image"),
                                       ("in_reference", "input_image")]),
        (unwarp_reference, outputnode, [("output_image", "fmap_ref")]),
        (to_ants, outputnode, [("out_file", "fmap")]),
    ])
    # fmt: on
    return workflow
示例#33
0
def init_bold_reference_wf(omp_nthreads, bold_file=None, pre_mask=False,
                           name='bold_reference_wf', gen_report=False):
    """
    This workflow generates reference BOLD images for a series

    The raw reference image is the target of :abbr:`HMC (head motion correction)`, and a
    contrast-enhanced reference is the subject of distortion correction, as well as
    boundary-based registration to T1w and template spaces.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold import init_bold_reference_wf
        wf = init_bold_reference_wf(omp_nthreads=1)

    **Parameters**

        bold_file : str
            BOLD series NIfTI file
        omp_nthreads : int
            Maximum number of threads an individual process may use
        name : str
            Name of workflow (default: ``bold_reference_wf``)
        gen_report : bool
            Whether a mask report node should be appended in the end
        enhance_t2 : bool
            Perform logarithmic transform of input BOLD image to improve contrast
            before calculating the preliminary mask

    **Inputs**

        bold_file
            BOLD series NIfTI file
        bold_mask : bool
            A tentative brain mask to initialize the workflow (requires ``pre_mask``
            parameter set ``True``).

    **Outputs**

        bold_file
            Validated BOLD series NIfTI file
        raw_ref_image
            Reference image to which BOLD series is motion corrected
        skip_vols
            Number of non-steady-state volumes detected at beginning of ``bold_file``
        ref_image
            Contrast-enhanced reference image
        ref_image_brain
            Skull-stripped reference image
        bold_mask
            Skull-stripping mask of reference image
        validation_report
            HTML reportlet indicating whether ``bold_file`` had a valid affine


    **Subworkflows**

        * :py:func:`~fmriprep.workflows.bold.util.init_enhance_and_skullstrip_wf`

    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
First, a reference volume and its skull-stripped version were generated
using a custom methodology of *fMRIPrep*.
"""
    inputnode = pe.Node(niu.IdentityInterface(fields=['bold_file', 'sbref_file', 'bold_mask']),
                        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(fields=['bold_file', 'raw_ref_image', 'skip_vols', 'ref_image',
                                      'ref_image_brain', 'bold_mask', 'validation_report',
                                      'mask_report']),
        name='outputnode')

    # Simplify manually setting input image
    if bold_file is not None:
        inputnode.inputs.bold_file = bold_file

    validate = pe.Node(ValidateImage(), name='validate', mem_gb=DEFAULT_MEMORY_MIN_GB)

    gen_ref = pe.Node(EstimateReferenceImage(), name="gen_ref",
                      mem_gb=1)  # OE: 128x128x128x50 * 64 / 8 ~ 900MB.
    # Re-run validation; no effect if no sbref; otherwise apply same validation to sbref as bold
    validate_ref = pe.Node(ValidateImage(), name='validate_ref', mem_gb=DEFAULT_MEMORY_MIN_GB)
    enhance_and_skullstrip_bold_wf = init_enhance_and_skullstrip_bold_wf(
        omp_nthreads=omp_nthreads, pre_mask=pre_mask)

    workflow.connect([
        (inputnode, enhance_and_skullstrip_bold_wf, [('bold_mask', 'inputnode.pre_mask')]),
        (inputnode, validate, [('bold_file', 'in_file')]),
        (inputnode, gen_ref, [('sbref_file', 'sbref_file')]),
        (validate, gen_ref, [('out_file', 'in_file')]),
        (gen_ref, validate_ref, [('ref_image', 'in_file')]),
        (validate_ref, enhance_and_skullstrip_bold_wf, [('out_file', 'inputnode.in_file')]),
        (validate, outputnode, [('out_file', 'bold_file'),
                                ('out_report', 'validation_report')]),
        (gen_ref, outputnode, [('n_volumes_to_discard', 'skip_vols')]),
        (validate_ref, outputnode, [('out_file', 'raw_ref_image')]),
        (enhance_and_skullstrip_bold_wf, outputnode, [
            ('outputnode.bias_corrected_file', 'ref_image'),
            ('outputnode.mask_file', 'bold_mask'),
            ('outputnode.skull_stripped_file', 'ref_image_brain')]),
    ])

    if gen_report:
        mask_reportlet = pe.Node(SimpleShowMaskRPT(), name='mask_reportlet')
        workflow.connect([
            (enhance_and_skullstrip_bold_wf, mask_reportlet, [
                ('outputnode.bias_corrected_file', 'background_file'),
                ('outputnode.mask_file', 'mask_file'),
            ]),
        ])

    return workflow
示例#34
0
def init_single_subject_wf(
        layout, subject_id, task_id, echo_idx, name, reportlets_dir,
        output_dir, ignore, debug, low_mem, anat_only, longitudinal, t2s_coreg,
        omp_nthreads, skull_strip_template, skull_strip_fixed_seed, freesurfer,
        output_spaces, template, medial_surface_nan, cifti_output, hires,
        use_bbr, bold2t1w_dof, fmap_bspline, fmap_demean, use_syn, force_syn,
        template_out_grid, use_aroma, aroma_melodic_dim, err_on_aroma_warn):
    """
    This workflow organizes the preprocessing pipeline for a single subject.
    It collects and reports information about the subject, and prepares
    sub-workflows to perform anatomical and functional preprocessing.

    Anatomical preprocessing is performed in a single workflow, regardless of
    the number of sessions.
    Functional preprocessing is performed using a separate workflow for each
    individual BOLD series.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.base import init_single_subject_wf
        from collections import namedtuple
        BIDSLayout = namedtuple('BIDSLayout', ['root'], defaults='.')
        wf = init_single_subject_wf(layout=BIDSLayout(),
                                    subject_id='test',
                                    task_id='',
                                    echo_idx=None,
                                    name='single_subject_wf',
                                    reportlets_dir='.',
                                    output_dir='.',
                                    ignore=[],
                                    debug=False,
                                    low_mem=False,
                                    anat_only=False,
                                    longitudinal=False,
                                    t2s_coreg=False,
                                    omp_nthreads=1,
                                    skull_strip_template='OASIS30ANTs',
                                    skull_strip_fixed_seed=False,
                                    freesurfer=True,
                                    template='MNI152NLin2009cAsym',
                                    output_spaces=['T1w', 'fsnative',
                                                  'template', 'fsaverage5'],
                                    medial_surface_nan=False,
                                    cifti_output=False,
                                    hires=True,
                                    use_bbr=True,
                                    bold2t1w_dof=9,
                                    fmap_bspline=False,
                                    fmap_demean=True,
                                    use_syn=True,
                                    force_syn=True,
                                    template_out_grid='native',
                                    use_aroma=False,
                                    aroma_melodic_dim=-200,
                                    err_on_aroma_warn=False)

    Parameters

        layout : BIDSLayout object
            BIDS dataset layout
        subject_id : str
            List of subject labels
        task_id : str or None
            Task ID of BOLD series to preprocess, or ``None`` to preprocess all
        echo_idx : int or None
            Index of echo to preprocess in multiecho BOLD series,
            or ``None`` to preprocess all
        name : str
            Name of workflow
        ignore : list
            Preprocessing steps to skip (may include "slicetiming", "fieldmaps")
        debug : bool
            Enable debugging outputs
        low_mem : bool
            Write uncompressed .nii files in some cases to reduce memory usage
        anat_only : bool
            Disable functional workflows
        longitudinal : bool
            Treat multiple sessions as longitudinal (may increase runtime)
            See sub-workflows for specific differences
        t2s_coreg : bool
            For multi-echo EPI, use the calculated T2*-map for T2*-driven coregistration
        omp_nthreads : int
            Maximum number of threads an individual process may use
        skull_strip_template : str
            Name of ANTs skull-stripping template ('OASIS30ANTs' or 'NKI')
        skull_strip_fixed_seed : bool
            Do not use a random seed for skull-stripping - will ensure
            run-to-run replicability when used with --omp-nthreads 1
        reportlets_dir : str
            Directory in which to save reportlets
        output_dir : str
            Directory in which to save derivatives
        freesurfer : bool
            Enable FreeSurfer surface reconstruction (may increase runtime)
        output_spaces : list
            List of output spaces functional images are to be resampled to.
            Some parts of pipeline will only be instantiated for some output spaces.

            Valid spaces:

             - T1w
             - template
             - fsnative
             - fsaverage (or other pre-existing FreeSurfer templates)
        template : str
            Name of template targeted by ``template`` output space
        medial_surface_nan : bool
            Replace medial wall values with NaNs on functional GIFTI files
        cifti_output : bool
            Generate bold CIFTI file in output spaces
        hires : bool
            Enable sub-millimeter preprocessing in FreeSurfer
        use_bbr : bool or None
            Enable/disable boundary-based registration refinement.
            If ``None``, test BBR result for distortion before accepting.
        bold2t1w_dof : 6, 9 or 12
            Degrees-of-freedom for BOLD-T1w registration
        fmap_bspline : bool
            **Experimental**: Fit B-Spline field using least-squares
        fmap_demean : bool
            Demean voxel-shift map during unwarp
        use_syn : bool
            **Experimental**: Enable ANTs SyN-based susceptibility distortion correction (SDC).
            If fieldmaps are present and enabled, this is not run, by default.
        force_syn : bool
            **Temporary**: Always run SyN-based SDC
        template_out_grid : str
            Keyword ('native', '1mm' or '2mm') or path of custom reference
            image for normalization
        use_aroma : bool
            Perform ICA-AROMA on MNI-resampled functional series
        err_on_aroma_warn : bool
            Do not fail on ICA-AROMA errors

    Inputs

        subjects_dir
            FreeSurfer SUBJECTS_DIR

    """
    if name in ('single_subject_wf', 'single_subject_fmripreptest_wf'):
        # for documentation purposes
        subject_data = {
            't1w': ['/completely/made/up/path/sub-01_T1w.nii.gz'],
            'bold': ['/completely/made/up/path/sub-01_task-nback_bold.nii.gz']
        }
    else:
        subject_data = collect_data(layout, subject_id, task_id, echo_idx)[0]

    # Make sure we always go through these two checks
    if not anat_only and subject_data['bold'] == []:
        raise Exception("No BOLD images found for participant {} and task {}. "
                        "All workflows require BOLD images.".format(
                            subject_id, task_id if task_id else '<all>'))

    if not subject_data['t1w']:
        raise Exception("No T1w images found for participant {}. "
                        "All workflows require T1w images.".format(subject_id))

    workflow = Workflow(name=name)
    workflow.__desc__ = """
Results included in this manuscript come from preprocessing
performed using *fMRIPrep* {fmriprep_ver}
(@fmriprep1; @fmriprep2; RRID:SCR_016216),
which is based on *Nipype* {nipype_ver}
(@nipype1; @nipype2; RRID:SCR_002502).

""".format(fmriprep_ver=__version__, nipype_ver=nipype_ver)
    workflow.__postdesc__ = """

Many internal operations of *fMRIPrep* use
*Nilearn* {nilearn_ver} [@nilearn, RRID:SCR_001362],
mostly within the functional processing workflow.
For more details of the pipeline, see [the section corresponding
to workflows in *fMRIPrep*'s documentation]\
(https://fmriprep.readthedocs.io/en/latest/workflows.html \
"FMRIPrep's documentation").


### References

""".format(nilearn_ver=nilearn_ver)

    inputnode = pe.Node(niu.IdentityInterface(fields=['subjects_dir']),
                        name='inputnode')

    bidssrc = pe.Node(BIDSDataGrabber(subject_data=subject_data,
                                      anat_only=anat_only),
                      name='bidssrc')

    bids_info = pe.Node(BIDSInfo(bids_dir=layout.root, bids_validate=False),
                        name='bids_info')

    summary = pe.Node(SubjectSummary(output_spaces=output_spaces,
                                     template=template),
                      name='summary',
                      run_without_submitting=True)

    about = pe.Node(AboutSummary(version=__version__,
                                 command=' '.join(sys.argv)),
                    name='about',
                    run_without_submitting=True)

    ds_report_summary = pe.Node(DerivativesDataSink(
        base_directory=reportlets_dir, suffix='summary'),
                                name='ds_report_summary',
                                run_without_submitting=True)

    ds_report_about = pe.Node(DerivativesDataSink(
        base_directory=reportlets_dir, suffix='about'),
                              name='ds_report_about',
                              run_without_submitting=True)

    # Preprocessing of T1w (includes registration to MNI)
    anat_preproc_wf = init_anat_preproc_wf(
        bids_root=layout.root,
        debug=debug,
        freesurfer=freesurfer,
        fs_spaces=output_spaces,
        hires=hires,
        longitudinal=longitudinal,
        name="anat_preproc_wf",
        num_t1w=len(subject_data['t1w']),
        omp_nthreads=omp_nthreads,
        output_dir=output_dir,
        reportlets_dir=reportlets_dir,
        skull_strip_fixed_seed=skull_strip_fixed_seed,
        skull_strip_template=skull_strip_template,
        template=template,
    )

    workflow.connect([
        (inputnode, anat_preproc_wf, [('subjects_dir',
                                       'inputnode.subjects_dir')]),
        (bidssrc, bids_info, [(('t1w', fix_multi_T1w_source_name), 'in_file')
                              ]),
        (inputnode, summary, [('subjects_dir', 'subjects_dir')]),
        (bidssrc, summary, [('t1w', 't1w'), ('t2w', 't2w'), ('bold', 'bold')]),
        (bids_info, summary, [('subject', 'subject_id')]),
        (bids_info, anat_preproc_wf, [(('subject', _prefix),
                                       'inputnode.subject_id')]),
        (bidssrc, anat_preproc_wf, [('t1w', 'inputnode.t1w'),
                                    ('t2w', 'inputnode.t2w'),
                                    ('roi', 'inputnode.roi'),
                                    ('flair', 'inputnode.flair')]),
        (bidssrc, ds_report_summary, [(('t1w', fix_multi_T1w_source_name),
                                       'source_file')]),
        (summary, ds_report_summary, [('out_report', 'in_file')]),
        (bidssrc, ds_report_about, [(('t1w', fix_multi_T1w_source_name),
                                     'source_file')]),
        (about, ds_report_about, [('out_report', 'in_file')]),
    ])

    # Overwrite ``out_path_base`` of smriprep's DataSinks
    for node in workflow.list_node_names():
        if node.split('.')[-1].startswith('ds_'):
            workflow.get_node(node).interface.out_path_base = 'fmriprep'

    if anat_only:
        return workflow

    for bold_file in subject_data['bold']:
        func_preproc_wf = init_func_preproc_wf(
            bold_file=bold_file,
            layout=layout,
            ignore=ignore,
            freesurfer=freesurfer,
            use_bbr=use_bbr,
            t2s_coreg=t2s_coreg,
            bold2t1w_dof=bold2t1w_dof,
            reportlets_dir=reportlets_dir,
            output_spaces=output_spaces,
            template=template,
            medial_surface_nan=medial_surface_nan,
            cifti_output=cifti_output,
            output_dir=output_dir,
            omp_nthreads=omp_nthreads,
            low_mem=low_mem,
            fmap_bspline=fmap_bspline,
            fmap_demean=fmap_demean,
            use_syn=use_syn,
            force_syn=force_syn,
            debug=debug,
            template_out_grid=template_out_grid,
            use_aroma=use_aroma,
            aroma_melodic_dim=aroma_melodic_dim,
            err_on_aroma_warn=err_on_aroma_warn,
            num_bold=len(subject_data['bold']))

        workflow.connect([
            (
                anat_preproc_wf,
                func_preproc_wf,
                [
                    (('outputnode.t1_preproc', _pop), 'inputnode.t1_preproc'),
                    ('outputnode.t1_brain', 'inputnode.t1_brain'),
                    ('outputnode.t1_mask', 'inputnode.t1_mask'),
                    ('outputnode.t1_seg', 'inputnode.t1_seg'),
                    ('outputnode.t1_aseg', 'inputnode.t1_aseg'),
                    ('outputnode.t1_aparc', 'inputnode.t1_aparc'),
                    ('outputnode.t1_tpms', 'inputnode.t1_tpms'),
                    ('outputnode.t1_2_mni_forward_transform',
                     'inputnode.t1_2_mni_forward_transform'),
                    ('outputnode.t1_2_mni_reverse_transform',
                     'inputnode.t1_2_mni_reverse_transform'),
                    # Undefined if --no-freesurfer, but this is safe
                    ('outputnode.subjects_dir', 'inputnode.subjects_dir'),
                    ('outputnode.subject_id', 'inputnode.subject_id'),
                    ('outputnode.t1_2_fsnative_forward_transform',
                     'inputnode.t1_2_fsnative_forward_transform'),
                    ('outputnode.t1_2_fsnative_reverse_transform',
                     'inputnode.t1_2_fsnative_reverse_transform')
                ]),
        ])

    return workflow
示例#35
0
def init_bold_t2s_wf(echo_times, mem_gb, omp_nthreads, name='bold_t2s_wf'):
    """
    Combine multiple echos of :abbr:`ME-EPI (multi-echo echo-planar imaging)`.

    This workflow wraps the `tedana`_ `T2* workflow`_ to optimally
    combine multiple echos and derive a T2* map.
    The following steps are performed:

    #. :abbr:`HMC (head motion correction)` on individual echo files.
    #. Compute the T2* map
    #. Create an optimally combined ME-EPI time series

    .. _tedana: https://github.com/me-ica/tedana
    .. _`T2* workflow`: https://tedana.readthedocs.io/en/latest/generated/tedana.workflows.t2smap_workflow.html#tedana.workflows.t2smap_workflow  # noqa

    Parameters
    ----------
    echo_times : :obj:`list`
        list of TEs associated with each echo
    mem_gb : :obj:`float`
        Size of BOLD file in GB
    omp_nthreads : :obj:`int`
        Maximum number of threads an individual process may use
    name : :obj:`str`
        Name of workflow (default: ``bold_t2s_wf``)

    Inputs
    ------
    bold_file
        list of individual echo files

    Outputs
    -------
    bold
        the optimally combined time series for all supplied echos

    """
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow

    workflow = Workflow(name=name)
    workflow.__desc__ = """\
A T2* map was estimated from the preprocessed BOLD by fitting to a monoexponential signal
decay model with nonlinear regression, using T2*/S0 estimates from a log-linear
regression fit as initial values.
For each voxel, the maximal number of echoes with reliable signal in that voxel were
used to fit the model.
The calculated T2* map was then used to optimally combine preprocessed BOLD across
echoes following the method described in [@posse_t2s].
The optimally combined time series was carried forward as the *preprocessed BOLD*.
"""

    inputnode = pe.Node(niu.IdentityInterface(fields=['bold_file']),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=['bold']),
                         name='outputnode')

    LOGGER.log(
        25, 'Generating T2* map and optimally combined ME-EPI time series.')

    t2smap_node = pe.Node(T2SMap(echo_times=echo_times), name='t2smap_node')

    workflow.connect([
        (inputnode, t2smap_node, [('bold_file', 'in_files')]),
        (t2smap_node, outputnode, [('optimal_comb', 'bold')]),
    ])

    return workflow
示例#36
0
def init_syn_sdc_wf(omp_nthreads, epi_pe=None,
                    atlas_threshold=3, name='syn_sdc_wf'):
    """
    Build the *fieldmap-less* susceptibility-distortion estimation workflow.

    This workflow takes a skull-stripped T1w image and reference BOLD image and
    estimates a susceptibility distortion correction warp, using ANTs symmetric
    normalization (SyN) and the average fieldmap atlas described in
    [Treiber2016]_.

    SyN deformation is restricted to the phase-encoding (PE) direction.
    If no PE direction is specified, anterior-posterior PE is assumed.

    SyN deformation is also restricted to regions that are expected to have a
    >3mm (approximately 1 voxel) warp, based on the fieldmap atlas.

    This technique is a variation on those developed in [Huntenburg2014]_ and
    [Wang2017]_.

    Workflow Graph
        .. workflow ::
            :graph2use: orig
            :simple_form: yes

            from sdcflows.workflows.syn import init_syn_sdc_wf
            wf = init_syn_sdc_wf(
                epi_pe='j',
                omp_nthreads=8)

    Inputs
    ------
    in_reference
        reference image
    in_reference_brain
        skull-stripped reference image
    t1w_brain
        skull-stripped, bias-corrected structural image
    std2anat_xfm
        inverse registration transform of T1w image to MNI template

    Outputs
    -------
    out_reference
        the ``in_reference`` image after unwarping
    out_reference_brain
        the ``in_reference_brain`` image after unwarping
    out_warp
        the corresponding :abbr:`DFM (displacements field map)` compatible with
        ANTs
    out_mask
        mask of the unwarped input file

    References
    ----------
    .. [Treiber2016] Treiber, J. M. et al. (2016) Characterization and Correction
        of Geometric Distortions in 814 Diffusion Weighted Images,
        PLoS ONE 11(3): e0152472. doi:`10.1371/journal.pone.0152472
        <https://doi.org/10.1371/journal.pone.0152472>`_.
    .. [Wang2017] Wang S, et al. (2017) Evaluation of Field Map and Nonlinear
        Registration Methods for Correction of Susceptibility Artifacts
        in Diffusion MRI. Front. Neuroinform. 11:17.
        doi:`10.3389/fninf.2017.00017
        <https://doi.org/10.3389/fninf.2017.00017>`_.
    .. [Huntenburg2014] Huntenburg, J. M. (2014) Evaluating Nonlinear
        Coregistration of BOLD EPI and T1w Images. Berlin: Master
        Thesis, Freie Universität. `PDF
        <http://pubman.mpdl.mpg.de/pubman/item/escidoc:2327525:5/component/escidoc:2327523/master_thesis_huntenburg_4686947.pdf>`_.

    """
    if epi_pe is None or epi_pe[0] not in ['i', 'j']:
        LOGGER.warning('Incorrect phase-encoding direction, assuming PA (posterior-to-anterior).')
        epi_pe = 'j'

    workflow = Workflow(name=name)
    workflow.__desc__ = """\
A deformation field to correct for susceptibility distortions was estimated
based on *fMRIPrep*'s *fieldmap-less* approach.
The deformation field is that resulting from co-registering the BOLD reference
to the same-subject T1w-reference with its intensity inverted [@fieldmapless1;
@fieldmapless2].
Registration is performed with `antsRegistration` (ANTs {ants_ver}), and
the process regularized by constraining deformation to be nonzero only
along the phase-encoding direction, and modulated with an average fieldmap
template [@fieldmapless3].
""".format(ants_ver=Registration().version or '<ver>')
    inputnode = pe.Node(
        niu.IdentityInterface(['in_reference', 'in_reference_brain',
                               't1w_brain', 'std2anat_xfm']),
        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(['out_reference', 'out_reference_brain',
                               'out_mask', 'out_warp']),
        name='outputnode')

    # Collect predefined data
    # Atlas image and registration affine
    atlas_img = resource_filename('sdcflows', 'data/fmap_atlas.nii.gz')
    # Registration specifications
    affine_transform = resource_filename('sdcflows', 'data/affine.json')
    syn_transform = resource_filename('sdcflows', 'data/susceptibility_syn.json')

    invert_t1w = pe.Node(Rescale(invert=True), name='invert_t1w',
                         mem_gb=0.3)

    ref_2_t1 = pe.Node(Registration(from_file=affine_transform),
                       name='ref_2_t1', n_procs=omp_nthreads)
    t1_2_ref = pe.Node(ApplyTransforms(invert_transform_flags=[True]),
                       name='t1_2_ref', n_procs=omp_nthreads)

    # 1) BOLD -> T1; 2) MNI -> T1; 3) ATLAS -> MNI
    transform_list = pe.Node(niu.Merge(3), name='transform_list',
                             mem_gb=DEFAULT_MEMORY_MIN_GB)
    transform_list.inputs.in3 = resource_filename(
        'sdcflows', 'data/fmap_atlas_2_MNI152NLin2009cAsym_affine.mat')

    # Inverting (1), then applying in reverse order:
    #
    # ATLAS -> MNI -> T1 -> BOLD
    atlas_2_ref = pe.Node(
        ApplyTransforms(invert_transform_flags=[True, False, False]),
        name='atlas_2_ref', n_procs=omp_nthreads,
        mem_gb=0.3)
    atlas_2_ref.inputs.input_image = atlas_img

    threshold_atlas = pe.Node(
        fsl.maths.MathsCommand(args='-thr {:.8g} -bin'.format(atlas_threshold),
                               output_datatype='char'),
        name='threshold_atlas', mem_gb=0.3)

    fixed_image_masks = pe.Node(niu.Merge(2), name='fixed_image_masks',
                                mem_gb=DEFAULT_MEMORY_MIN_GB)
    fixed_image_masks.inputs.in1 = 'NULL'

    restrict = [[int(epi_pe[0] == 'i'), int(epi_pe[0] == 'j'), 0]] * 2
    syn = pe.Node(
        Registration(from_file=syn_transform, restrict_deformation=restrict),
        name='syn', n_procs=omp_nthreads)

    unwarp_ref = pe.Node(ApplyTransforms(
        dimension=3, float=True, interpolation='LanczosWindowedSinc'),
        name='unwarp_ref')

    skullstrip_bold_wf = init_skullstrip_bold_wf()

    workflow.connect([
        (inputnode, invert_t1w, [('t1w_brain', 'in_file'),
                                 ('in_reference', 'ref_file')]),
        (inputnode, ref_2_t1, [('in_reference_brain', 'moving_image')]),
        (invert_t1w, ref_2_t1, [('out_file', 'fixed_image')]),
        (inputnode, t1_2_ref, [('in_reference', 'reference_image')]),
        (invert_t1w, t1_2_ref, [('out_file', 'input_image')]),
        (ref_2_t1, t1_2_ref, [('forward_transforms', 'transforms')]),
        (ref_2_t1, transform_list, [('forward_transforms', 'in1')]),
        (inputnode, transform_list, [
            ('std2anat_xfm', 'in2')]),
        (inputnode, atlas_2_ref, [('in_reference', 'reference_image')]),
        (transform_list, atlas_2_ref, [('out', 'transforms')]),
        (atlas_2_ref, threshold_atlas, [('output_image', 'in_file')]),
        (threshold_atlas, fixed_image_masks, [('out_file', 'in2')]),
        (inputnode, syn, [('in_reference_brain', 'moving_image')]),
        (t1_2_ref, syn, [('output_image', 'fixed_image')]),
        (fixed_image_masks, syn, [('out', 'fixed_image_masks')]),
        (syn, outputnode, [('forward_transforms', 'out_warp')]),
        (syn, unwarp_ref, [('forward_transforms', 'transforms')]),
        (inputnode, unwarp_ref, [('in_reference', 'reference_image'),
                                 ('in_reference', 'input_image')]),
        (unwarp_ref, skullstrip_bold_wf, [
            ('output_image', 'inputnode.in_file')]),
        (unwarp_ref, outputnode, [('output_image', 'out_reference')]),
        (skullstrip_bold_wf, outputnode, [
            ('outputnode.skull_stripped_file', 'out_reference_brain'),
            ('outputnode.mask_file', 'out_mask')]),
    ])

    return workflow
示例#37
0
文件: base.py 项目: nicholst/fmriprep
def init_single_subject_wf(
    anat_only,
    aroma_melodic_dim,
    bold2t1w_dof,
    cifti_output,
    debug,
    dummy_scans,
    echo_idx,
    err_on_aroma_warn,
    fmap_bspline,
    fmap_demean,
    force_syn,
    freesurfer,
    hires,
    ignore,
    layout,
    longitudinal,
    low_mem,
    medial_surface_nan,
    name,
    omp_nthreads,
    output_dir,
    reportlets_dir,
    regressors_all_comps,
    regressors_dvars_th,
    regressors_fd_th,
    skull_strip_fixed_seed,
    skull_strip_template,
    spaces,
    subject_id,
    t2s_coreg,
    task_id,
    use_aroma,
    use_bbr,
    use_syn,
):
    """
    This workflow organizes the preprocessing pipeline for a single subject.

    It collects and reports information about the subject, and prepares
    sub-workflows to perform anatomical and functional preprocessing.
    Anatomical preprocessing is performed in a single workflow, regardless of
    the number of sessions.
    Functional preprocessing is performed using a separate workflow for each
    individual BOLD series.

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from collections import namedtuple
            from niworkflows.utils.spaces import Reference, SpatialReferences
            from fmriprep.workflows.base import init_single_subject_wf

            BIDSLayout = namedtuple('BIDSLayout', ['root'])
            wf = init_single_subject_wf(
                anat_only=False,
                aroma_melodic_dim=-200,
                bold2t1w_dof=9,
                cifti_output=False,
                debug=False,
                dummy_scans=None,
                echo_idx=None,
                err_on_aroma_warn=False,
                fmap_bspline=False,
                fmap_demean=True,
                force_syn=True,
                freesurfer=True,
                hires=True,
                ignore=[],
                layout=BIDSLayout('.'),
                longitudinal=False,
                low_mem=False,
                medial_surface_nan=False,
                name='single_subject_wf',
                omp_nthreads=1,
                output_dir='.',
                reportlets_dir='.',
                regressors_all_comps=False,
                regressors_dvars_th=1.5,
                regressors_fd_th=0.5,
                skull_strip_fixed_seed=False,
                skull_strip_template=Reference('OASIS30ANTs'),
                spaces=SpatialReferences(
                    spaces=['MNI152Lin',
                            ('fsaverage', {'density': '10k'}),
                            'T1w',
                            'fsnative'],
                    checkpoint=True),
                subject_id='test',
                t2s_coreg=False,
                task_id='',
                use_aroma=False,
                use_bbr=True,
                use_syn=True,
            )

    Parameters
    ----------
    anat_only : bool
        Disable functional workflows
    aroma_melodic_dim : int
        Maximum number of components identified by MELODIC within ICA-AROMA
        (default is -200, i.e., no limitation).
    bold2t1w_dof : 6, 9 or 12
        Degrees-of-freedom for BOLD-T1w registration
    cifti_output : bool
        Generate bold CIFTI file in output spaces
    debug : bool
        Enable debugging outputs
    dummy_scans : int or None
        Number of volumes to consider as non steady state
    echo_idx : int or None
        Index of echo to preprocess in multiecho BOLD series,
        or ``None`` to preprocess all
    err_on_aroma_warn : bool
        Do not fail on ICA-AROMA errors
    fmap_bspline : bool
        **Experimental**: Fit B-Spline field using least-squares
    fmap_demean : bool
        Demean voxel-shift map during unwarp
    force_syn : bool
        **Temporary**: Always run SyN-based SDC
    freesurfer : bool
        Enable FreeSurfer surface reconstruction (may increase runtime)
    hires : bool
        Enable sub-millimeter preprocessing in FreeSurfer
    ignore : list
        Preprocessing steps to skip (may include "slicetiming", "fieldmaps")
    layout : BIDSLayout object
        BIDS dataset layout
    longitudinal : bool
        Treat multiple sessions as longitudinal (may increase runtime)
        See sub-workflows for specific differences
    low_mem : bool
        Write uncompressed .nii files in some cases to reduce memory usage
    medial_surface_nan : bool
        Replace medial wall values with NaNs on functional GIFTI files
    name : str
        Name of workflow
    omp_nthreads : int
        Maximum number of threads an individual process may use
    output_dir : str
        Directory in which to save derivatives
    reportlets_dir : str
        Directory in which to save reportlets
    regressors_all_comps
        Return all CompCor component time series instead of the top fraction
    regressors_fd_th
        Criterion for flagging framewise displacement outliers
    regressors_dvars_th
        Criterion for flagging DVARS outliers
    skull_strip_fixed_seed : bool
        Do not use a random seed for skull-stripping - will ensure
        run-to-run replicability when used with --omp-nthreads 1
    skull_strip_template : tuple
        Name of target template for brain extraction with ANTs' ``antsBrainExtraction``,
        and corresponding dictionary of output-space modifiers.
    subject_id : str
        List of subject labels
    t2s_coreg : bool
        For multi-echo EPI, use the calculated T2*-map for T2*-driven coregistration
    spaces : :py:class:`~niworkflows.utils.spaces.SpatialReferences`
        A container for storing, organizing, and parsing spatial normalizations. Composed of
        :py:class:`~niworkflows.utils.spaces.Reference` objects representing spatial references.
        Each ``Reference`` contains a space, which is a string of either TemplateFlow template IDs
        (e.g., ``MNI152Lin``, ``MNI152NLin6Asym``, ``MNIPediatricAsym``), nonstandard references
        (e.g., ``T1w`` or ``anat``, ``sbref``, ``run``, etc.), or a custom template located in
        the TemplateFlow root directory. Each ``Reference`` may also contain a spec, which is a
        dictionary with template specifications (e.g., a specification of ``{'resolution': 2}``
        would lead to resampling on a 2mm resolution of the space).
    task_id : str or None
        Task ID of BOLD series to preprocess, or ``None`` to preprocess all
    use_aroma : bool
        Perform ICA-AROMA on MNI-resampled functional series
    use_bbr : bool or None
        Enable/disable boundary-based registration refinement.
        If ``None``, test BBR result for distortion before accepting.
    use_syn : bool
        **Experimental**: Enable ANTs SyN-based susceptibility distortion correction (SDC).
        If fieldmaps are present and enabled, this is not run, by default.

    Inputs
    ------
    subjects_dir : str
        FreeSurfer's ``$SUBJECTS_DIR``.

    """
    if name in ('single_subject_wf', 'single_subject_fmripreptest_wf'):
        # for documentation purposes
        subject_data = {
            't1w': ['/completely/made/up/path/sub-01_T1w.nii.gz'],
            'bold': ['/completely/made/up/path/sub-01_task-nback_bold.nii.gz']
        }
    else:
        subject_data = collect_data(layout, subject_id, task_id, echo_idx)[0]

    # Make sure we always go through these two checks
    if not anat_only and subject_data['bold'] == []:
        raise Exception("No BOLD images found for participant {} and task {}. "
                        "All workflows require BOLD images.".format(
                            subject_id, task_id if task_id else '<all>'))

    if not subject_data['t1w']:
        raise Exception("No T1w images found for participant {}. "
                        "All workflows require T1w images.".format(subject_id))

    workflow = Workflow(name=name)
    workflow.__desc__ = """
Results included in this manuscript come from preprocessing
performed using *fMRIPrep* {fmriprep_ver}
(@fmriprep1; @fmriprep2; RRID:SCR_016216),
which is based on *Nipype* {nipype_ver}
(@nipype1; @nipype2; RRID:SCR_002502).

""".format(fmriprep_ver=__version__, nipype_ver=nipype_ver)
    workflow.__postdesc__ = """

Many internal operations of *fMRIPrep* use
*Nilearn* {nilearn_ver} [@nilearn, RRID:SCR_001362],
mostly within the functional processing workflow.
For more details of the pipeline, see [the section corresponding
to workflows in *fMRIPrep*'s documentation]\
(https://fmriprep.readthedocs.io/en/latest/workflows.html \
"FMRIPrep's documentation").


### Copyright Waiver

The above boilerplate text was automatically generated by fMRIPrep
with the express intention that users should copy and paste this
text into their manuscripts *unchanged*.
It is released under the [CC0]\
(https://creativecommons.org/publicdomain/zero/1.0/) license.

### References

""".format(nilearn_ver=NILEARN_VERSION)

    inputnode = pe.Node(niu.IdentityInterface(fields=['subjects_dir']),
                        name='inputnode')

    bidssrc = pe.Node(BIDSDataGrabber(subject_data=subject_data, anat_only=anat_only),
                      name='bidssrc')

    bids_info = pe.Node(BIDSInfo(
        bids_dir=layout.root, bids_validate=False), name='bids_info')

    summary = pe.Node(SubjectSummary(std_spaces=spaces.get_spaces(nonstandard=False),
                                     nstd_spaces=spaces.get_spaces(standard=False)),
                      name='summary', run_without_submitting=True)

    about = pe.Node(AboutSummary(version=__version__,
                                 command=' '.join(sys.argv)),
                    name='about', run_without_submitting=True)

    ds_report_summary = pe.Node(
        DerivativesDataSink(base_directory=reportlets_dir,
                            desc='summary', keep_dtype=True),
        name='ds_report_summary', run_without_submitting=True)

    ds_report_about = pe.Node(
        DerivativesDataSink(base_directory=reportlets_dir,
                            desc='about', keep_dtype=True),
        name='ds_report_about', run_without_submitting=True)

    # Preprocessing of T1w (includes registration to MNI)
    anat_preproc_wf = init_anat_preproc_wf(
        bids_root=layout.root,
        debug=debug,
        freesurfer=freesurfer,
        hires=hires,
        longitudinal=longitudinal,
        name="anat_preproc_wf",
        num_t1w=len(subject_data['t1w']),
        omp_nthreads=omp_nthreads,
        output_dir=output_dir,
        reportlets_dir=reportlets_dir,
        spaces=spaces,
        skull_strip_fixed_seed=skull_strip_fixed_seed,
        skull_strip_template=skull_strip_template,
    )

    workflow.connect([
        (inputnode, anat_preproc_wf, [('subjects_dir', 'inputnode.subjects_dir')]),
        (bidssrc, bids_info, [(('t1w', fix_multi_T1w_source_name), 'in_file')]),
        (inputnode, summary, [('subjects_dir', 'subjects_dir')]),
        (bidssrc, summary, [('t1w', 't1w'),
                            ('t2w', 't2w'),
                            ('bold', 'bold')]),
        (bids_info, summary, [('subject', 'subject_id')]),
        (bids_info, anat_preproc_wf, [(('subject', _prefix), 'inputnode.subject_id')]),
        (bidssrc, anat_preproc_wf, [('t1w', 'inputnode.t1w'),
                                    ('t2w', 'inputnode.t2w'),
                                    ('roi', 'inputnode.roi'),
                                    ('flair', 'inputnode.flair')]),
        (bidssrc, ds_report_summary, [(('t1w', fix_multi_T1w_source_name), 'source_file')]),
        (summary, ds_report_summary, [('out_report', 'in_file')]),
        (bidssrc, ds_report_about, [(('t1w', fix_multi_T1w_source_name), 'source_file')]),
        (about, ds_report_about, [('out_report', 'in_file')]),
    ])

    # Overwrite ``out_path_base`` of smriprep's DataSinks
    for node in workflow.list_node_names():
        if node.split('.')[-1].startswith('ds_'):
            workflow.get_node(node).interface.out_path_base = 'fmriprep'

    if anat_only:
        return workflow

    for bold_file in subject_data['bold']:
        func_preproc_wf = init_func_preproc_wf(
            aroma_melodic_dim=aroma_melodic_dim,
            bold2t1w_dof=bold2t1w_dof,
            bold_file=bold_file,
            cifti_output=cifti_output,
            debug=debug,
            dummy_scans=dummy_scans,
            err_on_aroma_warn=err_on_aroma_warn,
            fmap_bspline=fmap_bspline,
            fmap_demean=fmap_demean,
            force_syn=force_syn,
            freesurfer=freesurfer,
            ignore=ignore,
            layout=layout,
            low_mem=low_mem,
            medial_surface_nan=medial_surface_nan,
            num_bold=len(subject_data['bold']),
            omp_nthreads=omp_nthreads,
            output_dir=output_dir,
            reportlets_dir=reportlets_dir,
            regressors_all_comps=regressors_all_comps,
            regressors_fd_th=regressors_fd_th,
            regressors_dvars_th=regressors_dvars_th,
            spaces=spaces,
            t2s_coreg=t2s_coreg,
            use_aroma=use_aroma,
            use_bbr=use_bbr,
            use_syn=use_syn,
        )

        workflow.connect([
            (anat_preproc_wf, func_preproc_wf,
             [(('outputnode.t1w_preproc', _pop), 'inputnode.t1w_preproc'),
              ('outputnode.t1w_brain', 'inputnode.t1w_brain'),
              ('outputnode.t1w_mask', 'inputnode.t1w_mask'),
              ('outputnode.t1w_dseg', 'inputnode.t1w_dseg'),
              ('outputnode.t1w_aseg', 'inputnode.t1w_aseg'),
              ('outputnode.t1w_aparc', 'inputnode.t1w_aparc'),
              ('outputnode.t1w_tpms', 'inputnode.t1w_tpms'),
              ('outputnode.template', 'inputnode.template'),
              ('outputnode.anat2std_xfm', 'inputnode.anat2std_xfm'),
              ('outputnode.std2anat_xfm', 'inputnode.std2anat_xfm'),
              ('outputnode.joint_template', 'inputnode.joint_template'),
              ('outputnode.joint_anat2std_xfm', 'inputnode.joint_anat2std_xfm'),
              ('outputnode.joint_std2anat_xfm', 'inputnode.joint_std2anat_xfm'),
              # Undefined if --fs-no-reconall, but this is safe
              ('outputnode.subjects_dir', 'inputnode.subjects_dir'),
              ('outputnode.subject_id', 'inputnode.subject_id'),
              ('outputnode.t1w2fsnative_xfm', 'inputnode.t1w2fsnative_xfm'),
              ('outputnode.fsnative2t1w_xfm', 'inputnode.fsnative2t1w_xfm')]),
        ])

    return workflow
示例#38
0
def init_bold_surf_wf(mem_gb,
                      output_spaces,
                      medial_surface_nan,
                      name='bold_surf_wf'):
    """
    This workflow samples functional images to FreeSurfer surfaces

    For each vertex, the cortical ribbon is sampled at six points (spaced 20% of thickness apart)
    and averaged.

    Outputs are in GIFTI format.

    .. workflow::
        :graph2use: colored
        :simple_form: yes

        from fmriprep.workflows.bold import init_bold_surf_wf
        wf = init_bold_surf_wf(mem_gb=0.1,
                               output_spaces=['T1w', 'fsnative',
                                             'template', 'fsaverage5'],
                               medial_surface_nan=False)

    **Parameters**

        output_spaces : list
            List of output spaces functional images are to be resampled to
            Target spaces beginning with ``fs`` will be selected for resampling,
            such as ``fsaverage`` or related template spaces
            If the list contains ``fsnative``, images will be resampled to the
            individual subject's native surface
        medial_surface_nan : bool
            Replace medial wall values with NaNs on functional GIFTI files

    **Inputs**

        source_file
            Motion-corrected BOLD series in T1 space
        t1_preproc
            Bias-corrected structural template image
        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID
        t1_2_fsnative_forward_transform
            LTA-style affine matrix translating from T1w to FreeSurfer-conformed subject space

    **Outputs**

        surfaces
            BOLD series, resampled to FreeSurfer surfaces

    """
    # Ensure volumetric spaces do not sneak into this workflow
    spaces = [space for space in output_spaces if space.startswith('fs')]

    workflow = Workflow(name=name)

    if spaces:
        workflow.__desc__ = """\
The BOLD time-series, were resampled to surfaces on the following
spaces: {out_spaces}.
""".format(out_spaces=', '.join(['*%s*' % s for s in spaces]))
    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'source_file', 't1_preproc', 'subject_id', 'subjects_dir',
        't1_2_fsnative_forward_transform'
    ]),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=['surfaces']),
                         name='outputnode')

    def select_target(subject_id, space):
        """ Given a source subject ID and a target space, get the target subject ID """
        return subject_id if space == 'fsnative' else space

    targets = pe.MapNode(niu.Function(function=select_target),
                         iterfield=['space'],
                         name='targets',
                         mem_gb=DEFAULT_MEMORY_MIN_GB)
    targets.inputs.space = spaces

    # Rename the source file to the output space to simplify naming later
    rename_src = pe.MapNode(niu.Rename(format_string='%(subject)s',
                                       keep_ext=True),
                            iterfield='subject',
                            name='rename_src',
                            run_without_submitting=True,
                            mem_gb=DEFAULT_MEMORY_MIN_GB)
    rename_src.inputs.subject = spaces

    resampling_xfm = pe.Node(LTAConvert(in_lta='identity.nofile',
                                        out_lta=True),
                             name='resampling_xfm')
    set_xfm_source = pe.Node(ConcatenateLTA(out_type='RAS2RAS'),
                             name='set_xfm_source')

    sampler = pe.MapNode(fs.SampleToSurface(sampling_method='average',
                                            sampling_range=(0, 1, 0.2),
                                            sampling_units='frac',
                                            interp_method='trilinear',
                                            cortex_mask=True,
                                            override_reg_subj=True,
                                            out_type='gii'),
                         iterfield=['source_file', 'target_subject'],
                         iterables=('hemi', ['lh', 'rh']),
                         name='sampler',
                         mem_gb=mem_gb * 3)

    medial_nans = pe.MapNode(MedialNaNs(),
                             iterfield=['in_file', 'target_subject'],
                             name='medial_nans',
                             mem_gb=DEFAULT_MEMORY_MIN_GB)

    merger = pe.JoinNode(niu.Merge(1, ravel_inputs=True),
                         name='merger',
                         joinsource='sampler',
                         joinfield=['in1'],
                         run_without_submitting=True,
                         mem_gb=DEFAULT_MEMORY_MIN_GB)

    update_metadata = pe.MapNode(GiftiSetAnatomicalStructure(),
                                 iterfield='in_file',
                                 name='update_metadata',
                                 mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, targets, [('subject_id', 'subject_id')]),
        (inputnode, rename_src, [('source_file', 'in_file')]),
        (inputnode, resampling_xfm, [('source_file', 'source_file'),
                                     ('t1_preproc', 'target_file')]),
        (inputnode, set_xfm_source, [('t1_2_fsnative_forward_transform',
                                      'in_lta2')]),
        (resampling_xfm, set_xfm_source, [('out_lta', 'in_lta1')]),
        (inputnode, sampler, [('subjects_dir', 'subjects_dir'),
                              ('subject_id', 'subject_id')]),
        (set_xfm_source, sampler, [('out_file', 'reg_file')]),
        (targets, sampler, [('out', 'target_subject')]),
        (rename_src, sampler, [('out_file', 'source_file')]),
        (merger, update_metadata, [('out', 'in_file')]),
        (update_metadata, outputnode, [('out_file', 'surfaces')]),
    ])

    if medial_surface_nan:
        workflow.connect([
            (inputnode, medial_nans, [('subjects_dir', 'subjects_dir')]),
            (sampler, medial_nans, [('out_file', 'in_file')]),
            (targets, medial_nans, [('out', 'target_subject')]),
            (medial_nans, merger, [('out_file', 'in1')]),
        ])
    else:
        workflow.connect(sampler, 'out_file', merger, 'in1')

    return workflow
示例#39
0
def init_anat_preproc_wf(bids_root,
                         freesurfer,
                         hires,
                         longitudinal,
                         omp_nthreads,
                         output_dir,
                         output_spaces,
                         num_t1w,
                         reportlets_dir,
                         skull_strip_template,
                         debug=False,
                         name='anat_preproc_wf',
                         skull_strip_fixed_seed=False):
    """
    Stage the anatomical preprocessing steps of *sMRIPrep*.

    This includes:

      - T1w reference: realigning and then averaging T1w images.
      - Brain extraction and INU (bias field) correction.
      - Brain tissue segmentation.
      - Spatial normalization to standard spaces.
      - Surface reconstruction with FreeSurfer_.

    .. include:: ../links.rst

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from collections import OrderedDict
            from smriprep.workflows.anatomical import init_anat_preproc_wf
            wf = init_anat_preproc_wf(
                bids_root='.',
                freesurfer=True,
                hires=True,
                longitudinal=False,
                num_t1w=1,
                omp_nthreads=1,
                output_dir='.',
                output_spaces=OrderedDict([
                    ('MNI152NLin2009cAsym', {}), ('fsaverage5', {})]),
                reportlets_dir='.',
                skull_strip_template=('MNI152NLin2009cAsym', {}),
            )

    Parameters
    ----------
    bids_root : str
        Path of the input BIDS dataset root
    debug : bool
        Enable debugging outputs
    freesurfer : bool
        Enable FreeSurfer surface reconstruction (increases runtime by 6h,
        at the very least)
    output_spaces : list
        List of spatial normalization targets. Some parts of pipeline will
        only be instantiated for some output spaces. Valid spaces:

          - Any template identifier from TemplateFlow
          - Path to a template folder organized following TemplateFlow's
            conventions

    hires : bool
        Enable sub-millimeter preprocessing in FreeSurfer
    longitudinal : bool
        Create unbiased structural template, regardless of number of inputs
        (may increase runtime)
    name : str, optional
        Workflow name (default: anat_preproc_wf)
    omp_nthreads : int
        Maximum number of threads an individual process may use
    output_dir : str
        Directory in which to save derivatives
    reportlets_dir : str
        Directory in which to save reportlets
    skull_strip_fixed_seed : bool
        Do not use a random seed for skull-stripping - will ensure
        run-to-run replicability when used with --omp-nthreads 1
        (default: ``False``).
    skull_strip_template : tuple
        Name of ANTs skull-stripping template and specifications.


    Inputs
    ------
    t1w
        List of T1-weighted structural images
    t2w
        List of T2-weighted structural images
    flair
        List of FLAIR images
    subjects_dir
        FreeSurfer SUBJECTS_DIR


    Outputs
    -------
    t1w_preproc
        The T1w reference map, which is calculated as the average of bias-corrected
        and preprocessed T1w images, defining the anatomical space.
    t1w_brain
        Skull-stripped ``t1w_preproc``
    t1w_mask
        Brain (binary) mask estimated by brain extraction.
    t1w_dseg
        Brain tissue segmentation of the preprocessed structural image, including
        gray-matter (GM), white-matter (WM) and cerebrospinal fluid (CSF).
    t1w_tpms
        List of tissue probability maps corresponding to ``t1w_dseg``.
    std_t1w
        T1w reference resampled in one or more standard spaces.
    std_mask
        Mask of skull-stripped template, in MNI space
    std_dseg
        Segmentation, resampled into MNI space
    std_tpms
        List of tissue probability maps in MNI space
    subjects_dir
        FreeSurfer SUBJECTS_DIR
    anat2std_xfm
        Nonlinear spatial transform to resample imaging data given in anatomical space
        into standard space.
    std2anat_xfm
        Inverse transform of the above.
    subject_id
        FreeSurfer subject ID
    t1w2fsnative_xfm
        LTA-style affine matrix translating from T1w to
        FreeSurfer-conformed subject space
    fsnative2t1w_xfm
        LTA-style affine matrix translating from FreeSurfer-conformed
        subject space to T1w
    surfaces
        GIFTI surfaces (gray/white boundary, midthickness, pial, inflated)

    See also
    --------
    * :py:func:`~niworkflows.anat.ants.init_brain_extraction_wf`
    * :py:func:`~smriprep.workflows.surfaces.init_surface_recon_wf`

    """
    workflow = Workflow(name=name)
    desc = """Anatomical data preprocessing

: """
    desc += """\
A total of {num_t1w} T1-weighted (T1w) images were found within the input
BIDS dataset.
All of them were corrected for intensity non-uniformity (INU)
""" if num_t1w > 1 else """\
The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU)
"""
    desc += """\
with `N4BiasFieldCorrection` [@n4], distributed with ANTs {ants_ver} \
[@ants, RRID:SCR_004757]"""
    desc += '.\n' if num_t1w > 1 else ", and used as T1w-reference throughout the workflow.\n"

    desc += """\
The T1w-reference was then skull-stripped with a *Nipype* implementation of
the `antsBrainExtraction.sh` workflow (from ANTs), using {skullstrip_tpl}
as target template.
Brain tissue segmentation of cerebrospinal fluid (CSF),
white-matter (WM) and gray-matter (GM) was performed on
the brain-extracted T1w using `fast` [FSL {fsl_ver}, RRID:SCR_002823,
@fsl_fast].
"""

    workflow.__desc__ = desc.format(
        ants_ver=ANTsInfo.version() or '(version unknown)',
        fsl_ver=fsl.FAST().version or '(version unknown)',
        num_t1w=num_t1w,
        skullstrip_tpl=skull_strip_template[0],
    )

    inputnode = pe.Node(niu.IdentityInterface(
        fields=['t1w', 't2w', 'roi', 'flair', 'subjects_dir', 'subject_id']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=[
        't1w_preproc', 't1w_brain', 't1w_mask', 't1w_dseg', 't1w_tpms',
        'template', 'std_t1w', 'anat2std_xfm', 'std2anat_xfm',
        'joint_template', 'joint_anat2std_xfm', 'joint_std2anat_xfm',
        'std_mask', 'std_dseg', 'std_tpms', 't1w_realign_xfm', 'subjects_dir',
        'subject_id', 't1w2fsnative_xfm', 'fsnative2t1w_xfm', 'surfaces',
        't1w_aseg', 't1w_aparc'
    ]),
                         name='outputnode')

    buffernode = pe.Node(
        niu.IdentityInterface(fields=['t1w_brain', 't1w_mask']),
        name='buffernode')

    # 1. Anatomical reference generation - average input T1w images.
    anat_template_wf = init_anat_template_wf(longitudinal=longitudinal,
                                             omp_nthreads=omp_nthreads,
                                             num_t1w=num_t1w)

    anat_validate = pe.Node(ValidateImage(),
                            name='anat_validate',
                            run_without_submitting=True)

    # 2. Brain-extraction and INU (bias field) correction.
    brain_extraction_wf = init_brain_extraction_wf(
        in_template=skull_strip_template[0],
        template_spec=skull_strip_template[1],
        atropos_use_random_seed=not skull_strip_fixed_seed,
        omp_nthreads=omp_nthreads,
        normalization_quality='precise' if not debug else 'testing')

    # 3. Brain tissue segmentation
    t1w_dseg = pe.Node(fsl.FAST(segments=True,
                                no_bias=True,
                                probability_maps=True),
                       name='t1w_dseg',
                       mem_gb=3)

    workflow.connect([
        (buffernode, t1w_dseg, [('t1w_brain', 'in_files')]),
        (t1w_dseg, outputnode, [('tissue_class_map', 't1w_dseg'),
                                ('probability_maps', 't1w_tpms')]),
    ])

    # 4. Spatial normalization
    vol_spaces = [k for k in output_spaces.keys() if not k.startswith('fs')]
    anat_norm_wf = init_anat_norm_wf(
        debug=debug,
        omp_nthreads=omp_nthreads,
        templates=[(v, output_spaces[v]) for v in vol_spaces],
    )

    workflow.connect([
        # Step 1.
        (inputnode, anat_template_wf, [('t1w', 'inputnode.t1w')]),
        (anat_template_wf, anat_validate, [('outputnode.t1w_ref', 'in_file')]),
        (anat_validate, brain_extraction_wf, [('out_file',
                                               'inputnode.in_files')]),
        (brain_extraction_wf, outputnode, [('outputnode.bias_corrected',
                                            't1w_preproc')]),
        (anat_template_wf, outputnode, [('outputnode.t1w_realign_xfm',
                                         't1w_ref_xfms')]),
        (buffernode, outputnode, [('t1w_brain', 't1w_brain'),
                                  ('t1w_mask', 't1w_mask')]),
        # Steps 2, 3 and 4
        (inputnode, anat_norm_wf, [(('t1w', fix_multi_T1w_source_name),
                                    'inputnode.orig_t1w'),
                                   ('roi', 'inputnode.lesion_mask')]),
        (brain_extraction_wf, anat_norm_wf,
         [(('outputnode.bias_corrected', _pop), 'inputnode.moving_image')]),
        (buffernode, anat_norm_wf, [('t1w_mask', 'inputnode.moving_mask')]),
        (t1w_dseg, anat_norm_wf, [('tissue_class_map',
                                   'inputnode.moving_segmentation')]),
        (t1w_dseg, anat_norm_wf, [('probability_maps', 'inputnode.moving_tpms')
                                  ]),
        (anat_norm_wf, outputnode, [
            ('poutputnode.standardized', 'std_t1w'),
            ('poutputnode.template', 'template'),
            ('poutputnode.anat2std_xfm', 'anat2std_xfm'),
            ('poutputnode.std2anat_xfm', 'std2anat_xfm'),
            ('poutputnode.std_mask', 'std_mask'),
            ('poutputnode.std_dseg', 'std_dseg'),
            ('poutputnode.std_tpms', 'std_tpms'),
            ('outputnode.template', 'joint_template'),
            ('outputnode.anat2std_xfm', 'joint_anat2std_xfm'),
            ('outputnode.std2anat_xfm', 'joint_std2anat_xfm'),
        ]),
    ])

    # Write outputs ############################################3
    anat_reports_wf = init_anat_reports_wf(reportlets_dir=reportlets_dir,
                                           freesurfer=freesurfer)

    anat_derivatives_wf = init_anat_derivatives_wf(
        bids_root=bids_root,
        freesurfer=freesurfer,
        num_t1w=num_t1w,
        output_dir=output_dir,
    )

    workflow.connect([
        # Connect reportlets
        (inputnode, anat_reports_wf, [(('t1w', fix_multi_T1w_source_name),
                                       'inputnode.source_file')]),
        (anat_template_wf, anat_reports_wf,
         [('outputnode.out_report', 'inputnode.t1w_conform_report')]),
        (outputnode, anat_reports_wf, [('t1w_preproc',
                                        'inputnode.t1w_preproc'),
                                       ('t1w_dseg', 'inputnode.t1w_dseg'),
                                       ('t1w_mask', 'inputnode.t1w_mask'),
                                       ('std_t1w', 'inputnode.std_t1w'),
                                       ('std_mask', 'inputnode.std_mask')]),
        (anat_norm_wf, anat_reports_wf,
         [('poutputnode.template', 'inputnode.template'),
          ('poutputnode.template_spec', 'inputnode.template_spec')]),
        # Connect derivatives
        (anat_template_wf, anat_derivatives_wf, [('outputnode.t1w_valid_list',
                                                  'inputnode.source_files')]),
        (anat_norm_wf, anat_derivatives_wf, [('poutputnode.template',
                                              'inputnode.template')]),
        (outputnode, anat_derivatives_wf, [
            ('std_t1w', 'inputnode.std_t1w'),
            ('anat2std_xfm', 'inputnode.anat2std_xfm'),
            ('std2anat_xfm', 'inputnode.std2anat_xfm'),
            ('t1w_ref_xfms', 'inputnode.t1w_ref_xfms'),
            ('t1w_preproc', 'inputnode.t1w_preproc'),
            ('t1w_mask', 'inputnode.t1w_mask'),
            ('t1w_dseg', 'inputnode.t1w_dseg'),
            ('t1w_tpms', 'inputnode.t1w_tpms'),
            ('std_mask', 'inputnode.std_mask'),
            ('std_dseg', 'inputnode.std_dseg'),
            ('std_tpms', 'inputnode.std_tpms'),
            ('t1w2fsnative_xfm', 'inputnode.t1w2fsnative_xfm'),
            ('fsnative2t1w_xfm', 'inputnode.fsnative2t1w_xfm'),
            ('surfaces', 'inputnode.surfaces'),
        ]),
    ])

    if not freesurfer:  # Flag --fs-no-reconall is set - return
        workflow.connect([
            (brain_extraction_wf, buffernode,
             [(('outputnode.out_file', _pop), 't1w_brain'),
              ('outputnode.out_mask', 't1w_mask')]),
        ])
        return workflow

    # 5. Surface reconstruction (--fs-no-reconall not set)
    surface_recon_wf = init_surface_recon_wf(name='surface_recon_wf',
                                             omp_nthreads=omp_nthreads,
                                             hires=hires)
    applyrefined = pe.Node(fsl.ApplyMask(), name='applyrefined')
    workflow.connect([
        (inputnode, surface_recon_wf,
         [('t2w', 'inputnode.t2w'), ('flair', 'inputnode.flair'),
          ('subjects_dir', 'inputnode.subjects_dir'),
          ('subject_id', 'inputnode.subject_id')]),
        (anat_validate, surface_recon_wf, [('out_file', 'inputnode.t1w')]),
        (brain_extraction_wf, surface_recon_wf,
         [(('outputnode.out_file', _pop), 'inputnode.skullstripped_t1'),
          ('outputnode.out_segm', 'inputnode.ants_segs'),
          (('outputnode.bias_corrected', _pop), 'inputnode.corrected_t1')]),
        (brain_extraction_wf, applyrefined, [(('outputnode.bias_corrected',
                                               _pop), 'in_file')]),
        (surface_recon_wf, applyrefined, [('outputnode.out_brainmask',
                                           'mask_file')]),
        (surface_recon_wf, outputnode,
         [('outputnode.subjects_dir', 'subjects_dir'),
          ('outputnode.subject_id', 'subject_id'),
          ('outputnode.t1w2fsnative_xfm', 't1w2fsnative_xfm'),
          ('outputnode.fsnative2t1w_xfm', 'fsnative2t1w_xfm'),
          ('outputnode.surfaces', 'surfaces'),
          ('outputnode.out_aseg', 't1w_aseg'),
          ('outputnode.out_aparc', 't1w_aparc')]),
        (applyrefined, buffernode, [('out_file', 't1w_brain')]),
        (surface_recon_wf, buffernode, [('outputnode.out_brainmask',
                                         't1w_mask')]),
        (surface_recon_wf, anat_reports_wf,
         [('outputnode.subject_id', 'inputnode.subject_id'),
          ('outputnode.subjects_dir', 'inputnode.subjects_dir')]),
        (surface_recon_wf, anat_derivatives_wf, [
            ('outputnode.out_aseg', 'inputnode.t1w_fs_aseg'),
            ('outputnode.out_aparc', 'inputnode.t1w_fs_aparc'),
        ]),
    ])

    return workflow
示例#40
0
def init_bold_t2s_wf(echo_times, mem_gb, omp_nthreads,
                     t2s_coreg=False, name='bold_t2s_wf'):
    """
    This workflow wraps the `tedana`_ `T2* workflow`_ to optimally
    combine multiple echos and derive a T2* map for optional use as a
    coregistration target.

    The following steps are performed:

    #. :abbr:`HMC (head motion correction)` on individual echo files.
    #. Compute the T2* map
    #. Create an optimally combined ME-EPI time series

    **Parameters**

        echo_times
            list of TEs associated with each echo
        mem_gb : float
            Size of BOLD file in GB
        omp_nthreads : int
            Maximum number of threads an individual process may use
        t2s_coreg : bool
            Use the calculated T2*-map for T2*-driven coregistration
        name : str
            Name of workflow (default: ``bold_t2s_wf``)

    **Inputs**

        bold_file
            list of individual echo files

    **Outputs**

        bold
            the optimally combined time series for all supplied echos
        bold_mask
            the binarized, skull-stripped adaptive T2* map
        bold_ref_brain
            the adaptive T2* map

    .. _tedana: https://github.com/me-ica/tedana
    .. _`T2* workflow`: https://tedana.readthedocs.io/en/latest/generated/tedana.workflows.t2smap_workflow.html#tedana.workflows.t2smap_workflow  # noqa

    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
A T2* map was estimated from the preprocessed BOLD by fitting to a monoexponential signal
decay model with log-linear regression.
For each voxel, the maximal number of echoes with reliable signal in that voxel were
used to fit the model.
The calculated T2* map was then used to optimally combine preprocessed BOLD across
echoes following the method described in [@posse_t2s].
The optimally combined time series was carried forward as the *preprocessed BOLD*{}.
""".format('' if not t2s_coreg else ', and the T2* map was also retained as the BOLD reference')

    inputnode = pe.Node(niu.IdentityInterface(fields=['bold_file']), name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=['bold', 'bold_mask', 'bold_ref_brain']),
                         name='outputnode')

    LOGGER.log(25, 'Generating T2* map and optimally combined ME-EPI time series.')

    t2smap_node = pe.Node(T2SMap(echo_times=echo_times), name='t2smap_node')
    skullstrip_t2smap_wf = init_skullstrip_bold_wf(name='skullstrip_t2smap_wf')

    workflow.connect([
        (inputnode, t2smap_node, [('bold_file', 'in_files')]),
        (t2smap_node, outputnode, [('optimal_comb', 'bold')]),
        (t2smap_node, skullstrip_t2smap_wf, [('t2star_map', 'inputnode.in_file')]),
        (skullstrip_t2smap_wf, outputnode, [
            ('outputnode.mask_file', 'bold_mask'),
            ('outputnode.skull_stripped_file', 'bold_ref_brain')]),
    ])

    return workflow
示例#41
0
def init_phdiff_wf(omp_nthreads, name='phdiff_wf'):
    """
    Estimates the fieldmap using a phase-difference image and one or more
    magnitude images corresponding to two or more :abbr:`GRE (Gradient Echo sequence)`
    acquisitions. The `original code was taken from nipype
    <https://github.com/nipy/nipype/blob/master/nipype/workflows/dmri/fsl/artifacts.py#L514>`_.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.fieldmap.phdiff import init_phdiff_wf
        wf = init_phdiff_wf(omp_nthreads=1)


    Outputs::

      outputnode.fmap_ref - The average magnitude image, skull-stripped
      outputnode.fmap_mask - The brain mask applied to the fieldmap
      outputnode.fmap - The estimated fieldmap in Hz


    """

    workflow = Workflow(name=name)
    workflow.__desc__ = """\
A deformation field to correct for susceptibility distortions was estimated
based on a field map that was co-registered to the BOLD reference,
using a custom workflow of *fMRIPrep* derived from D. Greve's `epidewarp.fsl`
[script](http://www.nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl) and
further improvements of HCP Pipelines [@hcppipelines].
"""

    inputnode = pe.Node(niu.IdentityInterface(fields=['magnitude', 'phasediff']),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(
        fields=['fmap', 'fmap_ref', 'fmap_mask']), name='outputnode')

    def _pick1st(inlist):
        return inlist[0]

    # Read phasediff echo times
    meta = pe.Node(ReadSidecarJSON(), name='meta', mem_gb=0.01, run_without_submitting=True)

    # Merge input magnitude images
    magmrg = pe.Node(IntraModalMerge(), name='magmrg')

    # de-gradient the fields ("bias/illumination artifact")
    n4 = pe.Node(ants.N4BiasFieldCorrection(dimension=3, copy_header=True),
                 name='n4', n_procs=omp_nthreads)
    bet = pe.Node(BETRPT(generate_report=True, frac=0.6, mask=True),
                  name='bet')
    ds_fmap_mask = pe.Node(DerivativesDataSink(suffix='fmap_mask'), name='ds_report_fmap_mask',
                           mem_gb=0.01, run_without_submitting=True)
    # uses mask from bet; outputs a mask
    # dilate = pe.Node(fsl.maths.MathsCommand(
    #     nan2zeros=True, args='-kernel sphere 5 -dilM'), name='MskDilate')

    # phase diff -> radians
    pha2rads = pe.Node(niu.Function(function=siemens2rads), name='pha2rads')

    # FSL PRELUDE will perform phase-unwrapping
    prelude = pe.Node(fsl.PRELUDE(), name='prelude')

    denoise = pe.Node(fsl.SpatialFilter(operation='median', kernel_shape='sphere',
                                        kernel_size=3), name='denoise')

    demean = pe.Node(niu.Function(function=demean_image), name='demean')

    cleanup_wf = cleanup_edge_pipeline(name="cleanup_wf")

    compfmap = pe.Node(Phasediff2Fieldmap(), name='compfmap')

    # The phdiff2fmap interface is equivalent to:
    # rad2rsec (using rads2radsec from nipype.workflows.dmri.fsl.utils)
    # pre_fugue = pe.Node(fsl.FUGUE(save_fmap=True), name='ComputeFieldmapFUGUE')
    # rsec2hz (divide by 2pi)

    workflow.connect([
        (inputnode, meta, [('phasediff', 'in_file')]),
        (inputnode, magmrg, [('magnitude', 'in_files')]),
        (magmrg, n4, [('out_avg', 'input_image')]),
        (n4, prelude, [('output_image', 'magnitude_file')]),
        (n4, bet, [('output_image', 'in_file')]),
        (bet, prelude, [('mask_file', 'mask_file')]),
        (inputnode, pha2rads, [('phasediff', 'in_file')]),
        (pha2rads, prelude, [('out', 'phase_file')]),
        (meta, compfmap, [('out_dict', 'metadata')]),
        (prelude, denoise, [('unwrapped_phase_file', 'in_file')]),
        (denoise, demean, [('out_file', 'in_file')]),
        (demean, cleanup_wf, [('out', 'inputnode.in_file')]),
        (bet, cleanup_wf, [('mask_file', 'inputnode.in_mask')]),
        (cleanup_wf, compfmap, [('outputnode.out_file', 'in_file')]),
        (compfmap, outputnode, [('out_file', 'fmap')]),
        (bet, outputnode, [('mask_file', 'fmap_mask'),
                           ('out_file', 'fmap_ref')]),
        (inputnode, ds_fmap_mask, [('phasediff', 'source_file')]),
        (bet, ds_fmap_mask, [('out_report', 'in_file')]),
    ])

    return workflow