def init_scale_wf(mem_gb, omp_nthreads, n_dummy=None, scale_stat='mean', name='scale'): """ Run afni's voxel level mean scaling Parameters ---------- mem_gb : :obj:`float` Size of BOLD file in GB omp_nthreads : :obj:`int` Maximum number of threads an individual process may use n_dummy: :obj: `int` Number of dummy scans at the begining of the bold to discard when calculating the mean scale_stat : :obj:`str` Name of the flag for the statistic to scale relative to (defaul: ``mean``) name : :obj:`str` Name of workflow (default: ``bold_std_trans_wf``) Inputs ------ bold_file bold image to scale, should probably be head motion corrected first Outputs ------- scaled scaled bold time series """ from niworkflows.engine.workflows import LiterateWorkflow as Workflow from niworkflows.interfaces.fixes import FixHeaderApplyTransforms as ApplyTransforms from nipype.interfaces.afni import Calc from ..interfaces.afni import TStat workflow = Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface(fields=['bold_file']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=['scaled']), name='outputnode') scale_ref = pe.Node(TStat(args=f'-{scale_stat}', index=f'[{n_dummy}..$]', outputtype='NIFTI_GZ'), name='scale_ref', mem_gb=mem_gb, n_procs=omp_nthreads) scale = pe.Node(Calc(outputtype='NIFTI_GZ', expr='min(200, a/b*100)*step(a)*step(b)'), name='scale', mem_gb=mem_gb, n_procs=omp_nthreads) workflow.connect([(inputnode, scale_ref, [('bold_file', 'in_file')]), (inputnode, scale, [('bold_file', 'in_file_a')]), (scale_ref, scale, [('out_file', 'in_file_b')]), (scale, outputnode, [('out_file', 'scaled')])]) return workflow
def init_fmriprep_wf(): """ Build *fMRIPrep*'s pipeline. This workflow organizes the execution of FMRIPREP, with a sub-workflow for each subject. If FreeSurfer's ``recon-all`` is to be run, a corresponding folder is created and populated with any needed template subjects under the derivatives folder. Workflow Graph .. workflow:: :graph2use: orig :simple_form: yes from fmriprep.workflows.tests import mock_config from fmriprep.workflows.base import init_fmriprep_wf with mock_config(): wf = init_fmriprep_wf() """ from niworkflows.engine.workflows import LiterateWorkflow as Workflow from niworkflows.interfaces.bids import BIDSFreeSurferDir fmriprep_wf = Workflow(name='fmriprep_wf') fmriprep_wf.base_dir = config.execution.work_dir freesurfer = config.workflow.run_reconall if freesurfer: fsdir = pe.Node( BIDSFreeSurferDir(derivatives=config.execution.output_dir, freesurfer_home=os.getenv('FREESURFER_HOME'), spaces=config.workflow.spaces.get_fs_spaces()), name='fsdir_run_%s' % config.execution.run_uuid.replace('-', '_'), run_without_submitting=True) if config.execution.fs_subjects_dir is not None: fsdir.inputs.subjects_dir = str( config.execution.fs_subjects_dir.absolute()) for subject_id in config.execution.participant_label: single_subject_wf = init_single_subject_wf(subject_id) single_subject_wf.config['execution']['crashdump_dir'] = str( config.execution.output_dir / "fmriprep" / "-".join( ("sub", subject_id)) / "log" / config.execution.run_uuid) for node in single_subject_wf._get_all_nodes(): node.config = deepcopy(single_subject_wf.config) if freesurfer: fmriprep_wf.connect(fsdir, 'subjects_dir', single_subject_wf, 'inputnode.subjects_dir') else: fmriprep_wf.add_nodes([single_subject_wf]) # Dump a copy of the config file into the log directory log_dir = config.execution.output_dir / 'fmriprep' / 'sub-{}'.format(subject_id) \ / 'log' / config.execution.run_uuid log_dir.mkdir(exist_ok=True, parents=True) config.to_filename(log_dir / 'fmriprep.toml') return fmriprep_wf
def init_reportlets_wf(reportlets_dir, name='reportlets_wf'): """Set up a battery of datasinks to store reports in the right location.""" from niworkflows.interfaces.masks import SimpleShowMaskRPT workflow = Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface( fields=['source_file', 'dwi_ref', 'dwi_mask', 'validation_report']), name='inputnode') mask_reportlet = pe.Node(SimpleShowMaskRPT(), name='mask_reportlet') ds_report_mask = pe.Node( DerivativesDataSink(base_directory=reportlets_dir, desc='brain', suffix='mask'), name='ds_report_mask', run_without_submitting=True) ds_report_validation = pe.Node( DerivativesDataSink(base_directory=reportlets_dir, desc='validation', keep_dtype=True), name='ds_report_validation', run_without_submitting=True) workflow.connect([ (inputnode, mask_reportlet, [('dwi_ref', 'background_file'), ('dwi_mask', 'mask_file')]), (inputnode, ds_report_validation, [('source_file', 'source_file')]), (inputnode, ds_report_mask, [('source_file', 'source_file')]), (inputnode, ds_report_validation, [('validation_report', 'in_file')]), (mask_reportlet, ds_report_mask, [('out_report', 'in_file')]), ]) return workflow
def init_reportlets_wf(output_dir, sdc_report=False, name="reportlets_wf"): """Set up a battery of datasinks to store reports in the right location.""" from niworkflows.interfaces.reportlets.masks import SimpleShowMaskRPT workflow = Workflow(name=name) inputnode = pe.Node( niu.IdentityInterface( fields=[ "source_file", "dwi_ref", "dwi_mask", "validation_report", "sdc_report", ] ), name="inputnode", ) mask_reportlet = pe.Node(SimpleShowMaskRPT(), name="mask_reportlet") ds_report_mask = pe.Node( DerivativesDataSink( base_directory=output_dir, desc="brain", suffix="mask", datatype="figures" ), name="ds_report_mask", run_without_submitting=True, ) ds_report_validation = pe.Node( DerivativesDataSink( base_directory=output_dir, desc="validation", datatype="figures" ), name="ds_report_validation", run_without_submitting=True, ) # fmt:off workflow.connect([ (inputnode, mask_reportlet, [("dwi_ref", "background_file"), ("dwi_mask", "mask_file")]), (inputnode, ds_report_validation, [("source_file", "source_file")]), (inputnode, ds_report_mask, [("source_file", "source_file")]), (inputnode, ds_report_validation, [("validation_report", "in_file")]), (mask_reportlet, ds_report_mask, [("out_report", "in_file")]), ]) # fmt:on if sdc_report: ds_report_sdc = pe.Node( DerivativesDataSink( base_directory=output_dir, desc="sdc", suffix="dwi", datatype="figures" ), name="ds_report_sdc", run_without_submitting=True, ) # fmt:off workflow.connect([ (inputnode, ds_report_sdc, [("source_file", "source_file"), ("sdc_report", "in_file")]), ]) # fmt:on return workflow
def init_dmriprep_wf(): """ Create the base workflow. This workflow organizes the execution of *dMRIPrep*, with a sub-workflow for each subject. If FreeSurfer's recon-all is to be run, a FreeSurfer derivatives folder is created and populated with any needed template subjects. Workflow Graph .. workflow:: :graph2use: orig :simple_form: yes from dmriprep.config.testing import mock_config from dmriprep.workflows.base import init_dmriprep_wf with mock_config(): wf = init_dmriprep_wf() """ dmriprep_wf = Workflow(name="dmriprep_wf") dmriprep_wf.base_dir = config.execution.work_dir freesurfer = config.workflow.run_reconall if freesurfer: fsdir = pe.Node( BIDSFreeSurferDir( derivatives=config.execution.output_dir, freesurfer_home=os.getenv("FREESURFER_HOME"), spaces=config.workflow.spaces.get_fs_spaces(), ), name=f"fsdir_run_{config.execution.run_uuid.replace('-', '_')}", run_without_submitting=True, ) if config.execution.fs_subjects_dir is not None: fsdir.inputs.subjects_dir = str( config.execution.fs_subjects_dir.absolute()) for subject_id in config.execution.participant_label: single_subject_wf = init_single_subject_wf(subject_id) single_subject_wf.config["execution"]["crashdump_dir"] = str( config.execution.output_dir / "dmriprep" / f"sub-{subject_id}" / "log" / config.execution.run_uuid) for node in single_subject_wf._get_all_nodes(): node.config = deepcopy(single_subject_wf.config) if freesurfer: dmriprep_wf.connect(fsdir, "subjects_dir", single_subject_wf, "fsinputnode.subjects_dir") else: dmriprep_wf.add_nodes([single_subject_wf]) # Dump a copy of the config file into the log directory log_dir = (config.execution.output_dir / "dmriprep" / f"sub-{subject_id}" / "log" / config.execution.run_uuid) log_dir.mkdir(exist_ok=True, parents=True) config.to_filename(log_dir / "dmriprep.toml") return dmriprep_wf
def init_faux_bold_wf(bids_layout, base_dir=None, name="faux_bold"): # create workflow wf = Workflow(name=name, base_dir=base_dir) input_node = pe.Node( niu.IdentityInterface([ 'base_bold_list', 'second_bold_list', 'task_name', 'num_discard', 'num_interp']), name='input_node', ) output_node = pe.Node( niu.IdentityInterface([ 'faux_bold_files']), name='output_node') combine_bold = pe.MapNode(CombineRestBold(return_type="file"), iterfield=['base_bold', 'second_bold'], name='combine_node') participants = bids_layout.get_subjects() base_bold_list = [] second_bold_list = [] for participant in participants: for run, lst in zip([1, 2], [base_bold_list, second_bold_list]): try: bold_file = bids_layout.get( task="rest", extension=".nii.gz", run=run, subject=participant, return_type='file', )[0] except IndexError: raise IndexError(f"{participant} does not have rest run: {run}") lst.append(bold_file) input_node.inputs.base_bold_list = base_bold_list input_node.inputs.second_bold_list = second_bold_list wf.connect([ (input_node, combine_bold, [('base_bold_list', 'base_bold'), ('second_bold_list', 'second_bold'), ('task_name', 'task_name'), ('num_discard', 'num_discard'), ('num_interp', 'num_interp')]), (combine_bold, output_node, [('faux_bold', 'faux_bold_files')]) ]) return wf
def init_qwarp_inversion_wf(omp_nthreads=1, name="qwarp_invert_wf"): """ Invert a warp produced by 3dqwarp and convert it to an ANTS formatted warp Workflow Graph .. workflow :: :graph2use: orig :simple_form: yes from sdcflows.workflows.base import init_qwarp_inversion_wf wf = init_qwarp_inversion_wf() Parameters ---------- name : str Name for this workflow omp_nthreads : int Parallelize internal tasks across the number of CPUs given by this option. Inputs ------ warp : pathlike The warp you want to invert. in_reference : pathlike The baseline reference image (must correspond to ``epi_pe_dir``). Outputs ------- out_warp : pathlike The corresponding inverted :abbr:`DFM (displacements field map)` compatible with ANTs. """ from ..interfaces.afni import InvertWarp workflow = Workflow(name=name) workflow.__desc__ = """\ A warp produced by 3dQwarp was inverted by `3dNwarpCat` @afni (AFNI {afni_ver}). """.format(afni_ver=''.join(['%02d' % v for v in afni.Info().version() or []])) inputnode = pe.Node(niu.IdentityInterface(fields=['warp', 'in_reference']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=['out_warp']), name='outputnode') invert = pe.Node(InvertWarp(), name='invert', n_procs=omp_nthreads) invert.inputs.outputtype = 'NIFTI_GZ' to_ants = pe.Node(niu.Function(function=_fix_hdr), name='to_ants', mem_gb=0.01) cphdr_warp = pe.Node(CopyHeader(), name='cphdr_warp', mem_gb=0.01) workflow.connect([ (inputnode, invert, [('warp', 'in_file')]), (invert, cphdr_warp, [('out_file', 'in_file')]), (inputnode, cphdr_warp, [('in_reference', 'hdr_file')]), (cphdr_warp, to_ants, [('out_file', 'in_file')]), (to_ants, outputnode, [('out', 'out_warp')]), ]) return workflow
def init_anat_reports_wf(reportlets_dir, template, freesurfer, name='anat_reports_wf'): """ Set up a battery of datasinks to store reports in the right location """ workflow = Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface(fields=[ 'source_file', 't1_conform_report', 'seg_report', 't1_2_mni_report', 'recon_report' ]), name='inputnode') ds_t1_conform_report = pe.Node(DerivativesDataSink( base_directory=reportlets_dir, suffix='conform'), name='ds_t1_conform_report', run_without_submitting=True) ds_t1_2_mni_report = pe.Node(DerivativesDataSink( base_directory=reportlets_dir, suffix='t1_2_mni'), name='ds_t1_2_mni_report', run_without_submitting=True) ds_t1_seg_mask_report = pe.Node(DerivativesDataSink( base_directory=reportlets_dir, suffix='seg_brainmask'), name='ds_t1_seg_mask_report', run_without_submitting=True) workflow.connect([ (inputnode, ds_t1_conform_report, [('source_file', 'source_file'), ('t1_conform_report', 'in_file')]), (inputnode, ds_t1_seg_mask_report, [('source_file', 'source_file'), ('seg_report', 'in_file')]), (inputnode, ds_t1_2_mni_report, [('source_file', 'source_file'), ('t1_2_mni_report', 'in_file')]) ]) if freesurfer: ds_recon_report = pe.Node(DerivativesDataSink( base_directory=reportlets_dir, suffix='reconall'), name='ds_recon_report', run_without_submitting=True) workflow.connect([(inputnode, ds_recon_report, [('source_file', 'source_file'), ('recon_report', 'in_file')])]) return workflow
def init_pepolar_estimate_wf(debug=False, generate_report=True, name="pepolar_estimate_wf"): """Initialize a barebones TOPUP implementation.""" from nipype.interfaces.afni import Automask from nipype.interfaces.fsl.epi import TOPUP from niworkflows.interfaces.nibabel import MergeSeries from sdcflows.interfaces.fmap import get_trt from ...interfaces.images import RescaleB0 wf = Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface(fields=["metadata", "in_data"]), name="inputnode") outputnode = pe.Node(niu.IdentityInterface(fields=["fieldmap", "corrected", "corrected_mask"]), name="outputnode") concat_blips = pe.Node(MergeSeries(), name="concat_blips") readout_time = pe.MapNode(niu.Function( input_names=["in_meta", "in_file"], function=get_trt), name="readout_time", iterfield=["in_meta", "in_file"], run_without_submitting=True ) topup = pe.Node(TOPUP(config=_pkg_fname( "dmriprep", f"data/flirtsch/b02b0{'_quick' * debug}.cnf")), name="topup") pre_mask = pe.Node(Automask(dilate=1, outputtype="NIFTI_GZ"), name="pre_mask") rescale_corrected = pe.Node(RescaleB0(), name="rescale_corrected") post_mask = pe.Node(Automask(outputtype="NIFTI_GZ"), name="post_mask") wf.connect([ (inputnode, concat_blips, [("in_data", "in_files")]), (inputnode, readout_time, [("in_data", "in_file"), ("metadata", "in_meta")]), (inputnode, topup, [(("metadata", _get_pedir), "encoding_direction")]), (readout_time, topup, [("out", "readout_times")]), (concat_blips, topup, [("out_file", "in_file")]), (topup, pre_mask, [("out_corrected", "in_file")]), (pre_mask, rescale_corrected, [("out_file", "mask_file")]), (topup, rescale_corrected, [("out_corrected", "in_file")]), (topup, outputnode, [("out_field", "fieldmap")]), (rescale_corrected, post_mask, [("out_ref", "in_file")]), (rescale_corrected, outputnode, [("out_ref", "corrected")]), (post_mask, outputnode, [("out_file", "corrected_mask")]), ]) return wf
def init_fmriprep_wf(): """ Build *fMRIPrep*'s pipeline. This workflow organizes the execution of FMRIPREP, with a sub-workflow for each subject. If FreeSurfer's ``recon-all`` is to be run, a corresponding folder is created and populated with any needed template subjects under the derivatives folder. Workflow Graph .. workflow:: :graph2use: orig :simple_form: yes from fprodents.workflows.tests import mock_config from fprodents.workflows.base import init_fmriprep_wf with mock_config(): wf = init_fmriprep_wf() """ from niworkflows.engine.workflows import LiterateWorkflow as Workflow fmriprep_wf = Workflow(name="fmriprep_wf") fmriprep_wf.base_dir = config.execution.work_dir for subject_id in config.execution.participant_label: single_subject_wf = init_single_subject_wf(subject_id) # Dump a copy of the config file into the log directory log_dir = (config.execution.output_dir / "fmriprep" / f"sub-{subject_id}" / "log" / config.execution.run_uuid) log_dir.mkdir(exist_ok=True, parents=True) config.to_filename(log_dir / "fmriprep.toml") single_subject_wf.config["execution"]["crashdump_dir"] = str(log_dir) for node in single_subject_wf._get_all_nodes(): node.config = deepcopy(single_subject_wf.config) fmriprep_wf.add_nodes([single_subject_wf]) return fmriprep_wf
def init_segs_to_native_wf(name='segs_to_native', segmentation='aseg'): """ Get a segmentation from FreeSurfer conformed space into native T1w space. .. workflow:: :graph2use: orig :simple_form: yes from smriprep.workflows.surfaces import init_segs_to_native_wf wf = init_segs_to_native_wf() **Parameters** segmentation The name of a segmentation ('aseg' or 'aparc_aseg' or 'wmparc') **Inputs** in_file Anatomical, merged T1w image after INU correction subjects_dir FreeSurfer SUBJECTS_DIR subject_id FreeSurfer subject ID **Outputs** out_file The selected segmentation, after resampling in native space """ workflow = Workflow(name='%s_%s' % (name, segmentation)) inputnode = pe.Node(niu.IdentityInterface( ['in_file', 'subjects_dir', 'subject_id']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(['out_file']), name='outputnode') # Extract the aseg and aparc+aseg outputs fssource = pe.Node(nio.FreeSurferSource(), name='fs_datasource') tonative = pe.Node(fs.Label2Vol(), name='tonative') tonii = pe.Node(fs.MRIConvert(out_type='niigz', resample_type='nearest'), name='tonii') if segmentation.startswith('aparc'): if segmentation == 'aparc_aseg': def _sel(x): return [parc for parc in x if 'aparc+' in parc][0] elif segmentation == 'aparc_a2009s': def _sel(x): return [parc for parc in x if 'a2009s+' in parc][0] elif segmentation == 'aparc_dkt': def _sel(x): return [parc for parc in x if 'DKTatlas+' in parc][0] segmentation = (segmentation, _sel) workflow.connect([ (inputnode, fssource, [('subjects_dir', 'subjects_dir'), ('subject_id', 'subject_id')]), (inputnode, tonii, [('in_file', 'reslice_like')]), (fssource, tonative, [(segmentation, 'seg_file'), ('rawavg', 'template_file'), ('aseg', 'reg_header')]), (tonative, tonii, [('vol_label_file', 'in_file')]), (tonii, outputnode, [('out_file', 'out_file')]), ]) return workflow
def init_gifti_surface_wf(name='gifti_surface_wf'): r""" Prepare GIFTI surfaces from a FreeSurfer subjects directory. If midthickness (or graymid) surfaces do not exist, they are generated and saved to the subject directory as ``lh/rh.midthickness``. These, along with the gray/white matter boundary (``lh/rh.smoothwm``), pial sufaces (``lh/rh.pial``) and inflated surfaces (``lh/rh.inflated``) are converted to GIFTI files. Additionally, the vertex coordinates are :py:class:`recentered <smriprep.interfaces.NormalizeSurf>` to align with native T1w space. .. workflow:: :graph2use: orig :simple_form: yes from smriprep.workflows.surfaces import init_gifti_surface_wf wf = init_gifti_surface_wf() **Inputs** subjects_dir FreeSurfer SUBJECTS_DIR subject_id FreeSurfer subject ID fsnative2t1w_xfm LTA formatted affine transform file (inverse) **Outputs** surfaces GIFTI surfaces for gray/white matter boundary, pial surface, midthickness (or graymid) surface, and inflated surfaces """ workflow = Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface( ['subjects_dir', 'subject_id', 'fsnative2t1w_xfm']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(['surfaces']), name='outputnode') get_surfaces = pe.Node(nio.FreeSurferSource(), name='get_surfaces') midthickness = pe.MapNode(MakeMidthickness(thickness=True, distance=0.5, out_name='midthickness'), iterfield='in_file', name='midthickness') save_midthickness = pe.Node(nio.DataSink(parameterization=False), name='save_midthickness') surface_list = pe.Node(niu.Merge(4, ravel_inputs=True), name='surface_list', run_without_submitting=True) fs2gii = pe.MapNode(fs.MRIsConvert(out_datatype='gii'), iterfield='in_file', name='fs2gii') fix_surfs = pe.MapNode(NormalizeSurf(), iterfield='in_file', name='fix_surfs') workflow.connect([ (inputnode, get_surfaces, [('subjects_dir', 'subjects_dir'), ('subject_id', 'subject_id')]), (inputnode, save_midthickness, [('subjects_dir', 'base_directory'), ('subject_id', 'container')]), # Generate midthickness surfaces and save to FreeSurfer derivatives (get_surfaces, midthickness, [('smoothwm', 'in_file'), ('graymid', 'graymid')]), (midthickness, save_midthickness, [('out_file', 'surf.@graymid')]), # Produce valid GIFTI surface files (dense mesh) (get_surfaces, surface_list, [('smoothwm', 'in1'), ('pial', 'in2'), ('inflated', 'in3')]), (save_midthickness, surface_list, [('out_file', 'in4')]), (surface_list, fs2gii, [('out', 'in_file')]), (fs2gii, fix_surfs, [('converted', 'in_file')]), (inputnode, fix_surfs, [('fsnative2t1w_xfm', 'transform_file')]), (fix_surfs, outputnode, [('out_file', 'surfaces')]), ]) return workflow
def init_surface_recon_wf(omp_nthreads, hires, name='surface_recon_wf'): r""" Reconstruct anatomical surfaces using FreeSurfer's ``recon-all``. Reconstruction is performed in three phases. The first phase initializes the subject with T1w and T2w (if available) structural images and performs basic reconstruction (``autorecon1``) with the exception of skull-stripping. For example, a subject with only one session with T1w and T2w images would be processed by the following command:: $ recon-all -sd <output dir>/freesurfer -subjid sub-<subject_label> \ -i <bids-root>/sub-<subject_label>/anat/sub-<subject_label>_T1w.nii.gz \ -T2 <bids-root>/sub-<subject_label>/anat/sub-<subject_label>_T2w.nii.gz \ -autorecon1 \ -noskullstrip The second phase imports an externally computed skull-stripping mask. This workflow refines the external brainmask using the internal mask implicit the the FreeSurfer's ``aseg.mgz`` segmentation, to reconcile ANTs' and FreeSurfer's brain masks. First, the ``aseg.mgz`` mask from FreeSurfer is refined in two steps, using binary morphological operations: 1. With a binary closing operation the sulci are included into the mask. This results in a smoother brain mask that does not exclude deep, wide sulci. 2. Fill any holes (typically, there could be a hole next to the pineal gland and the corpora quadrigemina if the great cerebral brain is segmented out). Second, the brain mask is grown, including pixels that have a high likelihood to the GM tissue distribution: 3. Dilate and substract the brain mask, defining the region to search for candidate pixels that likely belong to cortical GM. 4. Pixels found in the search region that are labeled as GM by ANTs (during ``antsBrainExtraction.sh``) are directly added to the new mask. 5. Otherwise, estimate GM tissue parameters locally in patches of ``ww`` size, and test the likelihood of the pixel to belong in the GM distribution. This procedure is inspired on mindboggle's solution to the problem: https://github.com/nipy/mindboggle/blob/7f91faaa7664d820fe12ccc52ebaf21d679795e2/mindboggle/guts/segment.py#L1660 The final phase resumes reconstruction, using the T2w image to assist in finding the pial surface, if available. See :py:func:`~smriprep.workflows.surfaces.init_autorecon_resume_wf` for details. Memory annotations for FreeSurfer are based off `their documentation <https://surfer.nmr.mgh.harvard.edu/fswiki/SystemRequirements>`_. They specify an allocation of 4GB per subject. Here we define 5GB to have a certain margin. .. workflow:: :graph2use: orig :simple_form: yes from smriprep.workflows.surfaces import init_surface_recon_wf wf = init_surface_recon_wf(omp_nthreads=1, hires=True) **Parameters** omp_nthreads : int Maximum number of threads an individual process may use hires : bool Enable sub-millimeter preprocessing in FreeSurfer **Inputs** t1w List of T1-weighted structural images t2w List of T2-weighted structural images (only first used) flair List of FLAIR images skullstripped_t1 Skull-stripped T1-weighted image (or mask of image) ants_segs Brain tissue segmentation from ANTS ``antsBrainExtraction.sh`` corrected_t1 INU-corrected, merged T1-weighted image subjects_dir FreeSurfer SUBJECTS_DIR subject_id FreeSurfer subject ID **Outputs** subjects_dir FreeSurfer SUBJECTS_DIR subject_id FreeSurfer subject ID t1w2fsnative_xfm LTA-style affine matrix translating from T1w to FreeSurfer-conformed subject space fsnative2t1w_xfm LTA-style affine matrix translating from FreeSurfer-conformed subject space to T1w surfaces GIFTI surfaces for gray/white matter boundary, pial surface, midthickness (or graymid) surface, and inflated surfaces out_brainmask Refined brainmask, derived from FreeSurfer's ``aseg`` volume out_aseg FreeSurfer's aseg segmentation, in native T1w space out_aparc FreeSurfer's aparc+aseg segmentation, in native T1w space **Subworkflows** * :py:func:`~smriprep.workflows.surfaces.init_autorecon_resume_wf` * :py:func:`~smriprep.workflows.surfaces.init_gifti_surface_wf` """ workflow = Workflow(name=name) workflow.__desc__ = """\ Brain surfaces were reconstructed using `recon-all` [FreeSurfer {fs_ver}, RRID:SCR_001847, @fs_reconall], and the brain mask estimated previously was refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle [RRID:SCR_002438, @mindboggle]. """.format(fs_ver=fs.Info().looseversion() or '<ver>') inputnode = pe.Node(niu.IdentityInterface(fields=[ 't1w', 't2w', 'flair', 'skullstripped_t1', 'corrected_t1', 'ants_segs', 'subjects_dir', 'subject_id' ]), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=[ 'subjects_dir', 'subject_id', 't1w2fsnative_xfm', 'fsnative2t1w_xfm', 'surfaces', 'out_brainmask', 'out_aseg', 'out_aparc' ]), name='outputnode') recon_config = pe.Node(FSDetectInputs(hires_enabled=hires), name='recon_config') fov_check = pe.Node(niu.Function(function=_check_cw256), name='fov_check') autorecon1 = pe.Node(fs.ReconAll(directive='autorecon1', openmp=omp_nthreads), name='autorecon1', n_procs=omp_nthreads, mem_gb=5) autorecon1.interface._can_resume = False autorecon1.interface._always_run = True skull_strip_extern = pe.Node(FSInjectBrainExtracted(), name='skull_strip_extern') fsnative2t1w_xfm = pe.Node(RobustRegister(auto_sens=True, est_int_scale=True), name='fsnative2t1w_xfm') t1w2fsnative_xfm = pe.Node(LTAConvert(out_lta=True, invert=True), name='t1w2fsnative_xfm') autorecon_resume_wf = init_autorecon_resume_wf(omp_nthreads=omp_nthreads) gifti_surface_wf = init_gifti_surface_wf() aseg_to_native_wf = init_segs_to_native_wf() aparc_to_native_wf = init_segs_to_native_wf(segmentation='aparc_aseg') refine = pe.Node(RefineBrainMask(), name='refine') workflow.connect([ # Configuration (inputnode, recon_config, [('t1w', 't1w_list'), ('t2w', 't2w_list'), ('flair', 'flair_list')]), # Passing subjects_dir / subject_id enforces serial order (inputnode, autorecon1, [('subjects_dir', 'subjects_dir'), ('subject_id', 'subject_id')]), (autorecon1, skull_strip_extern, [('subjects_dir', 'subjects_dir'), ('subject_id', 'subject_id')]), (skull_strip_extern, autorecon_resume_wf, [('subjects_dir', 'inputnode.subjects_dir'), ('subject_id', 'inputnode.subject_id')]), (autorecon_resume_wf, gifti_surface_wf, [('outputnode.subjects_dir', 'inputnode.subjects_dir'), ('outputnode.subject_id', 'inputnode.subject_id')]), # Reconstruction phases (inputnode, autorecon1, [('t1w', 'T1_files')]), (inputnode, fov_check, [('t1w', 'in_files')]), (fov_check, autorecon1, [('out', 'flags')]), ( recon_config, autorecon1, [ ('t2w', 'T2_file'), ('flair', 'FLAIR_file'), ('hires', 'hires'), # First run only (recon-all saves expert options) ('mris_inflate', 'mris_inflate') ]), (inputnode, skull_strip_extern, [('skullstripped_t1', 'in_brain')]), (recon_config, autorecon_resume_wf, [('use_t2w', 'inputnode.use_T2'), ('use_flair', 'inputnode.use_FLAIR')]), # Construct transform from FreeSurfer conformed image to sMRIPrep # reoriented image (inputnode, fsnative2t1w_xfm, [('t1w', 'target_file')]), (autorecon1, fsnative2t1w_xfm, [('T1', 'source_file')]), (fsnative2t1w_xfm, gifti_surface_wf, [('out_reg_file', 'inputnode.fsnative2t1w_xfm')]), (fsnative2t1w_xfm, t1w2fsnative_xfm, [('out_reg_file', 'in_lta')]), # Refine ANTs mask, deriving new mask from FS' aseg (inputnode, refine, [('corrected_t1', 'in_anat'), ('ants_segs', 'in_ants')]), (inputnode, aseg_to_native_wf, [('corrected_t1', 'inputnode.in_file') ]), (autorecon_resume_wf, aseg_to_native_wf, [('outputnode.subjects_dir', 'inputnode.subjects_dir'), ('outputnode.subject_id', 'inputnode.subject_id')]), (inputnode, aparc_to_native_wf, [('corrected_t1', 'inputnode.in_file') ]), (autorecon_resume_wf, aparc_to_native_wf, [('outputnode.subjects_dir', 'inputnode.subjects_dir'), ('outputnode.subject_id', 'inputnode.subject_id')]), (aseg_to_native_wf, refine, [('outputnode.out_file', 'in_aseg')]), # Output (autorecon_resume_wf, outputnode, [('outputnode.subjects_dir', 'subjects_dir'), ('outputnode.subject_id', 'subject_id')]), (gifti_surface_wf, outputnode, [('outputnode.surfaces', 'surfaces')]), (t1w2fsnative_xfm, outputnode, [('out_lta', 't1w2fsnative_xfm')]), (fsnative2t1w_xfm, outputnode, [('out_reg_file', 'fsnative2t1w_xfm')]), (refine, outputnode, [('out_file', 'out_brainmask')]), (aseg_to_native_wf, outputnode, [('outputnode.out_file', 'out_aseg')]), (aparc_to_native_wf, outputnode, [('outputnode.out_file', 'out_aparc') ]), ]) return workflow
def init_autorecon_resume_wf(omp_nthreads, name='autorecon_resume_wf'): r""" Resume recon-all execution, assuming the `-autorecon1` stage has been completed. In order to utilize resources efficiently, this is broken down into five sub-stages; after the first stage, the second and third stages may be run simultaneously, and the fourth and fifth stages may be run simultaneously, if resources permit:: $ recon-all -sd <output dir>/freesurfer -subjid sub-<subject_label> \ -autorecon2-volonly $ recon-all -sd <output dir>/freesurfer -subjid sub-<subject_label> \ -autorecon-hemi lh \ -noparcstats -nocortparc2 -noparcstats2 -nocortparc3 \ -noparcstats3 -nopctsurfcon -nohyporelabel -noaparc2aseg \ -noapas2aseg -nosegstats -nowmparc -nobalabels $ recon-all -sd <output dir>/freesurfer -subjid sub-<subject_label> \ -autorecon-hemi rh \ -noparcstats -nocortparc2 -noparcstats2 -nocortparc3 \ -noparcstats3 -nopctsurfcon -nohyporelabel -noaparc2aseg \ -noapas2aseg -nosegstats -nowmparc -nobalabels $ recon-all -sd <output dir>/freesurfer -subjid sub-<subject_label> \ -autorecon3 -hemi lh -T2pial $ recon-all -sd <output dir>/freesurfer -subjid sub-<subject_label> \ -autorecon3 -hemi rh -T2pial The excluded steps in the second and third stages (``-no<option>``) are not fully hemisphere independent, and are therefore postponed to the final two stages. .. workflow:: :graph2use: orig :simple_form: yes from smriprep.workflows.surfaces import init_autorecon_resume_wf wf = init_autorecon_resume_wf(omp_nthreads=1) **Inputs** subjects_dir FreeSurfer SUBJECTS_DIR subject_id FreeSurfer subject ID use_T2 Refine pial surface using T2w image use_FLAIR Refine pial surface using FLAIR image **Outputs** subjects_dir FreeSurfer SUBJECTS_DIR subject_id FreeSurfer subject ID """ workflow = Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface( fields=['subjects_dir', 'subject_id', 'use_T2', 'use_FLAIR']), name='inputnode') outputnode = pe.Node( niu.IdentityInterface(fields=['subjects_dir', 'subject_id']), name='outputnode') autorecon2_vol = pe.Node(fs.ReconAll(directive='autorecon2-volonly', openmp=omp_nthreads), n_procs=omp_nthreads, mem_gb=5, name='autorecon2_vol') autorecon2_vol.interface._always_run = True autorecon_surfs = pe.MapNode(fs.ReconAll( directive='autorecon-hemi', flags=[ '-noparcstats', '-nocortparc2', '-noparcstats2', '-nocortparc3', '-noparcstats3', '-nopctsurfcon', '-nohyporelabel', '-noaparc2aseg', '-noapas2aseg', '-nosegstats', '-nowmparc', '-nobalabels' ], openmp=omp_nthreads), iterfield='hemi', n_procs=omp_nthreads, mem_gb=5, name='autorecon_surfs') autorecon_surfs.inputs.hemi = ['lh', 'rh'] autorecon_surfs.interface._always_run = True autorecon3 = pe.MapNode(fs.ReconAll(directive='autorecon3', openmp=omp_nthreads), iterfield='hemi', n_procs=omp_nthreads, mem_gb=5, name='autorecon3') autorecon3.inputs.hemi = ['lh', 'rh'] autorecon3.interface._always_run = True def _dedup(in_list): vals = set(in_list) if len(vals) > 1: raise ValueError( "Non-identical values can't be deduplicated:\n{!r}".format( in_list)) return vals.pop() workflow.connect([ (inputnode, autorecon3, [('use_T2', 'use_T2'), ('use_FLAIR', 'use_FLAIR')]), (inputnode, autorecon2_vol, [('subjects_dir', 'subjects_dir'), ('subject_id', 'subject_id')]), (autorecon2_vol, autorecon_surfs, [('subjects_dir', 'subjects_dir'), ('subject_id', 'subject_id')]), (autorecon_surfs, autorecon3, [(('subjects_dir', _dedup), 'subjects_dir'), (('subject_id', _dedup), 'subject_id')]), (autorecon3, outputnode, [(('subjects_dir', _dedup), 'subjects_dir'), (('subject_id', _dedup), 'subject_id')]), ]) return workflow
def init_fsl_bbr_wf(use_bbr, bold2t1w_dof, bold2t1w_init, sloppy=False, name='fsl_bbr_wf'): """ Build a workflow to run FSL's ``flirt``. This workflow uses FSL FLIRT to register a BOLD image to a T1-weighted structural image, using a boundary-based registration (BBR) cost function. It is a counterpart to :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`, which performs the same task using FreeSurfer's ``bbregister``. The ``use_bbr`` option permits a high degree of control over registration. If ``False``, standard, rigid coregistration will be performed by FLIRT. If ``True``, FLIRT-BBR will be seeded with the initial transform found by the rigid coregistration. If ``None``, after FLIRT-BBR is run, the resulting affine transform will be compared to the initial transform found by FLIRT. Excessive deviation will result in rejecting the BBR refinement and accepting the original, affine registration. Workflow Graph .. workflow :: :graph2use: orig :simple_form: yes from fmriprep.workflows.bold.registration import init_fsl_bbr_wf wf = init_fsl_bbr_wf(use_bbr=True, bold2t1w_dof=9, bold2t1w_init='register') Parameters ---------- use_bbr : :obj:`bool` or None Enable/disable boundary-based registration refinement. If ``None``, test BBR result for distortion before accepting. bold2t1w_dof : 6, 9 or 12 Degrees-of-freedom for BOLD-T1w registration bold2t1w_init : str, 'header' or 'register' If ``'header'``, use header information for initialization of BOLD and T1 images. If ``'register'``, align volumes by their centers. name : :obj:`str`, optional Workflow name (default: fsl_bbr_wf) Inputs ------ in_file Reference BOLD image to be registered t1w_brain Skull-stripped T1-weighted structural image t1w_dseg FAST segmentation of ``t1w_brain`` fsnative2t1w_xfm Unused (see :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`) subjects_dir Unused (see :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`) subject_id Unused (see :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`) Outputs ------- itk_bold_to_t1 Affine transform from ``ref_bold_brain`` to T1w space (ITK format) itk_t1_to_bold Affine transform from T1 space to BOLD space (ITK format) out_report Reportlet for assessing registration quality fallback Boolean indicating whether BBR was rejected (rigid FLIRT registration returned) """ from niworkflows.engine.workflows import LiterateWorkflow as Workflow from niworkflows.utils.images import dseg_label as _dseg_label from niworkflows.interfaces.freesurfer import PatchedLTAConvert as LTAConvert from niworkflows.interfaces.registration import FLIRTRPT workflow = Workflow(name=name) workflow.__desc__ = """\ The BOLD reference was then co-registered to the T1w reference using `flirt` [FSL {fsl_ver}, @flirt] with the boundary-based registration [@bbr] cost-function. Co-registration was configured with nine degrees of freedom to account for distortions remaining in the BOLD reference. """.format(fsl_ver=FLIRTRPT().version or '<ver>') inputnode = pe.Node( niu.IdentityInterface([ 'in_file', 'fsnative2t1w_xfm', 'subjects_dir', 'subject_id', # BBRegister 't1w_dseg', 't1w_brain' ]), # FLIRT BBR name='inputnode') outputnode = pe.Node(niu.IdentityInterface( ['itk_bold_to_t1', 'itk_t1_to_bold', 'out_report', 'fallback']), name='outputnode') wm_mask = pe.Node(niu.Function(function=_dseg_label), name='wm_mask') wm_mask.inputs.label = 2 # BIDS default is WM=2 flt_bbr_init = pe.Node(FLIRTRPT(dof=6, generate_report=not use_bbr, uses_qform=True), name='flt_bbr_init') if bold2t1w_init not in ("register", "header"): raise ValueError( f"Unknown BOLD-T1w initialization option: {bold2t1w_init}") if bold2t1w_init == "header": raise NotImplementedError( "Header-based registration initialization not supported for FSL") invt_bbr = pe.Node(fsl.ConvertXFM(invert_xfm=True), name='invt_bbr', mem_gb=DEFAULT_MEMORY_MIN_GB) # BOLD to T1 transform matrix is from fsl, using c3 tools to convert to # something ANTs will like. fsl2itk_fwd = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True), name='fsl2itk_fwd', mem_gb=DEFAULT_MEMORY_MIN_GB) fsl2itk_inv = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True), name='fsl2itk_inv', mem_gb=DEFAULT_MEMORY_MIN_GB) workflow.connect([ (inputnode, flt_bbr_init, [('in_file', 'in_file'), ('t1w_brain', 'reference')]), (inputnode, fsl2itk_fwd, [('t1w_brain', 'reference_file'), ('in_file', 'source_file')]), (inputnode, fsl2itk_inv, [('in_file', 'reference_file'), ('t1w_brain', 'source_file')]), (invt_bbr, fsl2itk_inv, [('out_file', 'transform_file')]), (fsl2itk_fwd, outputnode, [('itk_transform', 'itk_bold_to_t1')]), (fsl2itk_inv, outputnode, [('itk_transform', 'itk_t1_to_bold')]), ]) # Short-circuit workflow building, use rigid registration if use_bbr is False: workflow.connect([ (flt_bbr_init, invt_bbr, [('out_matrix_file', 'in_file')]), (flt_bbr_init, fsl2itk_fwd, [('out_matrix_file', 'transform_file') ]), (flt_bbr_init, outputnode, [('out_report', 'out_report')]), ]) outputnode.inputs.fallback = True return workflow flt_bbr = pe.Node(FLIRTRPT(cost_func='bbr', dof=bold2t1w_dof, generate_report=True), name='flt_bbr') FSLDIR = os.getenv('FSLDIR') if FSLDIR: flt_bbr.inputs.schedule = op.join(FSLDIR, 'etc/flirtsch/bbr.sch') else: # Should mostly be hit while building docs LOGGER.warning("FSLDIR unset - using packaged BBR schedule") flt_bbr.inputs.schedule = pkgr.resource_filename( 'fmriprep', 'data/flirtsch/bbr.sch') workflow.connect([ (inputnode, wm_mask, [('t1w_dseg', 'in_seg')]), (inputnode, flt_bbr, [('in_file', 'in_file')]), (flt_bbr_init, flt_bbr, [('out_matrix_file', 'in_matrix_file')]), ]) if sloppy is True: downsample = pe.Node(niu.Function( function=_conditional_downsampling, output_names=["out_file", "out_mask"]), name='downsample') workflow.connect([ (inputnode, downsample, [("t1w_brain", "in_file")]), (wm_mask, downsample, [("out", "in_mask")]), (downsample, flt_bbr, [('out_file', 'reference'), ('out_mask', 'wm_seg')]), ]) else: workflow.connect([ (inputnode, flt_bbr, [('t1w_brain', 'reference')]), (wm_mask, flt_bbr, [('out', 'wm_seg')]), ]) # Short-circuit workflow building, use boundary-based registration if use_bbr is True: workflow.connect([ (flt_bbr, invt_bbr, [('out_matrix_file', 'in_file')]), (flt_bbr, fsl2itk_fwd, [('out_matrix_file', 'transform_file')]), (flt_bbr, outputnode, [('out_report', 'out_report')]), ]) outputnode.inputs.fallback = False return workflow transforms = pe.Node(niu.Merge(2), run_without_submitting=True, name='transforms') reports = pe.Node(niu.Merge(2), run_without_submitting=True, name='reports') compare_transforms = pe.Node(niu.Function(function=compare_xforms), name='compare_transforms') select_transform = pe.Node(niu.Select(), run_without_submitting=True, name='select_transform') select_report = pe.Node(niu.Select(), run_without_submitting=True, name='select_report') fsl_to_lta = pe.MapNode(LTAConvert(out_lta=True), iterfield=['in_fsl'], name='fsl_to_lta') workflow.connect([ (flt_bbr, transforms, [('out_matrix_file', 'in1')]), (flt_bbr_init, transforms, [('out_matrix_file', 'in2')]), # Convert FSL transforms to LTA (RAS2RAS) transforms and compare (inputnode, fsl_to_lta, [('in_file', 'source_file'), ('t1w_brain', 'target_file')]), (transforms, fsl_to_lta, [('out', 'in_fsl')]), (fsl_to_lta, compare_transforms, [('out_lta', 'lta_list')]), (compare_transforms, outputnode, [('out', 'fallback')]), # Select output transform (transforms, select_transform, [('out', 'inlist')]), (compare_transforms, select_transform, [('out', 'index')]), (select_transform, invt_bbr, [('out', 'in_file')]), (select_transform, fsl2itk_fwd, [('out', 'transform_file')]), (flt_bbr, reports, [('out_report', 'in1')]), (flt_bbr_init, reports, [('out_report', 'in2')]), (reports, select_report, [('out', 'inlist')]), (compare_transforms, select_report, [('out', 'index')]), (select_report, outputnode, [('out', 'out_report')]), ]) return workflow
def init_bold_preproc_report_wf(mem_gb, reportlets_dir, name='bold_preproc_report_wf'): """ This workflow generates and saves a reportlet showing the effect of resampling the BOLD signal using the standard deviation maps. .. workflow:: :graph2use: orig :simple_form: yes from fmriprep.workflows.bold.resampling import init_bold_preproc_report_wf wf = init_bold_preproc_report_wf(mem_gb=1, reportlets_dir='.') **Parameters** mem_gb : float Size of BOLD file in GB reportlets_dir : str Directory in which to save reportlets name : str, optional Workflow name (default: bold_preproc_report_wf) **Inputs** in_pre BOLD time-series, before resampling in_post BOLD time-series, after resampling name_source BOLD series NIfTI file Used to recover original information lost during processing """ from nipype.algorithms.confounds import TSNR from niworkflows.interfaces import SimpleBeforeAfter workflow = Workflow(name=name) inputnode = pe.Node( niu.IdentityInterface(fields=['in_pre', 'in_post', 'name_source']), name='inputnode') pre_tsnr = pe.Node(TSNR(), name='pre_tsnr', mem_gb=mem_gb * 4.5) pos_tsnr = pe.Node(TSNR(), name='pos_tsnr', mem_gb=mem_gb * 4.5) bold_rpt = pe.Node(SimpleBeforeAfter(), name='bold_rpt', mem_gb=0.1) ds_report_bold = pe.Node(DerivativesDataSink(base_directory=reportlets_dir, desc='preproc', keep_dtype=True), name='ds_report_bold', mem_gb=DEFAULT_MEMORY_MIN_GB, run_without_submitting=True) workflow.connect([ (inputnode, ds_report_bold, [('name_source', 'source_file')]), (inputnode, pre_tsnr, [('in_pre', 'in_file')]), (inputnode, pos_tsnr, [('in_post', 'in_file')]), (pre_tsnr, bold_rpt, [('stddev_file', 'before')]), (pos_tsnr, bold_rpt, [('stddev_file', 'after')]), (bold_rpt, ds_report_bold, [('out_report', 'in_file')]), ]) return workflow
def init_bold_surf_wf(mem_gb, output_spaces, medial_surface_nan, name='bold_surf_wf'): """ This workflow samples functional images to FreeSurfer surfaces For each vertex, the cortical ribbon is sampled at six points (spaced 20% of thickness apart) and averaged. Outputs are in GIFTI format. .. workflow:: :graph2use: colored :simple_form: yes from fmriprep.workflows.bold import init_bold_surf_wf wf = init_bold_surf_wf(mem_gb=0.1, output_spaces=['T1w', 'fsnative', 'template', 'fsaverage5'], medial_surface_nan=False) **Parameters** output_spaces : list List of output spaces functional images are to be resampled to Target spaces beginning with ``fs`` will be selected for resampling, such as ``fsaverage`` or related template spaces If the list contains ``fsnative``, images will be resampled to the individual subject's native surface medial_surface_nan : bool Replace medial wall values with NaNs on functional GIFTI files **Inputs** source_file Motion-corrected BOLD series in T1 space t1_preproc Bias-corrected structural template image subjects_dir FreeSurfer SUBJECTS_DIR subject_id FreeSurfer subject ID t1_2_fsnative_forward_transform LTA-style affine matrix translating from T1w to FreeSurfer-conformed subject space **Outputs** surfaces BOLD series, resampled to FreeSurfer surfaces """ # Ensure volumetric spaces do not sneak into this workflow spaces = [space for space in output_spaces if space.startswith('fs')] workflow = Workflow(name=name) if spaces: workflow.__desc__ = """\ The BOLD time-series, were resampled to surfaces on the following spaces: {out_spaces}. """.format(out_spaces=', '.join(['*%s*' % s for s in spaces])) inputnode = pe.Node(niu.IdentityInterface(fields=[ 'source_file', 't1_preproc', 'subject_id', 'subjects_dir', 't1_2_fsnative_forward_transform' ]), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=['surfaces']), name='outputnode') def select_target(subject_id, space): """ Given a source subject ID and a target space, get the target subject ID """ return subject_id if space == 'fsnative' else space targets = pe.MapNode(niu.Function(function=select_target), iterfield=['space'], name='targets', mem_gb=DEFAULT_MEMORY_MIN_GB) targets.inputs.space = spaces # Rename the source file to the output space to simplify naming later rename_src = pe.MapNode(niu.Rename(format_string='%(subject)s', keep_ext=True), iterfield='subject', name='rename_src', run_without_submitting=True, mem_gb=DEFAULT_MEMORY_MIN_GB) rename_src.inputs.subject = spaces resampling_xfm = pe.Node(LTAConvert(in_lta='identity.nofile', out_lta=True), name='resampling_xfm') set_xfm_source = pe.Node(ConcatenateLTA(out_type='RAS2RAS'), name='set_xfm_source') sampler = pe.MapNode(fs.SampleToSurface(sampling_method='average', sampling_range=(0, 1, 0.2), sampling_units='frac', interp_method='trilinear', cortex_mask=True, override_reg_subj=True, out_type='gii'), iterfield=['source_file', 'target_subject'], iterables=('hemi', ['lh', 'rh']), name='sampler', mem_gb=mem_gb * 3) medial_nans = pe.MapNode(MedialNaNs(), iterfield=['in_file', 'target_subject'], name='medial_nans', mem_gb=DEFAULT_MEMORY_MIN_GB) merger = pe.JoinNode(niu.Merge(1, ravel_inputs=True), name='merger', joinsource='sampler', joinfield=['in1'], run_without_submitting=True, mem_gb=DEFAULT_MEMORY_MIN_GB) update_metadata = pe.MapNode(GiftiSetAnatomicalStructure(), iterfield='in_file', name='update_metadata', mem_gb=DEFAULT_MEMORY_MIN_GB) workflow.connect([ (inputnode, targets, [('subject_id', 'subject_id')]), (inputnode, rename_src, [('source_file', 'in_file')]), (inputnode, resampling_xfm, [('source_file', 'source_file'), ('t1_preproc', 'target_file')]), (inputnode, set_xfm_source, [('t1_2_fsnative_forward_transform', 'in_lta2')]), (resampling_xfm, set_xfm_source, [('out_lta', 'in_lta1')]), (inputnode, sampler, [('subjects_dir', 'subjects_dir'), ('subject_id', 'subject_id')]), (set_xfm_source, sampler, [('out_file', 'reg_file')]), (targets, sampler, [('out', 'target_subject')]), (rename_src, sampler, [('out_file', 'source_file')]), (merger, update_metadata, [('out', 'in_file')]), (update_metadata, outputnode, [('out_file', 'surfaces')]), ]) if medial_surface_nan: workflow.connect([ (inputnode, medial_nans, [('subjects_dir', 'subjects_dir')]), (sampler, medial_nans, [('out_file', 'in_file')]), (targets, medial_nans, [('out', 'target_subject')]), (medial_nans, merger, [('out_file', 'in1')]), ]) else: workflow.connect(sampler, 'out_file', merger, 'in1') return workflow
def init_3dQwarp_wf(omp_nthreads=1, debug=False, name="pepolar_estimate_wf"): """ Create the PEPOLAR field estimation workflow based on AFNI's ``3dQwarp``. This workflow takes in two EPI files that MUST have opposed :abbr:`PE (phase-encoding)` direction. Therefore, EPIs with orthogonal PE directions are not supported. Workflow Graph .. workflow :: :graph2use: orig :simple_form: yes from sdcflows.workflows.fit.pepolar import init_3dQwarp_wf wf = init_3dQwarp_wf() Parameters ---------- debug : :obj:`bool` Whether a fast configuration of topup (less accurate) should be applied. name : :obj:`str` Name for this workflow omp_nthreads : :obj:`int` Parallelize internal tasks across the number of CPUs given by this option. Inputs ------ in_data : :obj:`list` of :obj:`str` A list of two EPI files, the first of which will be taken as reference. Outputs ------- fmap : :obj:`str` The path of the estimated fieldmap. fmap_ref : :obj:`str` The path of an unwarped conversion of the first element of ``in_data``. """ from nipype.interfaces import afni from niworkflows.interfaces.header import CopyHeader from niworkflows.interfaces.fixes import ( FixHeaderRegistration as Registration, FixHeaderApplyTransforms as ApplyTransforms, ) from niworkflows.interfaces.freesurfer import StructuralReference from niworkflows.func.util import init_enhance_and_skullstrip_bold_wf from ...utils.misc import front as _front, last as _last from ...interfaces.utils import Flatten, ConvertWarp workflow = Workflow(name=name) workflow.__desc__ = f"""{_PEPOLAR_DESC} \ with `3dQwarp` (@afni; AFNI {''.join(['%02d' % v for v in afni.Info().version() or []])}). """ inputnode = pe.Node(niu.IdentityInterface(fields=["in_data", "metadata"]), name="inputnode") outputnode = pe.Node(niu.IdentityInterface(fields=["fmap", "fmap_ref"]), name="outputnode") flatten = pe.Node(Flatten(), name="flatten") sort_pe = pe.Node( niu.Function(function=_sorted_pe, output_names=["sorted", "qwarp_args"]), name="sort_pe", run_without_submitting=True, ) merge_pes = pe.MapNode( StructuralReference( auto_detect_sensitivity=True, initial_timepoint=1, fixed_timepoint=True, # Align to first image intensity_scaling=True, # 7-DOF (rigid + intensity) no_iteration=True, subsample_threshold=200, out_file="template.nii.gz", ), name="merge_pes", iterfield=["in_files"], ) pe0_wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=omp_nthreads, name="pe0_wf") pe1_wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=omp_nthreads, name="pe1_wf") align_pes = pe.Node( Registration( from_file=_pkg_fname("sdcflows", "data/translation_rigid.json"), output_warped_image=True, ), name="align_pes", n_procs=omp_nthreads, ) qwarp = pe.Node( afni.QwarpPlusMinus( blur=[-1, -1], environ={"OMP_NUM_THREADS": f"{min(omp_nthreads, 4)}"}, minpatch=9, nopadWARP=True, noweight=True, pblur=[0.05, 0.05], ), name="qwarp", n_procs=min(omp_nthreads, 4), ) to_ants = pe.Node(ConvertWarp(), name="to_ants", mem_gb=0.01) cphdr_warp = pe.Node(CopyHeader(), name="cphdr_warp", mem_gb=0.01) unwarp_reference = pe.Node( ApplyTransforms( dimension=3, float=True, interpolation="LanczosWindowedSinc", ), name="unwarp_reference", ) # fmt: off workflow.connect([ (inputnode, flatten, [("in_data", "in_data"), ("metadata", "in_meta")]), (flatten, sort_pe, [("out_list", "inlist")]), (sort_pe, qwarp, [("qwarp_args", "args")]), (sort_pe, merge_pes, [("sorted", "in_files")]), (merge_pes, pe0_wf, [(("out_file", _front), "inputnode.in_file")]), (merge_pes, pe1_wf, [(("out_file", _last), "inputnode.in_file")]), (pe0_wf, align_pes, [("outputnode.skull_stripped_file", "fixed_image") ]), (pe1_wf, align_pes, [("outputnode.skull_stripped_file", "moving_image") ]), (pe0_wf, qwarp, [("outputnode.skull_stripped_file", "in_file")]), (align_pes, qwarp, [("warped_image", "base_file")]), (inputnode, cphdr_warp, [(("in_data", _front), "hdr_file")]), (qwarp, cphdr_warp, [("source_warp", "in_file")]), (cphdr_warp, to_ants, [("out_file", "in_file")]), (to_ants, unwarp_reference, [("out_file", "transforms")]), (inputnode, unwarp_reference, [("in_reference", "reference_image"), ("in_reference", "input_image")]), (unwarp_reference, outputnode, [("output_image", "fmap_ref")]), (to_ants, outputnode, [("out_file", "fmap")]), ]) # fmt: on return workflow
def init_prepare_epi_wf(omp_nthreads, matched_pe=False, name="prepare_epi_wf"): """ Prepare opposed-PE EPI images for PE-POLAR SDC. This workflow takes in a set of EPI files and returns two 3D volumes with matching and opposed PE directions, ready to be used in field distortion estimation. The procedure involves: estimating a robust template using FreeSurfer's ``mri_robust_template``, bias field correction using ANTs ``N4BiasFieldCorrection`` and AFNI ``3dUnifize``, skullstripping using FSL BET and AFNI ``3dAutomask``, and rigid coregistration to the reference using ANTs. .. workflow :: :graph2use: orig :simple_form: yes from sdcflows.workflows.pepolar import init_prepare_epi_wf wf = init_prepare_epi_wf(omp_nthreads=8) **Parameters**: matched_pe : bool Whether the input ``fmaps_epi`` will contain images with matched PE blips or not. Please use :func:`sdcflows.workflows.pepolar.check_pes` to determine whether they exist or not. name : str Name for this workflow omp_nthreads : int Parallelize internal tasks across the number of CPUs given by this option. **Inputs**: epi_pe : str Phase-encoding direction of the EPI image to be corrected. maps_pe : list of tuple(pathlike, str) list of 3D or 4D NIfTI images ref_brain coregistration reference (skullstripped and bias field corrected) **Outputs**: opposed_pe : pathlike single 3D NIfTI file matched_pe : pathlike single 3D NIfTI file """ inputnode = pe.Node( niu.IdentityInterface(fields=['epi_pe', 'maps_pe', 'ref_brain']), name='inputnode') outputnode = pe.Node( niu.IdentityInterface(fields=['opposed_pe', 'matched_pe']), name='outputnode') ants_settings = pkgr.resource_filename('sdcflows', 'data/translation_rigid.json') split = pe.Node(niu.Function(function=_split_epi_lists), name='split') merge_op = pe.Node( StructuralReference( auto_detect_sensitivity=True, initial_timepoint=1, fixed_timepoint=True, # Align to first image intensity_scaling=True, # 7-DOF (rigid + intensity) no_iteration=True, subsample_threshold=200, out_file='template.nii.gz'), name='merge_op') ref_op_wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=omp_nthreads, name='ref_op_wf') op2ref_reg = pe.Node(ants.Registration(from_file=ants_settings, output_warped_image=True), name='op2ref_reg', n_procs=omp_nthreads) workflow = Workflow(name=name) workflow.connect([ (inputnode, split, [('maps_pe', 'in_files'), ('epi_pe', 'pe_dir')]), (split, merge_op, [(('out', _front), 'in_files')]), (merge_op, ref_op_wf, [('out_file', 'inputnode.in_file')]), (ref_op_wf, op2ref_reg, [('outputnode.skull_stripped_file', 'moving_image')]), (inputnode, op2ref_reg, [('ref_brain', 'fixed_image')]), (op2ref_reg, outputnode, [('warped_image', 'opposed_pe')]), ]) if not matched_pe: workflow.connect([ (inputnode, outputnode, [('ref_brain', 'matched_pe')]), ]) return workflow merge_ma = pe.Node( StructuralReference( auto_detect_sensitivity=True, initial_timepoint=1, fixed_timepoint=True, # Align to first image intensity_scaling=True, # 7-DOF (rigid + intensity) no_iteration=True, subsample_threshold=200, out_file='template.nii.gz'), name='merge_ma') ref_ma_wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=omp_nthreads, name='ref_ma_wf') ma2ref_reg = pe.Node(ants.Registration(from_file=ants_settings, output_warped_image=True), name='ma2ref_reg', n_procs=omp_nthreads) workflow.connect([ (split, merge_ma, [(('out', _last), 'in_files')]), (merge_ma, ref_ma_wf, [('out_file', 'inputnode.in_file')]), (ref_ma_wf, ma2ref_reg, [('outputnode.skull_stripped_file', 'moving_image')]), (inputnode, ma2ref_reg, [('ref_brain', 'fixed_image')]), (ma2ref_reg, outputnode, [('warped_image', 'matched_pe')]), ]) return workflow
def init_topup_wf(omp_nthreads=1, debug=False, name="pepolar_estimate_wf"): """ Create the PEPOLAR field estimation workflow based on FSL's ``topup``. Workflow Graph .. workflow :: :graph2use: orig :simple_form: yes from sdcflows.workflows.fit.pepolar import init_topup_wf wf = init_topup_wf() Parameters ---------- debug : :obj:`bool` Whether a fast configuration of topup (less accurate) should be applied. name : :obj:`str` Name for this workflow omp_nthreads : :obj:`int` Parallelize internal tasks across the number of CPUs given by this option. Inputs ------ in_data : :obj:`list` of :obj:`str` A list of EPI files that will be fed into TOPUP. metadata : :obj:`list` of :obj:`dict` A list of dictionaries containing the metadata corresponding to each file in ``in_data``. Outputs ------- fmap : :obj:`str` The path of the estimated fieldmap. fmap_ref : :obj:`str` The path of an unwarped conversion of files in ``in_data``. fmap_mask : :obj:`str` The path of mask corresponding to the ``fmap_ref`` output. fmap_coeff : :obj:`str` or :obj:`list` of :obj:`str` The path(s) of the B-Spline coefficients supporting the fieldmap. """ from nipype.interfaces.fsl.epi import TOPUP from niworkflows.interfaces.nibabel import MergeSeries from niworkflows.interfaces.images import IntraModalMerge from ...interfaces.epi import GetReadoutTime from ...interfaces.utils import Flatten from ...interfaces.bspline import TOPUPCoeffReorient from ..ancillary import init_brainextraction_wf workflow = Workflow(name=name) workflow.__postdesc__ = f"""\ {_PEPOLAR_DESC} with `topup` (@topup; FSL {TOPUP().version}). """ inputnode = pe.Node(niu.IdentityInterface(fields=INPUT_FIELDS), name="inputnode") outputnode = pe.Node( niu.IdentityInterface(fields=[ "fmap", "fmap_ref", "fmap_coeff", "fmap_mask", "jacobians", "xfms", "out_warps", ]), name="outputnode", ) flatten = pe.Node(Flatten(), name="flatten") concat_blips = pe.Node(MergeSeries(), name="concat_blips") readout_time = pe.MapNode( GetReadoutTime(), name="readout_time", iterfield=["metadata", "in_file"], run_without_submitting=True, ) topup = pe.Node( TOPUP(config=_pkg_fname("sdcflows", f"data/flirtsch/b02b0{'_quick' * debug}.cnf")), name="topup", ) merge_corrected = pe.Node(IntraModalMerge(hmc=False, to_ras=False), name="merge_corrected") fix_coeff = pe.Node(TOPUPCoeffReorient(), name="fix_coeff", run_without_submitting=True) brainextraction_wf = init_brainextraction_wf() # fmt: off workflow.connect([ (inputnode, flatten, [("in_data", "in_data"), ("metadata", "in_meta")]), (flatten, readout_time, [("out_data", "in_file"), ("out_meta", "metadata")]), (flatten, concat_blips, [("out_data", "in_files")]), (flatten, topup, [(("out_meta", _pe2fsl), "encoding_direction")]), (readout_time, topup, [("readout_time", "readout_times")]), (concat_blips, topup, [("out_file", "in_file")]), (topup, merge_corrected, [("out_corrected", "in_files")]), (topup, fix_coeff, [("out_fieldcoef", "in_coeff"), ("out_corrected", "fmap_ref")]), (topup, outputnode, [("out_field", "fmap"), ("out_jacs", "jacobians"), ("out_mats", "xfms"), ("out_warps", "out_warps")]), (merge_corrected, brainextraction_wf, [("out_avg", "inputnode.in_file") ]), (merge_corrected, outputnode, [("out_avg", "fmap_ref")]), (brainextraction_wf, outputnode, [("outputnode.out_mask", "fmap_mask") ]), (fix_coeff, outputnode, [("out_coeff", "fmap_coeff")]), ]) # fmt: on return workflow
def init_smriprep_wf( debug, fast_track, freesurfer, fs_subjects_dir, hires, layout, longitudinal, low_mem, omp_nthreads, output_dir, run_uuid, skull_strip_mode, skull_strip_fixed_seed, skull_strip_template, spaces, subject_list, work_dir, bids_filters, ): """ Create the execution graph of *sMRIPrep*, with a sub-workflow for each subject. If FreeSurfer's ``recon-all`` is to be run, a FreeSurfer derivatives folder is created and populated with any needed template subjects. Workflow Graph .. workflow:: :graph2use: orig :simple_form: yes import os from collections import namedtuple BIDSLayout = namedtuple('BIDSLayout', ['root']) os.environ['FREESURFER_HOME'] = os.getcwd() from smriprep.workflows.base import init_smriprep_wf from niworkflows.utils.spaces import SpatialReferences, Reference wf = init_smriprep_wf( debug=False, fast_track=False, freesurfer=True, fs_subjects_dir=None, hires=True, layout=BIDSLayout('.'), longitudinal=False, low_mem=False, omp_nthreads=1, output_dir='.', run_uuid='testrun', skull_strip_fixed_seed=False, skull_strip_mode='force', skull_strip_template=Reference('OASIS30ANTs'), spaces=SpatialReferences(spaces=['MNI152NLin2009cAsym', 'fsaverage5']), subject_list=['smripreptest'], work_dir='.', bids_filters=None, ) Parameters ---------- debug : :obj:`bool` Enable debugging outputs fast_track : :obj:`bool` Fast-track the workflow by searching for existing derivatives. freesurfer : :obj:`bool` Enable FreeSurfer surface reconstruction (may increase runtime) fs_subjects_dir : os.PathLike or None Use existing FreeSurfer subjects directory if provided hires : :obj:`bool` Enable sub-millimeter preprocessing in FreeSurfer layout : BIDSLayout object BIDS dataset layout longitudinal : :obj:`bool` Treat multiple sessions as longitudinal (may increase runtime) See sub-workflows for specific differences low_mem : :obj:`bool` Write uncompressed .nii files in some cases to reduce memory usage omp_nthreads : :obj:`int` Maximum number of threads an individual process may use output_dir : :obj:`str` Directory in which to save derivatives run_uuid : :obj:`str` Unique identifier for execution instance skull_strip_fixed_seed : :obj:`bool` Do not use a random seed for skull-stripping - will ensure run-to-run replicability when used with --omp-nthreads 1 skull_strip_mode : :obj:`str` Determiner for T1-weighted skull stripping (`force` ensures skull stripping, `skip` ignores skull stripping, and `auto` automatically ignores skull stripping if pre-stripped brains are detected). skull_strip_template : :py:class:`~niworkflows.utils.spaces.Reference` Spatial reference to use in atlas-based brain extraction. spaces : :py:class:`~niworkflows.utils.spaces.SpatialReferences` Object containing standard and nonstandard space specifications. subject_list : :obj:`list` List of subject labels work_dir : :obj:`str` Directory in which to store workflow execution state and temporary files bids_filters : dict Provides finer specification of the pipeline input files through pybids entities filters. A dict with the following structure {<suffix>:{<entity>:<filter>,...},...} """ smriprep_wf = Workflow(name='smriprep_wf') smriprep_wf.base_dir = work_dir if freesurfer: fsdir = pe.Node(BIDSFreeSurferDir( derivatives=output_dir, freesurfer_home=os.getenv('FREESURFER_HOME'), spaces=spaces.get_fs_spaces()), name='fsdir_run_%s' % run_uuid.replace('-', '_'), run_without_submitting=True) if fs_subjects_dir is not None: fsdir.inputs.subjects_dir = str(fs_subjects_dir.absolute()) for subject_id in subject_list: single_subject_wf = init_single_subject_wf( debug=debug, freesurfer=freesurfer, fast_track=fast_track, hires=hires, layout=layout, longitudinal=longitudinal, low_mem=low_mem, name="single_subject_%s_wf" % subject_id, omp_nthreads=omp_nthreads, output_dir=output_dir, skull_strip_fixed_seed=skull_strip_fixed_seed, skull_strip_mode=skull_strip_mode, skull_strip_template=skull_strip_template, spaces=spaces, subject_id=subject_id, bids_filters=bids_filters, ) single_subject_wf.config['execution']['crashdump_dir'] = (os.path.join( output_dir, "smriprep", "sub-" + subject_id, 'log', run_uuid)) for node in single_subject_wf._get_all_nodes(): node.config = deepcopy(single_subject_wf.config) if freesurfer: smriprep_wf.connect(fsdir, 'subjects_dir', single_subject_wf, 'inputnode.subjects_dir') else: smriprep_wf.add_nodes([single_subject_wf]) return smriprep_wf
def init_single_subject_wf( debug, freesurfer, fast_track, hires, layout, longitudinal, low_mem, name, omp_nthreads, output_dir, skull_strip_fixed_seed, skull_strip_mode, skull_strip_template, spaces, subject_id, bids_filters, ): """ Create a single subject workflow. This workflow organizes the preprocessing pipeline for a single subject. It collects and reports information about the subject, and prepares sub-workflows to perform anatomical and functional preprocessing. Anatomical preprocessing is performed in a single workflow, regardless of the number of sessions. Functional preprocessing is performed using a separate workflow for each individual BOLD series. Workflow Graph .. workflow:: :graph2use: orig :simple_form: yes from collections import namedtuple from niworkflows.utils.spaces import SpatialReferences, Reference from smriprep.workflows.base import init_single_subject_wf BIDSLayout = namedtuple('BIDSLayout', ['root']) wf = init_single_subject_wf( debug=False, freesurfer=True, fast_track=False, hires=True, layout=BIDSLayout('.'), longitudinal=False, low_mem=False, name='single_subject_wf', omp_nthreads=1, output_dir='.', skull_strip_fixed_seed=False, skull_strip_mode='force', skull_strip_template=Reference('OASIS30ANTs'), spaces=SpatialReferences(spaces=['MNI152NLin2009cAsym', 'fsaverage5']), subject_id='test', bids_filters=None, ) Parameters ---------- debug : :obj:`bool` Enable debugging outputs freesurfer : :obj:`bool` Enable FreeSurfer surface reconstruction (may increase runtime) fast_track : :obj:`bool` If ``True``, attempt to collect previously run derivatives. hires : :obj:`bool` Enable sub-millimeter preprocessing in FreeSurfer layout : BIDSLayout object BIDS dataset layout longitudinal : :obj:`bool` Treat multiple sessions as longitudinal (may increase runtime) See sub-workflows for specific differences low_mem : :obj:`bool` Write uncompressed .nii files in some cases to reduce memory usage name : :obj:`str` Name of workflow omp_nthreads : :obj:`int` Maximum number of threads an individual process may use output_dir : :obj:`str` Directory in which to save derivatives skull_strip_fixed_seed : :obj:`bool` Do not use a random seed for skull-stripping - will ensure run-to-run replicability when used with --omp-nthreads 1 skull_strip_mode : :obj:`str` Determiner for T1-weighted skull stripping (`force` ensures skull stripping, `skip` ignores skull stripping, and `auto` automatically ignores skull stripping if pre-stripped brains are detected). skull_strip_template : :py:class:`~niworkflows.utils.spaces.Reference` Spatial reference to use in atlas-based brain extraction. spaces : :py:class:`~niworkflows.utils.spaces.SpatialReferences` Object containing standard and nonstandard space specifications. subject_id : :obj:`str` List of subject labels bids_filters : dict Provides finer specification of the pipeline input files through pybids entities filters. A dict with the following structure {<suffix>:{<entity>:<filter>,...},...} Inputs ------ subjects_dir FreeSurfer SUBJECTS_DIR """ from ..interfaces.reports import AboutSummary, SubjectSummary if name in ('single_subject_wf', 'single_subject_smripreptest_wf'): # for documentation purposes subject_data = { 't1w': ['/completely/made/up/path/sub-01_T1w.nii.gz'], } else: subject_data = collect_data(layout, subject_id, bids_filters=bids_filters)[0] if not subject_data['t1w']: raise Exception("No T1w images found for participant {}. " "All workflows require T1w images.".format(subject_id)) workflow = Workflow(name=name) workflow.__desc__ = """ Results included in this manuscript come from preprocessing performed using *sMRIPprep* {smriprep_ver} (@fmriprep1; @fmriprep2; RRID:SCR_016216), which is based on *Nipype* {nipype_ver} (@nipype1; @nipype2; RRID:SCR_002502). """.format(smriprep_ver=__version__, nipype_ver=nipype_ver) workflow.__postdesc__ = """ For more details of the pipeline, see [the section corresponding to workflows in *sMRIPrep*'s documentation]\ (https://smriprep.readthedocs.io/en/latest/workflows.html \ "sMRIPrep's documentation"). ### References """ deriv_cache = None if fast_track: from ..utils.bids import collect_derivatives std_spaces = spaces.get_spaces(nonstandard=False, dim=(3, )) deriv_cache = collect_derivatives( Path(output_dir) / 'smriprep', subject_id, std_spaces, freesurfer) inputnode = pe.Node(niu.IdentityInterface(fields=['subjects_dir']), name='inputnode') bidssrc = pe.Node(BIDSDataGrabber(subject_data=subject_data, anat_only=True), name='bidssrc') bids_info = pe.Node(BIDSInfo(bids_dir=layout.root), name='bids_info', run_without_submitting=True) summary = pe.Node( SubjectSummary(output_spaces=spaces.get_spaces(nonstandard=False)), name='summary', run_without_submitting=True) about = pe.Node(AboutSummary(version=__version__, command=' '.join(sys.argv)), name='about', run_without_submitting=True) ds_report_summary = pe.Node(DerivativesDataSink( base_directory=output_dir, dismiss_entities=("session", ), desc='summary', datatype="figures"), name='ds_report_summary', run_without_submitting=True) ds_report_about = pe.Node(DerivativesDataSink( base_directory=output_dir, dismiss_entities=("session", ), desc='about', datatype="figures"), name='ds_report_about', run_without_submitting=True) # Preprocessing of T1w (includes registration to MNI) anat_preproc_wf = init_anat_preproc_wf( bids_root=layout.root, debug=debug, existing_derivatives=deriv_cache, freesurfer=freesurfer, hires=hires, longitudinal=longitudinal, name="anat_preproc_wf", t1w=subject_data['t1w'], omp_nthreads=omp_nthreads, output_dir=output_dir, skull_strip_fixed_seed=skull_strip_fixed_seed, skull_strip_mode=skull_strip_mode, skull_strip_template=skull_strip_template, spaces=spaces, ) workflow.connect([ (inputnode, anat_preproc_wf, [('subjects_dir', 'inputnode.subjects_dir')]), (bidssrc, bids_info, [(('t1w', fix_multi_T1w_source_name), 'in_file') ]), (inputnode, summary, [('subjects_dir', 'subjects_dir')]), (bidssrc, summary, [('t1w', 't1w'), ('t2w', 't2w')]), (bids_info, summary, [('subject', 'subject_id')]), (bids_info, anat_preproc_wf, [(('subject', _prefix), 'inputnode.subject_id')]), (bidssrc, anat_preproc_wf, [('t1w', 'inputnode.t1w'), ('t2w', 'inputnode.t2w'), ('roi', 'inputnode.roi'), ('flair', 'inputnode.flair')]), (bidssrc, ds_report_summary, [(('t1w', fix_multi_T1w_source_name), 'source_file')]), (summary, ds_report_summary, [('out_report', 'in_file')]), (bidssrc, ds_report_about, [(('t1w', fix_multi_T1w_source_name), 'source_file')]), (about, ds_report_about, [('out_report', 'in_file')]), ]) return workflow
def init_phdiff_wf(omp_nthreads, phasetype='phasediff', name='phdiff_wf'): """ Estimates the fieldmap using a phase-difference image and one or more magnitude images corresponding to two or more :abbr:`GRE (Gradient Echo sequence)` acquisitions. The `original code was taken from nipype <https://github.com/nipy/nipype/blob/master/nipype/workflows/dmri/fsl/artifacts.py#L514>`_. .. workflow :: :graph2use: orig :simple_form: yes from fmriprep.workflows.fieldmap.phdiff import init_phdiff_wf wf = init_phdiff_wf(omp_nthreads=1) Outputs:: outputnode.fmap_ref - The average magnitude image, skull-stripped outputnode.fmap_mask - The brain mask applied to the fieldmap outputnode.fmap - The estimated fieldmap in Hz """ workflow = Workflow(name=name) workflow.__desc__ = """\ A deformation field to correct for susceptibility distortions was estimated based on a field map that was co-registered to the BOLD reference, using a custom workflow of *fMRIPrep* derived from D. Greve's `epidewarp.fsl` [script](http://www.nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl) and further improvements of HCP Pipelines [@hcppipelines]. """ inputnode = pe.Node( niu.IdentityInterface(fields=['magnitude', 'phasediff']), name='inputnode') outputnode = pe.Node( niu.IdentityInterface(fields=['fmap', 'fmap_ref', 'fmap_mask']), name='outputnode') def _pick1st(inlist): return inlist[0] # Read phasediff echo times meta = pe.Node(ReadSidecarJSON(), name='meta', mem_gb=0.01, run_without_submitting=True) # Merge input magnitude images magmrg = pe.Node(IntraModalMerge(), name='magmrg') # de-gradient the fields ("bias/illumination artifact") n4 = pe.Node(ants.N4BiasFieldCorrection(dimension=3, copy_header=True), name='n4', n_procs=omp_nthreads) bet = pe.Node(BETRPT(generate_report=True, frac=0.6, mask=True), name='bet') ds_report_fmap_mask = pe.Node(DerivativesDataSink(desc='brain', suffix='mask'), name='ds_report_fmap_mask', mem_gb=0.01, run_without_submitting=True) # uses mask from bet; outputs a mask # dilate = pe.Node(fsl.maths.MathsCommand( # nan2zeros=True, args='-kernel sphere 5 -dilM'), name='MskDilate') # phase diff -> radians pha2rads = pe.Node(niu.Function(function=siemens2rads), name='pha2rads') # FSL PRELUDE will perform phase-unwrapping prelude = pe.Node(fsl.PRELUDE(), name='prelude') denoise = pe.Node(fsl.SpatialFilter(operation='median', kernel_shape='sphere', kernel_size=5), name='denoise') demean = pe.Node(niu.Function(function=demean_image), name='demean') cleanup_wf = cleanup_edge_pipeline(name="cleanup_wf") compfmap = pe.Node(Phasediff2Fieldmap(), name='compfmap') # The phdiff2fmap interface is equivalent to: # rad2rsec (using rads2radsec from nipype.workflows.dmri.fsl.utils) # pre_fugue = pe.Node(fsl.FUGUE(save_fmap=True), name='ComputeFieldmapFUGUE') # rsec2hz (divide by 2pi) if phasetype == "phasediff": # Read phasediff echo times meta = pe.Node(ReadSidecarJSON(), name='meta', mem_gb=0.01) # phase diff -> radians pha2rads = pe.Node(niu.Function(function=siemens2rads), name='pha2rads') # Read phasediff echo times meta = pe.Node(ReadSidecarJSON(), name='meta', mem_gb=0.01, run_without_submitting=True) workflow.connect([ (meta, compfmap, [('out_dict', 'metadata')]), (inputnode, pha2rads, [('phasediff', 'in_file')]), (pha2rads, prelude, [('out', 'phase_file')]), (inputnode, ds_report_fmap_mask, [('phasediff', 'source_file')]), ]) elif phasetype == "phase": workflow.__desc__ += """\ The phase difference used for unwarping was calculated using two separate phase measurements [@pncprocessing]. """ # Special case for phase1, phase2 images meta = pe.MapNode(ReadSidecarJSON(), name='meta', mem_gb=0.01, run_without_submitting=True, iterfield=['in_file']) phases2fmap = pe.Node(Phases2Fieldmap(), name='phases2fmap') workflow.connect([ (meta, phases2fmap, [('out_dict', 'metadatas')]), (inputnode, phases2fmap, [('phasediff', 'phase_files')]), (phases2fmap, prelude, [('out_file', 'phase_file')]), (phases2fmap, compfmap, [('phasediff_metadata', 'metadata')]), (phases2fmap, ds_report_fmap_mask, [('out_file', 'source_file')]) ]) workflow.connect([ (inputnode, meta, [('phasediff', 'in_file')]), (inputnode, magmrg, [('magnitude', 'in_files')]), (magmrg, n4, [('out_avg', 'input_image')]), (n4, prelude, [('output_image', 'magnitude_file')]), (n4, bet, [('output_image', 'in_file')]), (bet, prelude, [('mask_file', 'mask_file')]), (prelude, denoise, [('unwrapped_phase_file', 'in_file')]), (denoise, demean, [('out_file', 'in_file')]), (demean, cleanup_wf, [('out', 'inputnode.in_file')]), (bet, cleanup_wf, [('mask_file', 'inputnode.in_mask')]), (cleanup_wf, compfmap, [('outputnode.out_file', 'in_file')]), (compfmap, outputnode, [('out_file', 'fmap')]), (bet, outputnode, [('mask_file', 'fmap_mask'), ('out_file', 'fmap_ref')]), (bet, ds_report_fmap_mask, [('out_report', 'in_file')]), ]) return workflow
def init_syn_sdc_wf(omp_nthreads, epi_pe=None, atlas_threshold=3, name='syn_sdc_wf'): """ Build the *fieldmap-less* susceptibility-distortion estimation workflow. This workflow takes a skull-stripped T1w image and reference BOLD image and estimates a susceptibility distortion correction warp, using ANTs symmetric normalization (SyN) and the average fieldmap atlas described in [Treiber2016]_. SyN deformation is restricted to the phase-encoding (PE) direction. If no PE direction is specified, anterior-posterior PE is assumed. SyN deformation is also restricted to regions that are expected to have a >3mm (approximately 1 voxel) warp, based on the fieldmap atlas. This technique is a variation on those developed in [Huntenburg2014]_ and [Wang2017]_. Workflow Graph .. workflow :: :graph2use: orig :simple_form: yes from sdcflows.workflows.syn import init_syn_sdc_wf wf = init_syn_sdc_wf( epi_pe='j', omp_nthreads=8) Inputs ------ in_reference reference image in_reference_brain skull-stripped reference image t1w_brain skull-stripped, bias-corrected structural image std2anat_xfm inverse registration transform of T1w image to MNI template Outputs ------- out_reference the ``in_reference`` image after unwarping out_reference_brain the ``in_reference_brain`` image after unwarping out_warp the corresponding :abbr:`DFM (displacements field map)` compatible with ANTs out_mask mask of the unwarped input file References ---------- .. [Treiber2016] Treiber, J. M. et al. (2016) Characterization and Correction of Geometric Distortions in 814 Diffusion Weighted Images, PLoS ONE 11(3): e0152472. doi:`10.1371/journal.pone.0152472 <https://doi.org/10.1371/journal.pone.0152472>`_. .. [Wang2017] Wang S, et al. (2017) Evaluation of Field Map and Nonlinear Registration Methods for Correction of Susceptibility Artifacts in Diffusion MRI. Front. Neuroinform. 11:17. doi:`10.3389/fninf.2017.00017 <https://doi.org/10.3389/fninf.2017.00017>`_. .. [Huntenburg2014] Huntenburg, J. M. (2014) Evaluating Nonlinear Coregistration of BOLD EPI and T1w Images. Berlin: Master Thesis, Freie Universität. `PDF <http://pubman.mpdl.mpg.de/pubman/item/escidoc:2327525:5/component/escidoc:2327523/master_thesis_huntenburg_4686947.pdf>`_. """ if epi_pe is None or epi_pe[0] not in ['i', 'j']: LOGGER.warning('Incorrect phase-encoding direction, assuming PA (posterior-to-anterior).') epi_pe = 'j' workflow = Workflow(name=name) workflow.__desc__ = """\ A deformation field to correct for susceptibility distortions was estimated based on *fMRIPrep*'s *fieldmap-less* approach. The deformation field is that resulting from co-registering the BOLD reference to the same-subject T1w-reference with its intensity inverted [@fieldmapless1; @fieldmapless2]. Registration is performed with `antsRegistration` (ANTs {ants_ver}), and the process regularized by constraining deformation to be nonzero only along the phase-encoding direction, and modulated with an average fieldmap template [@fieldmapless3]. """.format(ants_ver=Registration().version or '<ver>') inputnode = pe.Node( niu.IdentityInterface(['in_reference', 'in_reference_brain', 't1w_brain', 'std2anat_xfm']), name='inputnode') outputnode = pe.Node( niu.IdentityInterface(['out_reference', 'out_reference_brain', 'out_mask', 'out_warp']), name='outputnode') # Collect predefined data # Atlas image and registration affine atlas_img = resource_filename('sdcflows', 'data/fmap_atlas.nii.gz') # Registration specifications affine_transform = resource_filename('sdcflows', 'data/affine.json') syn_transform = resource_filename('sdcflows', 'data/susceptibility_syn.json') invert_t1w = pe.Node(Rescale(invert=True), name='invert_t1w', mem_gb=0.3) ref_2_t1 = pe.Node(Registration(from_file=affine_transform), name='ref_2_t1', n_procs=omp_nthreads) t1_2_ref = pe.Node(ApplyTransforms(invert_transform_flags=[True]), name='t1_2_ref', n_procs=omp_nthreads) # 1) BOLD -> T1; 2) MNI -> T1; 3) ATLAS -> MNI transform_list = pe.Node(niu.Merge(3), name='transform_list', mem_gb=DEFAULT_MEMORY_MIN_GB) transform_list.inputs.in3 = resource_filename( 'sdcflows', 'data/fmap_atlas_2_MNI152NLin2009cAsym_affine.mat') # Inverting (1), then applying in reverse order: # # ATLAS -> MNI -> T1 -> BOLD atlas_2_ref = pe.Node( ApplyTransforms(invert_transform_flags=[True, False, False]), name='atlas_2_ref', n_procs=omp_nthreads, mem_gb=0.3) atlas_2_ref.inputs.input_image = atlas_img threshold_atlas = pe.Node( fsl.maths.MathsCommand(args='-thr {:.8g} -bin'.format(atlas_threshold), output_datatype='char'), name='threshold_atlas', mem_gb=0.3) fixed_image_masks = pe.Node(niu.Merge(2), name='fixed_image_masks', mem_gb=DEFAULT_MEMORY_MIN_GB) fixed_image_masks.inputs.in1 = 'NULL' restrict = [[int(epi_pe[0] == 'i'), int(epi_pe[0] == 'j'), 0]] * 2 syn = pe.Node( Registration(from_file=syn_transform, restrict_deformation=restrict), name='syn', n_procs=omp_nthreads) unwarp_ref = pe.Node(ApplyTransforms( dimension=3, float=True, interpolation='LanczosWindowedSinc'), name='unwarp_ref') skullstrip_bold_wf = init_skullstrip_bold_wf() workflow.connect([ (inputnode, invert_t1w, [('t1w_brain', 'in_file'), ('in_reference', 'ref_file')]), (inputnode, ref_2_t1, [('in_reference_brain', 'moving_image')]), (invert_t1w, ref_2_t1, [('out_file', 'fixed_image')]), (inputnode, t1_2_ref, [('in_reference', 'reference_image')]), (invert_t1w, t1_2_ref, [('out_file', 'input_image')]), (ref_2_t1, t1_2_ref, [('forward_transforms', 'transforms')]), (ref_2_t1, transform_list, [('forward_transforms', 'in1')]), (inputnode, transform_list, [ ('std2anat_xfm', 'in2')]), (inputnode, atlas_2_ref, [('in_reference', 'reference_image')]), (transform_list, atlas_2_ref, [('out', 'transforms')]), (atlas_2_ref, threshold_atlas, [('output_image', 'in_file')]), (threshold_atlas, fixed_image_masks, [('out_file', 'in2')]), (inputnode, syn, [('in_reference_brain', 'moving_image')]), (t1_2_ref, syn, [('output_image', 'fixed_image')]), (fixed_image_masks, syn, [('out', 'fixed_image_masks')]), (syn, outputnode, [('forward_transforms', 'out_warp')]), (syn, unwarp_ref, [('forward_transforms', 'transforms')]), (inputnode, unwarp_ref, [('in_reference', 'reference_image'), ('in_reference', 'input_image')]), (unwarp_ref, skullstrip_bold_wf, [ ('output_image', 'inputnode.in_file')]), (unwarp_ref, outputnode, [('output_image', 'out_reference')]), (skullstrip_bold_wf, outputnode, [ ('outputnode.skull_stripped_file', 'out_reference_brain'), ('outputnode.mask_file', 'out_mask')]), ]) return workflow
def init_bold_std_trans_wf(freesurfer, mem_gb, omp_nthreads, standard_spaces, name='bold_std_trans_wf', use_compression=True, use_fieldwarp=False): """ This workflow samples functional images into standard space with a single resampling of the original BOLD series. .. workflow:: :graph2use: colored :simple_form: yes from collections import OrderedDict from fmriprep.workflows.bold import init_bold_std_trans_wf wf = init_bold_std_trans_wf( freesurfer=True, mem_gb=3, omp_nthreads=1, standard_spaces=OrderedDict([('MNI152Lin', {}), ('fsaverage', {'density': '10k'})]), ) **Parameters** freesurfer : bool Whether to generate FreeSurfer's aseg/aparc segmentations on BOLD space. mem_gb : float Size of BOLD file in GB omp_nthreads : int Maximum number of threads an individual process may use standard_spaces : OrderedDict Ordered dictionary where keys are TemplateFlow ID strings (e.g., ``MNI152Lin``, ``MNI152NLin6Asym``, ``MNI152NLin2009cAsym``, or ``fsLR``), or paths pointing to custom templates organized in a TemplateFlow-like structure. Values of the dictionary aggregate modifiers (e.g., the value for the key ``MNI152Lin`` could be ``{'resolution': 2}`` if one wants the resampling to be done on the 2mm resolution version of the selected template). name : str Name of workflow (default: ``bold_std_trans_wf``) use_compression : bool Save registered BOLD series as ``.nii.gz`` use_fieldwarp : bool Include SDC warp in single-shot transform from BOLD to MNI **Inputs** anat2std_xfm List of anatomical-to-standard space transforms generated during spatial normalization. bold_aparc FreeSurfer's ``aparc+aseg.mgz`` atlas projected into the T1w reference (only if ``recon-all`` was run). bold_aseg FreeSurfer's ``aseg.mgz`` atlas projected into the T1w reference (only if ``recon-all`` was run). bold_mask Skull-stripping mask of reference image bold_split Individual 3D volumes, not motion corrected fieldwarp a :abbr:`DFM (displacements field map)` in ITK format hmc_xforms List of affine transforms aligning each volume to ``ref_image`` in ITK format itk_bold_to_t1 Affine transform from ``ref_bold_brain`` to T1 space (ITK format) name_source BOLD series NIfTI file Used to recover original information lost during processing templates List of templates that were applied as targets during spatial normalization. **Outputs** - Two outputnodes are available. One output node (with name ``poutputnode``) will be parameterized in a Nipype sense (see `Nipype iterables <https://miykael.github.io/nipype_tutorial/notebooks/basic_iteration.html>`__), and a second node (``outputnode``) will collapse the parameterized outputs into synchronous lists of the following fields: bold_std BOLD series, resampled to template space bold_std_ref Reference, contrast-enhanced summary of the BOLD series, resampled to template space bold_mask_std BOLD series mask in template space bold_aseg_std FreeSurfer's ``aseg.mgz`` atlas, in template space at the BOLD resolution (only if ``recon-all`` was run) bold_aparc_std FreeSurfer's ``aparc+aseg.mgz`` atlas, in template space at the BOLD resolution (only if ``recon-all`` was run) templates Template identifiers synchronized correspondingly to previously described outputs. """ # Filter ``standard_spaces`` vol_std_spaces = [ k for k in standard_spaces.keys() if not k.startswith('fs') ] workflow = Workflow(name=name) if len(vol_std_spaces) == 1: workflow.__desc__ = """\ The BOLD time-series were resampled into standard space, generating a *preprocessed BOLD run in {tpl} space*. """.format(tpl=vol_std_spaces) else: workflow.__desc__ = """\ The BOLD time-series were resampled into several standard spaces, correspondingly generating the following *spatially-normalized, preprocessed BOLD runs*: {tpl}. """.format(tpl=', '.join(vol_std_spaces)) inputnode = pe.Node(niu.IdentityInterface(fields=[ 'anat2std_xfm', 'bold_aparc', 'bold_aseg', 'bold_mask', 'bold_split', 'fieldwarp', 'hmc_xforms', 'itk_bold_to_t1', 'name_source', 'templates', ]), name='inputnode') select_std = pe.Node(KeySelect(fields=['resolution', 'anat2std_xfm']), name='select_std', run_without_submitting=True) select_std.inputs.resolution = [ v.get('resolution') or v.get('res') or 'native' for k, v in list(standard_spaces.items()) if k in vol_std_spaces ] select_std.iterables = ('key', vol_std_spaces) select_tpl = pe.Node(niu.Function(function=_select_template), name='select_tpl', run_without_submitting=True) select_tpl.inputs.template_specs = standard_spaces gen_ref = pe.Node(GenerateSamplingReference(), name='gen_ref', mem_gb=0.3) # 256x256x256 * 64 / 8 ~ 150MB) mask_std_tfm = pe.Node(ApplyTransforms(interpolation='MultiLabel', float=True), name='mask_std_tfm', mem_gb=1) # Write corrected file in the designated output dir mask_merge_tfms = pe.Node(niu.Merge(2), name='mask_merge_tfms', run_without_submitting=True, mem_gb=DEFAULT_MEMORY_MIN_GB) workflow.connect([ (inputnode, select_std, [('templates', 'keys'), ('anat2std_xfm', 'anat2std_xfm')]), (inputnode, mask_std_tfm, [('bold_mask', 'input_image')]), (inputnode, gen_ref, [(('bold_split', _first), 'moving_image')]), (inputnode, mask_merge_tfms, [(('itk_bold_to_t1', _aslist), 'in2')]), (select_std, select_tpl, [('key', 'template')]), (select_std, mask_merge_tfms, [('anat2std_xfm', 'in1')]), (select_std, gen_ref, [(('resolution', _is_native), 'keep_native')]), (select_tpl, gen_ref, [('out', 'fixed_image')]), (mask_merge_tfms, mask_std_tfm, [('out', 'transforms')]), (gen_ref, mask_std_tfm, [('out_file', 'reference_image')]), ]) nxforms = 4 if use_fieldwarp else 3 merge_xforms = pe.Node(niu.Merge(nxforms), name='merge_xforms', run_without_submitting=True, mem_gb=DEFAULT_MEMORY_MIN_GB) workflow.connect([(inputnode, merge_xforms, [('hmc_xforms', 'in%d' % nxforms)])]) if use_fieldwarp: workflow.connect([(inputnode, merge_xforms, [('fieldwarp', 'in3')])]) bold_to_std_transform = pe.Node(MultiApplyTransforms( interpolation="LanczosWindowedSinc", float=True, copy_dtype=True), name='bold_to_std_transform', mem_gb=mem_gb * 3 * omp_nthreads, n_procs=omp_nthreads) merge = pe.Node(Merge(compress=use_compression), name='merge', mem_gb=mem_gb * 3) # Generate a reference on the target T1w space gen_final_ref = init_bold_reference_wf(omp_nthreads=omp_nthreads, pre_mask=True) workflow.connect([ (inputnode, merge_xforms, [(('itk_bold_to_t1', _aslist), 'in2')]), (inputnode, merge, [('name_source', 'header_source')]), (inputnode, bold_to_std_transform, [('bold_split', 'input_image')]), (select_std, merge_xforms, [('anat2std_xfm', 'in1')]), (merge_xforms, bold_to_std_transform, [('out', 'transforms')]), (gen_ref, bold_to_std_transform, [('out_file', 'reference_image')]), (bold_to_std_transform, merge, [('out_files', 'in_files')]), (merge, gen_final_ref, [('out_file', 'inputnode.bold_file')]), (mask_std_tfm, gen_final_ref, [('output_image', 'inputnode.bold_mask') ]), ]) # Connect output nodes output_names = ['bold_std', 'bold_std_ref', 'bold_mask_std', 'templates'] if freesurfer: output_names += ['bold_aseg_std', 'bold_aparc_std'] # poutputnode - parametric output node poutputnode = pe.Node(niu.IdentityInterface(fields=output_names), name='poutputnode') workflow.connect([ (gen_final_ref, poutputnode, [('outputnode.ref_image', 'bold_std_ref') ]), (merge, poutputnode, [('out_file', 'bold_std')]), (mask_std_tfm, poutputnode, [('output_image', 'bold_mask_std')]), (select_std, poutputnode, [('key', 'templates')]), ]) if freesurfer: # Sample the parcellation files to functional space aseg_std_tfm = pe.Node(ApplyTransforms(interpolation='MultiLabel', float=True), name='aseg_std_tfm', mem_gb=1) aparc_std_tfm = pe.Node(ApplyTransforms(interpolation='MultiLabel', float=True), name='aparc_std_tfm', mem_gb=1) workflow.connect([ (inputnode, aseg_std_tfm, [('bold_aseg', 'input_image')]), (inputnode, aparc_std_tfm, [('bold_aparc', 'input_image')]), (select_std, aseg_std_tfm, [('anat2std_xfm', 'transforms')]), (select_std, aparc_std_tfm, [('anat2std_xfm', 'transforms')]), (gen_ref, aseg_std_tfm, [('out_file', 'reference_image')]), (gen_ref, aparc_std_tfm, [('out_file', 'reference_image')]), (aseg_std_tfm, poutputnode, [('output_image', 'bold_aseg_std')]), (aparc_std_tfm, poutputnode, [('output_image', 'bold_aparc_std')]), ]) # Connect outputnode to the parameterized outputnode outputnode = pe.JoinNode(niu.IdentityInterface(fields=output_names), name='outputnode', joinsource='select_std') workflow.connect([(poutputnode, outputnode, [(f, f) for f in output_names])]) return workflow
def init_topup_wf( grid_reference=0, omp_nthreads=1, sloppy=False, debug=False, name="pepolar_estimate_wf", ): """ Create the PEPOLAR field estimation workflow based on FSL's ``topup``. Workflow Graph .. workflow :: :graph2use: orig :simple_form: yes from sdcflows.workflows.fit.pepolar import init_topup_wf wf = init_topup_wf() Parameters ---------- grid_reference : :obj:`int` Index of the volume (after flattening) that will be taken for gridding reference. sloppy : :obj:`bool` Whether a fast configuration of topup (less accurate) should be applied. debug : :obj:`bool` Run in debug mode name : :obj:`str` Name for this workflow omp_nthreads : :obj:`int` Parallelize internal tasks across the number of CPUs given by this option. Inputs ------ in_data : :obj:`list` of :obj:`str` A list of EPI files that will be fed into TOPUP. metadata : :obj:`list` of :obj:`dict` A list of dictionaries containing the metadata corresponding to each file in ``in_data``. Outputs ------- fmap : :obj:`str` The path of the estimated fieldmap. fmap_ref : :obj:`str` The path of an unwarped conversion of files in ``in_data``. fmap_mask : :obj:`str` The path of mask corresponding to the ``fmap_ref`` output. fmap_coeff : :obj:`str` or :obj:`list` of :obj:`str` The path(s) of the B-Spline coefficients supporting the fieldmap. method: :obj:`str` Short description of the estimation method that was run. """ from nipype.interfaces.fsl.epi import TOPUP from niworkflows.interfaces.nibabel import MergeSeries from niworkflows.interfaces.images import RobustAverage from ...utils.misc import front as _front from ...interfaces.epi import GetReadoutTime from ...interfaces.utils import Flatten, UniformGrid, PadSlices from ...interfaces.bspline import TOPUPCoeffReorient from ..ancillary import init_brainextraction_wf workflow = Workflow(name=name) workflow.__desc__ = f"""\ {_PEPOLAR_DESC} with `topup` (@topup; FSL {TOPUP().version}). """ inputnode = pe.Node(niu.IdentityInterface(fields=INPUT_FIELDS), name="inputnode") outputnode = pe.Node( niu.IdentityInterface(fields=[ "fmap", "fmap_ref", "fmap_coeff", "fmap_mask", "jacobians", "xfms", "out_warps", "method", ]), name="outputnode", ) outputnode.inputs.method = "PEB/PEPOLAR (phase-encoding based / PE-POLARity)" flatten = pe.Node(Flatten(), name="flatten") regrid = pe.Node(UniformGrid(reference=grid_reference), name="regrid") concat_blips = pe.Node(MergeSeries(), name="concat_blips") readout_time = pe.MapNode( GetReadoutTime(), name="readout_time", iterfield=["metadata", "in_file"], run_without_submitting=True, ) pad_blip_slices = pe.Node(PadSlices(), name="pad_blip_slices") pad_ref_slices = pe.Node(PadSlices(), name="pad_ref_slices") topup = pe.Node( TOPUP(config=_pkg_fname( "sdcflows", f"data/flirtsch/b02b0{'_quick' * sloppy}.cnf")), name="topup", ) ref_average = pe.Node(RobustAverage(), name="ref_average") fix_coeff = pe.Node(TOPUPCoeffReorient(), name="fix_coeff", run_without_submitting=True) brainextraction_wf = init_brainextraction_wf() # fmt: off workflow.connect([ (inputnode, flatten, [("in_data", "in_data"), ("metadata", "in_meta")]), (flatten, readout_time, [("out_data", "in_file"), ("out_meta", "metadata")]), (flatten, regrid, [("out_data", "in_data")]), (regrid, concat_blips, [("out_data", "in_files")]), (readout_time, topup, [("readout_time", "readout_times"), ("pe_dir_fsl", "encoding_direction")]), (regrid, pad_ref_slices, [("reference", "in_file")]), (pad_ref_slices, fix_coeff, [("out_file", "fmap_ref")]), (readout_time, fix_coeff, [(("pe_direction", _front), "pe_dir")]), (topup, fix_coeff, [("out_fieldcoef", "in_coeff")]), (topup, outputnode, [("out_jacs", "jacobians"), ("out_mats", "xfms")]), (ref_average, brainextraction_wf, [("out_file", "inputnode.in_file")]), (brainextraction_wf, outputnode, [("outputnode.out_file", "fmap_ref"), ("outputnode.out_mask", "fmap_mask") ]), (fix_coeff, outputnode, [("out_coeff", "fmap_coeff")]), ]) # fmt: on if not debug: # fmt: off workflow.connect([ (concat_blips, pad_blip_slices, [("out_file", "in_file")]), (pad_blip_slices, topup, [("out_file", "in_file")]), (topup, ref_average, [("out_corrected", "in_file")]), (topup, outputnode, [("out_field", "fmap"), ("out_warps", "out_warps")]), ]) # fmt: on return workflow from nipype.interfaces.afni.preprocess import Volreg from niworkflows.interfaces.nibabel import SplitSeries from ...interfaces.bspline import ApplyCoeffsField realign = pe.Node( Volreg(args=f"-base {grid_reference}", outputtype="NIFTI_GZ"), name="realign_blips", ) split_blips = pe.Node(SplitSeries(), name="split_blips") unwarp = pe.Node(ApplyCoeffsField(), name="unwarp") unwarp.interface._always_run = True concat_corrected = pe.Node(MergeSeries(), name="concat_corrected") # fmt:off workflow.connect([ (concat_blips, realign, [("out_file", "in_file")]), (realign, pad_blip_slices, [("out_file", "in_file")]), (pad_blip_slices, topup, [("out_file", "in_file")]), (fix_coeff, unwarp, [("out_coeff", "in_coeff")]), (realign, split_blips, [("out_file", "in_file")]), (split_blips, unwarp, [("out_files", "in_data")]), (readout_time, unwarp, [("readout_time", "ro_time"), ("pe_direction", "pe_dir")]), (unwarp, outputnode, [("out_warp", "out_warps"), ("out_field", "fmap")]), (unwarp, concat_corrected, [("out_corrected", "in_files")]), (concat_corrected, ref_average, [("out_file", "in_file")]), ]) # fmt:on return workflow
def init_bold_preproc_trans_wf(mem_gb, omp_nthreads, name='bold_preproc_trans_wf', use_compression=True, use_fieldwarp=False, split_file=False, interpolation='LanczosWindowedSinc'): """ This workflow resamples the input fMRI in its native (original) space in a "single shot" from the original BOLD series. .. workflow:: :graph2use: colored :simple_form: yes from fmriprep.workflows.bold import init_bold_preproc_trans_wf wf = init_bold_preproc_trans_wf(mem_gb=3, omp_nthreads=1) **Parameters** mem_gb : float Size of BOLD file in GB omp_nthreads : int Maximum number of threads an individual process may use name : str Name of workflow (default: ``bold_std_trans_wf``) use_compression : bool Save registered BOLD series as ``.nii.gz`` use_fieldwarp : bool Include SDC warp in single-shot transform from BOLD to MNI split_file : bool Whether the input file should be splitted (it is a 4D file) or it is a list of 3D files (default ``False``, do not split) interpolation : str Interpolation type to be used by ANTs' ``applyTransforms`` (default ``'LanczosWindowedSinc'``) **Inputs** bold_file Individual 3D volumes, not motion corrected bold_mask Skull-stripping mask of reference image name_source BOLD series NIfTI file Used to recover original information lost during processing hmc_xforms List of affine transforms aligning each volume to ``ref_image`` in ITK format fieldwarp a :abbr:`DFM (displacements field map)` in ITK format **Outputs** bold BOLD series, resampled in native space, including all preprocessing bold_mask BOLD series mask calculated with the new time-series bold_ref BOLD reference image: an average-like 3D image of the time-series bold_ref_brain Same as ``bold_ref``, but once the brain mask has been applied """ workflow = Workflow(name=name) workflow.__desc__ = """\ The BOLD time-series (including slice-timing correction when applied) were resampled onto their original, native space by applying {transforms}. These resampled BOLD time-series will be referred to as *preprocessed BOLD in original space*, or just *preprocessed BOLD*. """.format(transforms="""\ a single, composite transform to correct for head-motion and susceptibility distortions""" if use_fieldwarp else """\ the transforms to correct for head-motion""") inputnode = pe.Node(niu.IdentityInterface(fields=[ 'name_source', 'bold_file', 'bold_mask', 'hmc_xforms', 'fieldwarp' ]), name='inputnode') outputnode = pe.Node(niu.IdentityInterface( fields=['bold', 'bold_mask', 'bold_ref', 'bold_ref_brain']), name='outputnode') bold_transform = pe.Node(MultiApplyTransforms(interpolation=interpolation, float=True, copy_dtype=True), name='bold_transform', mem_gb=mem_gb * 3 * omp_nthreads, n_procs=omp_nthreads) merge = pe.Node(Merge(compress=use_compression), name='merge', mem_gb=mem_gb * 3) # Generate a new BOLD reference bold_reference_wf = init_bold_reference_wf(omp_nthreads=omp_nthreads) bold_reference_wf.__desc__ = None # Unset description to avoid second appearance workflow.connect([ (inputnode, merge, [('name_source', 'header_source')]), (bold_transform, merge, [('out_files', 'in_files')]), (merge, bold_reference_wf, [('out_file', 'inputnode.bold_file')]), (merge, outputnode, [('out_file', 'bold')]), (bold_reference_wf, outputnode, [('outputnode.ref_image', 'bold_ref'), ('outputnode.ref_image_brain', 'bold_ref_brain'), ('outputnode.bold_mask', 'bold_mask')]), ]) # Input file is not splitted if split_file: bold_split = pe.Node(FSLSplit(dimension='t'), name='bold_split', mem_gb=mem_gb * 3) workflow.connect([(inputnode, bold_split, [('bold_file', 'in_file')]), (bold_split, bold_transform, [ ('out_files', 'input_image'), (('out_files', _first), 'reference_image'), ])]) else: workflow.connect([ (inputnode, bold_transform, [('bold_file', 'input_image'), (('bold_file', _first), 'reference_image')]), ]) if use_fieldwarp: merge_xforms = pe.Node(niu.Merge(2), name='merge_xforms', run_without_submitting=True, mem_gb=DEFAULT_MEMORY_MIN_GB) workflow.connect([ (inputnode, merge_xforms, [('fieldwarp', 'in1'), ('hmc_xforms', 'in2')]), (merge_xforms, bold_transform, [('out', 'transforms')]), ]) else: def _aslist(val): return [val] workflow.connect([ (inputnode, bold_transform, [(('hmc_xforms', _aslist), 'transforms')]), ]) # Code ready to generate a pre/post processing report # bold_bold_report_wf = init_bold_preproc_report_wf( # mem_gb=mem_gb['resampled'], # reportlets_dir=reportlets_dir # ) # workflow.connect([ # (inputnode, bold_bold_report_wf, [ # ('bold_file', 'inputnode.name_source'), # ('bold_file', 'inputnode.in_pre')]), # This should be after STC # (bold_bold_trans_wf, bold_bold_report_wf, [ # ('outputnode.bold', 'inputnode.in_post')]), # ]) return workflow
def init_single_subject_wf( layout, subject_id, task_id, echo_idx, name, reportlets_dir, output_dir, ignore, debug, low_mem, anat_only, longitudinal, t2s_coreg, omp_nthreads, skull_strip_template, skull_strip_fixed_seed, freesurfer, output_spaces, template, medial_surface_nan, cifti_output, hires, use_bbr, bold2t1w_dof, fmap_bspline, fmap_demean, use_syn, force_syn, template_out_grid, use_aroma, aroma_melodic_dim, err_on_aroma_warn): """ This workflow organizes the preprocessing pipeline for a single subject. It collects and reports information about the subject, and prepares sub-workflows to perform anatomical and functional preprocessing. Anatomical preprocessing is performed in a single workflow, regardless of the number of sessions. Functional preprocessing is performed using a separate workflow for each individual BOLD series. .. workflow:: :graph2use: orig :simple_form: yes from fmriprep.workflows.base import init_single_subject_wf from collections import namedtuple BIDSLayout = namedtuple('BIDSLayout', ['root'], defaults='.') wf = init_single_subject_wf(layout=BIDSLayout(), subject_id='test', task_id='', echo_idx=None, name='single_subject_wf', reportlets_dir='.', output_dir='.', ignore=[], debug=False, low_mem=False, anat_only=False, longitudinal=False, t2s_coreg=False, omp_nthreads=1, skull_strip_template='OASIS30ANTs', skull_strip_fixed_seed=False, freesurfer=True, template='MNI152NLin2009cAsym', output_spaces=['T1w', 'fsnative', 'template', 'fsaverage5'], medial_surface_nan=False, cifti_output=False, hires=True, use_bbr=True, bold2t1w_dof=9, fmap_bspline=False, fmap_demean=True, use_syn=True, force_syn=True, template_out_grid='native', use_aroma=False, aroma_melodic_dim=-200, err_on_aroma_warn=False) Parameters layout : BIDSLayout object BIDS dataset layout subject_id : str List of subject labels task_id : str or None Task ID of BOLD series to preprocess, or ``None`` to preprocess all echo_idx : int or None Index of echo to preprocess in multiecho BOLD series, or ``None`` to preprocess all name : str Name of workflow ignore : list Preprocessing steps to skip (may include "slicetiming", "fieldmaps") debug : bool Enable debugging outputs low_mem : bool Write uncompressed .nii files in some cases to reduce memory usage anat_only : bool Disable functional workflows longitudinal : bool Treat multiple sessions as longitudinal (may increase runtime) See sub-workflows for specific differences t2s_coreg : bool For multi-echo EPI, use the calculated T2*-map for T2*-driven coregistration omp_nthreads : int Maximum number of threads an individual process may use skull_strip_template : str Name of ANTs skull-stripping template ('OASIS30ANTs' or 'NKI') skull_strip_fixed_seed : bool Do not use a random seed for skull-stripping - will ensure run-to-run replicability when used with --omp-nthreads 1 reportlets_dir : str Directory in which to save reportlets output_dir : str Directory in which to save derivatives freesurfer : bool Enable FreeSurfer surface reconstruction (may increase runtime) output_spaces : list List of output spaces functional images are to be resampled to. Some parts of pipeline will only be instantiated for some output spaces. Valid spaces: - T1w - template - fsnative - fsaverage (or other pre-existing FreeSurfer templates) template : str Name of template targeted by ``template`` output space medial_surface_nan : bool Replace medial wall values with NaNs on functional GIFTI files cifti_output : bool Generate bold CIFTI file in output spaces hires : bool Enable sub-millimeter preprocessing in FreeSurfer use_bbr : bool or None Enable/disable boundary-based registration refinement. If ``None``, test BBR result for distortion before accepting. bold2t1w_dof : 6, 9 or 12 Degrees-of-freedom for BOLD-T1w registration fmap_bspline : bool **Experimental**: Fit B-Spline field using least-squares fmap_demean : bool Demean voxel-shift map during unwarp use_syn : bool **Experimental**: Enable ANTs SyN-based susceptibility distortion correction (SDC). If fieldmaps are present and enabled, this is not run, by default. force_syn : bool **Temporary**: Always run SyN-based SDC template_out_grid : str Keyword ('native', '1mm' or '2mm') or path of custom reference image for normalization use_aroma : bool Perform ICA-AROMA on MNI-resampled functional series err_on_aroma_warn : bool Do not fail on ICA-AROMA errors Inputs subjects_dir FreeSurfer SUBJECTS_DIR """ if name in ('single_subject_wf', 'single_subject_fmripreptest_wf'): # for documentation purposes subject_data = { 't1w': ['/completely/made/up/path/sub-01_T1w.nii.gz'], 'bold': ['/completely/made/up/path/sub-01_task-nback_bold.nii.gz'] } else: subject_data = collect_data(layout, subject_id, task_id, echo_idx)[0] # Make sure we always go through these two checks if not anat_only and subject_data['bold'] == []: raise Exception("No BOLD images found for participant {} and task {}. " "All workflows require BOLD images.".format( subject_id, task_id if task_id else '<all>')) if not subject_data['t1w']: raise Exception("No T1w images found for participant {}. " "All workflows require T1w images.".format(subject_id)) workflow = Workflow(name=name) workflow.__desc__ = """ Results included in this manuscript come from preprocessing performed using *fMRIPrep* {fmriprep_ver} (@fmriprep1; @fmriprep2; RRID:SCR_016216), which is based on *Nipype* {nipype_ver} (@nipype1; @nipype2; RRID:SCR_002502). """.format(fmriprep_ver=__version__, nipype_ver=nipype_ver) workflow.__postdesc__ = """ Many internal operations of *fMRIPrep* use *Nilearn* {nilearn_ver} [@nilearn, RRID:SCR_001362], mostly within the functional processing workflow. For more details of the pipeline, see [the section corresponding to workflows in *fMRIPrep*'s documentation]\ (https://fmriprep.readthedocs.io/en/latest/workflows.html \ "FMRIPrep's documentation"). ### References """.format(nilearn_ver=nilearn_ver) inputnode = pe.Node(niu.IdentityInterface(fields=['subjects_dir']), name='inputnode') bidssrc = pe.Node(BIDSDataGrabber(subject_data=subject_data, anat_only=anat_only), name='bidssrc') bids_info = pe.Node(BIDSInfo(bids_dir=layout.root, bids_validate=False), name='bids_info') summary = pe.Node(SubjectSummary(output_spaces=output_spaces, template=template), name='summary', run_without_submitting=True) about = pe.Node(AboutSummary(version=__version__, command=' '.join(sys.argv)), name='about', run_without_submitting=True) ds_report_summary = pe.Node(DerivativesDataSink( base_directory=reportlets_dir, suffix='summary'), name='ds_report_summary', run_without_submitting=True) ds_report_about = pe.Node(DerivativesDataSink( base_directory=reportlets_dir, suffix='about'), name='ds_report_about', run_without_submitting=True) # Preprocessing of T1w (includes registration to MNI) anat_preproc_wf = init_anat_preproc_wf( bids_root=layout.root, debug=debug, freesurfer=freesurfer, fs_spaces=output_spaces, hires=hires, longitudinal=longitudinal, name="anat_preproc_wf", num_t1w=len(subject_data['t1w']), omp_nthreads=omp_nthreads, output_dir=output_dir, reportlets_dir=reportlets_dir, skull_strip_fixed_seed=skull_strip_fixed_seed, skull_strip_template=skull_strip_template, template=template, ) workflow.connect([ (inputnode, anat_preproc_wf, [('subjects_dir', 'inputnode.subjects_dir')]), (bidssrc, bids_info, [(('t1w', fix_multi_T1w_source_name), 'in_file') ]), (inputnode, summary, [('subjects_dir', 'subjects_dir')]), (bidssrc, summary, [('t1w', 't1w'), ('t2w', 't2w'), ('bold', 'bold')]), (bids_info, summary, [('subject', 'subject_id')]), (bids_info, anat_preproc_wf, [(('subject', _prefix), 'inputnode.subject_id')]), (bidssrc, anat_preproc_wf, [('t1w', 'inputnode.t1w'), ('t2w', 'inputnode.t2w'), ('roi', 'inputnode.roi'), ('flair', 'inputnode.flair')]), (bidssrc, ds_report_summary, [(('t1w', fix_multi_T1w_source_name), 'source_file')]), (summary, ds_report_summary, [('out_report', 'in_file')]), (bidssrc, ds_report_about, [(('t1w', fix_multi_T1w_source_name), 'source_file')]), (about, ds_report_about, [('out_report', 'in_file')]), ]) # Overwrite ``out_path_base`` of smriprep's DataSinks for node in workflow.list_node_names(): if node.split('.')[-1].startswith('ds_'): workflow.get_node(node).interface.out_path_base = 'fmriprep' if anat_only: return workflow for bold_file in subject_data['bold']: func_preproc_wf = init_func_preproc_wf( bold_file=bold_file, layout=layout, ignore=ignore, freesurfer=freesurfer, use_bbr=use_bbr, t2s_coreg=t2s_coreg, bold2t1w_dof=bold2t1w_dof, reportlets_dir=reportlets_dir, output_spaces=output_spaces, template=template, medial_surface_nan=medial_surface_nan, cifti_output=cifti_output, output_dir=output_dir, omp_nthreads=omp_nthreads, low_mem=low_mem, fmap_bspline=fmap_bspline, fmap_demean=fmap_demean, use_syn=use_syn, force_syn=force_syn, debug=debug, template_out_grid=template_out_grid, use_aroma=use_aroma, aroma_melodic_dim=aroma_melodic_dim, err_on_aroma_warn=err_on_aroma_warn, num_bold=len(subject_data['bold'])) workflow.connect([ ( anat_preproc_wf, func_preproc_wf, [ (('outputnode.t1_preproc', _pop), 'inputnode.t1_preproc'), ('outputnode.t1_brain', 'inputnode.t1_brain'), ('outputnode.t1_mask', 'inputnode.t1_mask'), ('outputnode.t1_seg', 'inputnode.t1_seg'), ('outputnode.t1_aseg', 'inputnode.t1_aseg'), ('outputnode.t1_aparc', 'inputnode.t1_aparc'), ('outputnode.t1_tpms', 'inputnode.t1_tpms'), ('outputnode.t1_2_mni_forward_transform', 'inputnode.t1_2_mni_forward_transform'), ('outputnode.t1_2_mni_reverse_transform', 'inputnode.t1_2_mni_reverse_transform'), # Undefined if --no-freesurfer, but this is safe ('outputnode.subjects_dir', 'inputnode.subjects_dir'), ('outputnode.subject_id', 'inputnode.subject_id'), ('outputnode.t1_2_fsnative_forward_transform', 'inputnode.t1_2_fsnative_forward_transform'), ('outputnode.t1_2_fsnative_reverse_transform', 'inputnode.t1_2_fsnative_reverse_transform') ]), ]) return workflow
def init_pepolar_unwarp_wf(omp_nthreads=1, matched_pe=False, name="pepolar_unwarp_wf"): """ Create the PE-Polar field estimation workflow. This workflow takes in a set of EPI files with opposite phase encoding direction than the target file and calculates a displacements field (in other words, an ANTs-compatible warp file). This procedure works if there is only one '_epi' file is present (as long as it has the opposite phase encoding direction to the target file). The target file will be used to estimate the field distortion. However, if there is another '_epi' file present with a matching phase encoding direction to the target it will be used instead. Currently, different phase encoding dimension in the target file and the '_epi' file(s) (for example 'i' and 'j') is not supported. The warp field correcting for the distortions is estimated using AFNI's 3dQwarp, with displacement estimation limited to the target file phase encoding direction. It also calculates a new mask for the input dataset that takes into account the distortions. .. workflow :: :graph2use: orig :simple_form: yes from sdcflows.workflows.pepolar import init_pepolar_unwarp_wf wf = init_pepolar_unwarp_wf() **Parameters**: matched_pe : bool Whether the input ``fmaps_epi`` will contain images with matched PE blips or not. Please use :func:`sdcflows.workflows.pepolar.check_pes` to determine whether they exist or not. name : str Name for this workflow omp_nthreads : int Parallelize internal tasks across the number of CPUs given by this option. **Inputs**: fmaps_epi : list of tuple(pathlike, str) The list of EPI images that will be used in PE-Polar correction, and their corresponding ``PhaseEncodingDirection`` metadata. The workflow will use the ``bold_pe_dir`` input to separate out those EPI acquisitions with opposed PE blips and those with matched PE blips (the latter could be none, and ``in_reference_brain`` would then be used). The workflow raises a ``ValueError`` when no images with opposed PE blips are found. bold_pe_dir : str The baseline PE direction. in_reference : pathlike The baseline reference image (must correspond to ``bold_pe_dir``). in_reference_brain : pathlike The reference image above, but skullstripped. in_mask : pathlike Not used, present only for consistency across fieldmap estimation workflows. **Outputs**: out_reference : pathlike The ``in_reference`` after unwarping out_reference_brain : pathlike The ``in_reference`` after unwarping and skullstripping out_warp : pathlike The corresponding :abbr:`DFM (displacements field map)` compatible with ANTs. out_mask : pathlike Mask of the unwarped input file """ workflow = Workflow(name=name) workflow.__desc__ = """\ A deformation field to correct for susceptibility distortions was estimated based on two echo-planar imaging (EPI) references with opposing phase-encoding directions, using `3dQwarp` @afni (AFNI {afni_ver}). """.format(afni_ver=''.join(['%02d' % v for v in afni.Info().version() or []])) inputnode = pe.Node(niu.IdentityInterface(fields=[ 'fmaps_epi', 'in_reference', 'in_reference_brain', 'in_mask', 'bold_pe_dir' ]), name='inputnode') outputnode = pe.Node(niu.IdentityInterface(fields=[ 'out_reference', 'out_reference_brain', 'out_warp', 'out_mask' ]), name='outputnode') prepare_epi_wf = init_prepare_epi_wf(omp_nthreads=omp_nthreads, matched_pe=matched_pe, name="prepare_epi_wf") qwarp = pe.Node(afni.QwarpPlusMinus( pblur=[0.05, 0.05], blur=[-1, -1], noweight=True, minpatch=9, nopadWARP=True, environ={'OMP_NUM_THREADS': '%d' % omp_nthreads}), name='qwarp', n_procs=omp_nthreads) to_ants = pe.Node(niu.Function(function=_fix_hdr), name='to_ants', mem_gb=0.01) cphdr_warp = pe.Node(CopyHeader(), name='cphdr_warp', mem_gb=0.01) unwarp_reference = pe.Node(ANTSApplyTransformsRPT( dimension=3, generate_report=False, float=True, interpolation='LanczosWindowedSinc'), name='unwarp_reference') enhance_and_skullstrip_bold_wf = init_enhance_and_skullstrip_bold_wf( omp_nthreads=omp_nthreads) workflow.connect([ (inputnode, qwarp, [(('bold_pe_dir', _qwarp_args), 'args')]), (inputnode, cphdr_warp, [('in_reference', 'hdr_file')]), (inputnode, prepare_epi_wf, [('fmaps_epi', 'inputnode.maps_pe'), ('bold_pe_dir', 'inputnode.epi_pe'), ('in_reference_brain', 'inputnode.ref_brain')]), (prepare_epi_wf, qwarp, [('outputnode.opposed_pe', 'base_file'), ('outputnode.matched_pe', 'in_file')]), (qwarp, cphdr_warp, [('source_warp', 'in_file')]), (cphdr_warp, to_ants, [('out_file', 'in_file')]), (to_ants, unwarp_reference, [('out', 'transforms')]), (inputnode, unwarp_reference, [('in_reference', 'reference_image'), ('in_reference', 'input_image')]), (unwarp_reference, enhance_and_skullstrip_bold_wf, [('output_image', 'inputnode.in_file')]), (unwarp_reference, outputnode, [('output_image', 'out_reference')]), (enhance_and_skullstrip_bold_wf, outputnode, [('outputnode.mask_file', 'out_mask'), ('outputnode.skull_stripped_file', 'out_reference_brain')]), (to_ants, outputnode, [('out', 'out_warp')]), ]) return workflow
def init_fmriprep_wf(layout, subject_list, task_id, echo_idx, run_uuid, work_dir, output_dir, ignore, debug, low_mem, anat_only, longitudinal, t2s_coreg, omp_nthreads, skull_strip_template, skull_strip_fixed_seed, freesurfer, output_spaces, template, medial_surface_nan, cifti_output, hires, use_bbr, bold2t1w_dof, fmap_bspline, fmap_demean, use_syn, force_syn, use_aroma, err_on_aroma_warn, aroma_melodic_dim, template_out_grid): """ This workflow organizes the execution of FMRIPREP, with a sub-workflow for each subject. If FreeSurfer's recon-all is to be run, a FreeSurfer derivatives folder is created and populated with any needed template subjects. .. workflow:: :graph2use: orig :simple_form: yes import os from collections import namedtuple BIDSLayout = namedtuple('BIDSLayout', ['root'], defaults='.') from fmriprep.workflows.base import init_fmriprep_wf os.environ['FREESURFER_HOME'] = os.getcwd() wf = init_fmriprep_wf(layout=BIDSLayout(), subject_list=['fmripreptest'], task_id='', echo_idx=None, run_uuid='X', work_dir='.', output_dir='.', ignore=[], debug=False, low_mem=False, anat_only=False, longitudinal=False, t2s_coreg=False, omp_nthreads=1, skull_strip_template='OASIS30ANTs', skull_strip_fixed_seed=False, freesurfer=True, output_spaces=['T1w', 'fsnative', 'template', 'fsaverage5'], template='MNI152NLin2009cAsym', medial_surface_nan=False, cifti_output=False, hires=True, use_bbr=True, bold2t1w_dof=9, fmap_bspline=False, fmap_demean=True, use_syn=True, force_syn=True, use_aroma=False, err_on_aroma_warn=False, aroma_melodic_dim=-200, template_out_grid='native') Parameters layout : BIDSLayout object BIDS dataset layout subject_list : list List of subject labels task_id : str or None Task ID of BOLD series to preprocess, or ``None`` to preprocess all echo_idx : int or None Index of echo to preprocess in multiecho BOLD series, or ``None`` to preprocess all run_uuid : str Unique identifier for execution instance work_dir : str Directory in which to store workflow execution state and temporary files output_dir : str Directory in which to save derivatives ignore : list Preprocessing steps to skip (may include "slicetiming", "fieldmaps") debug : bool Enable debugging outputs low_mem : bool Write uncompressed .nii files in some cases to reduce memory usage anat_only : bool Disable functional workflows longitudinal : bool Treat multiple sessions as longitudinal (may increase runtime) See sub-workflows for specific differences t2s_coreg : bool For multi-echo EPI, use the calculated T2*-map for T2*-driven coregistration omp_nthreads : int Maximum number of threads an individual process may use skull_strip_template : str Name of ANTs skull-stripping template ('OASIS30ANTs' or 'NKI') skull_strip_fixed_seed : bool Do not use a random seed for skull-stripping - will ensure run-to-run replicability when used with --omp-nthreads 1 freesurfer : bool Enable FreeSurfer surface reconstruction (may increase runtime) output_spaces : list List of output spaces functional images are to be resampled to. Some parts of pipeline will only be instantiated for some output spaces. Valid spaces: - T1w - template - fsnative - fsaverage (or other pre-existing FreeSurfer templates) template : str Name of template targeted by ``template`` output space medial_surface_nan : bool Replace medial wall values with NaNs on functional GIFTI files cifti_output : bool Generate bold CIFTI file in output spaces hires : bool Enable sub-millimeter preprocessing in FreeSurfer use_bbr : bool or None Enable/disable boundary-based registration refinement. If ``None``, test BBR result for distortion before accepting. bold2t1w_dof : 6, 9 or 12 Degrees-of-freedom for BOLD-T1w registration fmap_bspline : bool **Experimental**: Fit B-Spline field using least-squares fmap_demean : bool Demean voxel-shift map during unwarp use_syn : bool **Experimental**: Enable ANTs SyN-based susceptibility distortion correction (SDC). If fieldmaps are present and enabled, this is not run, by default. force_syn : bool **Temporary**: Always run SyN-based SDC use_aroma : bool Perform ICA-AROMA on MNI-resampled functional series err_on_aroma_warn : bool Do not fail on ICA-AROMA errors template_out_grid : str Keyword ('native', '1mm' or '2mm') or path of custom reference image for normalization """ fmriprep_wf = Workflow(name='fmriprep_wf') fmriprep_wf.base_dir = work_dir if freesurfer: fsdir = pe.Node(BIDSFreeSurferDir( derivatives=output_dir, freesurfer_home=os.getenv('FREESURFER_HOME'), spaces=output_spaces), name='fsdir_run_' + run_uuid.replace('-', '_'), run_without_submitting=True) reportlets_dir = os.path.join(work_dir, 'reportlets') for subject_id in subject_list: single_subject_wf = init_single_subject_wf( layout=layout, subject_id=subject_id, task_id=task_id, echo_idx=echo_idx, name="single_subject_" + subject_id + "_wf", reportlets_dir=reportlets_dir, output_dir=output_dir, ignore=ignore, debug=debug, low_mem=low_mem, anat_only=anat_only, longitudinal=longitudinal, t2s_coreg=t2s_coreg, omp_nthreads=omp_nthreads, skull_strip_template=skull_strip_template, skull_strip_fixed_seed=skull_strip_fixed_seed, freesurfer=freesurfer, output_spaces=output_spaces, template=template, medial_surface_nan=medial_surface_nan, cifti_output=cifti_output, hires=hires, use_bbr=use_bbr, bold2t1w_dof=bold2t1w_dof, fmap_bspline=fmap_bspline, fmap_demean=fmap_demean, use_syn=use_syn, force_syn=force_syn, template_out_grid=template_out_grid, use_aroma=use_aroma, aroma_melodic_dim=aroma_melodic_dim, err_on_aroma_warn=err_on_aroma_warn, ) single_subject_wf.config['execution']['crashdump_dir'] = (os.path.join( output_dir, "fmriprep", "sub-" + subject_id, 'log', run_uuid)) for node in single_subject_wf._get_all_nodes(): node.config = deepcopy(single_subject_wf.config) if freesurfer: fmriprep_wf.connect(fsdir, 'subjects_dir', single_subject_wf, 'inputnode.subjects_dir') else: fmriprep_wf.add_nodes([single_subject_wf]) return fmriprep_wf