示例#1
0
def init_scale_wf(mem_gb,
                  omp_nthreads,
                  n_dummy=None,
                  scale_stat='mean',
                  name='scale'):
    """
    Run afni's voxel level mean scaling
    Parameters
    ----------
    mem_gb : :obj:`float`
        Size of BOLD file in GB
    omp_nthreads : :obj:`int`
        Maximum number of threads an individual process may use
    n_dummy: :obj: `int`
        Number of dummy scans at the begining of the bold to discard when calculating the mean
    scale_stat : :obj:`str`
        Name of the flag for the statistic to scale relative to (defaul: ``mean``) 
    name : :obj:`str`
        Name of workflow (default: ``bold_std_trans_wf``)
    Inputs
    ------
    bold_file
        bold image to scale, should probably be head motion corrected first
    Outputs
    -------
    scaled
        scaled bold time series
    """
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.interfaces.fixes import FixHeaderApplyTransforms as ApplyTransforms
    from nipype.interfaces.afni import Calc
    from ..interfaces.afni import TStat

    workflow = Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(fields=['bold_file']),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=['scaled']),
                         name='outputnode')

    scale_ref = pe.Node(TStat(args=f'-{scale_stat}',
                              index=f'[{n_dummy}..$]',
                              outputtype='NIFTI_GZ'),
                        name='scale_ref',
                        mem_gb=mem_gb,
                        n_procs=omp_nthreads)

    scale = pe.Node(Calc(outputtype='NIFTI_GZ',
                         expr='min(200, a/b*100)*step(a)*step(b)'),
                    name='scale',
                    mem_gb=mem_gb,
                    n_procs=omp_nthreads)

    workflow.connect([(inputnode, scale_ref, [('bold_file', 'in_file')]),
                      (inputnode, scale, [('bold_file', 'in_file_a')]),
                      (scale_ref, scale, [('out_file', 'in_file_b')]),
                      (scale, outputnode, [('out_file', 'scaled')])])

    return workflow
示例#2
0
def init_fmriprep_wf():
    """
    Build *fMRIPrep*'s pipeline.

    This workflow organizes the execution of FMRIPREP, with a sub-workflow for
    each subject.

    If FreeSurfer's ``recon-all`` is to be run, a corresponding folder is created
    and populated with any needed template subjects under the derivatives folder.

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from fmriprep.workflows.tests import mock_config
            from fmriprep.workflows.base import init_fmriprep_wf
            with mock_config():
                wf = init_fmriprep_wf()

    """
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.interfaces.bids import BIDSFreeSurferDir

    fmriprep_wf = Workflow(name='fmriprep_wf')
    fmriprep_wf.base_dir = config.execution.work_dir

    freesurfer = config.workflow.run_reconall
    if freesurfer:
        fsdir = pe.Node(
            BIDSFreeSurferDir(derivatives=config.execution.output_dir,
                              freesurfer_home=os.getenv('FREESURFER_HOME'),
                              spaces=config.workflow.spaces.get_fs_spaces()),
            name='fsdir_run_%s' % config.execution.run_uuid.replace('-', '_'),
            run_without_submitting=True)
        if config.execution.fs_subjects_dir is not None:
            fsdir.inputs.subjects_dir = str(
                config.execution.fs_subjects_dir.absolute())

    for subject_id in config.execution.participant_label:
        single_subject_wf = init_single_subject_wf(subject_id)

        single_subject_wf.config['execution']['crashdump_dir'] = str(
            config.execution.output_dir / "fmriprep" / "-".join(
                ("sub", subject_id)) / "log" / config.execution.run_uuid)
        for node in single_subject_wf._get_all_nodes():
            node.config = deepcopy(single_subject_wf.config)
        if freesurfer:
            fmriprep_wf.connect(fsdir, 'subjects_dir', single_subject_wf,
                                'inputnode.subjects_dir')
        else:
            fmriprep_wf.add_nodes([single_subject_wf])

        # Dump a copy of the config file into the log directory
        log_dir = config.execution.output_dir / 'fmriprep' / 'sub-{}'.format(subject_id) \
            / 'log' / config.execution.run_uuid
        log_dir.mkdir(exist_ok=True, parents=True)
        config.to_filename(log_dir / 'fmriprep.toml')

    return fmriprep_wf
示例#3
0
def init_reportlets_wf(reportlets_dir, name='reportlets_wf'):
    """Set up a battery of datasinks to store reports in the right location."""
    from niworkflows.interfaces.masks import SimpleShowMaskRPT
    workflow = Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(
        fields=['source_file', 'dwi_ref', 'dwi_mask',
                'validation_report']),
        name='inputnode')
    mask_reportlet = pe.Node(SimpleShowMaskRPT(), name='mask_reportlet')

    ds_report_mask = pe.Node(
        DerivativesDataSink(base_directory=reportlets_dir,
                            desc='brain', suffix='mask'),
        name='ds_report_mask', run_without_submitting=True)
    ds_report_validation = pe.Node(
        DerivativesDataSink(base_directory=reportlets_dir,
                            desc='validation', keep_dtype=True),
        name='ds_report_validation', run_without_submitting=True)

    workflow.connect([
        (inputnode, mask_reportlet, [('dwi_ref', 'background_file'),
                                     ('dwi_mask', 'mask_file')]),
        (inputnode, ds_report_validation, [('source_file', 'source_file')]),
        (inputnode, ds_report_mask, [('source_file', 'source_file')]),
        (inputnode, ds_report_validation, [('validation_report', 'in_file')]),
        (mask_reportlet, ds_report_mask, [('out_report', 'in_file')]),
    ])
    return workflow
示例#4
0
def init_reportlets_wf(output_dir, sdc_report=False, name="reportlets_wf"):
    """Set up a battery of datasinks to store reports in the right location."""
    from niworkflows.interfaces.reportlets.masks import SimpleShowMaskRPT

    workflow = Workflow(name=name)

    inputnode = pe.Node(
        niu.IdentityInterface(
            fields=[
                "source_file",
                "dwi_ref",
                "dwi_mask",
                "validation_report",
                "sdc_report",
            ]
        ),
        name="inputnode",
    )
    mask_reportlet = pe.Node(SimpleShowMaskRPT(), name="mask_reportlet")

    ds_report_mask = pe.Node(
        DerivativesDataSink(
            base_directory=output_dir, desc="brain", suffix="mask", datatype="figures"
        ),
        name="ds_report_mask",
        run_without_submitting=True,
    )
    ds_report_validation = pe.Node(
        DerivativesDataSink(
            base_directory=output_dir, desc="validation", datatype="figures"
        ),
        name="ds_report_validation",
        run_without_submitting=True,
    )

    # fmt:off
    workflow.connect([
        (inputnode, mask_reportlet, [("dwi_ref", "background_file"),
                                     ("dwi_mask", "mask_file")]),
        (inputnode, ds_report_validation, [("source_file", "source_file")]),
        (inputnode, ds_report_mask, [("source_file", "source_file")]),
        (inputnode, ds_report_validation, [("validation_report", "in_file")]),
        (mask_reportlet, ds_report_mask, [("out_report", "in_file")]),
    ])
    # fmt:on
    if sdc_report:
        ds_report_sdc = pe.Node(
            DerivativesDataSink(
                base_directory=output_dir, desc="sdc", suffix="dwi", datatype="figures"
            ),
            name="ds_report_sdc",
            run_without_submitting=True,
        )
        # fmt:off
        workflow.connect([
            (inputnode, ds_report_sdc, [("source_file", "source_file"),
                                        ("sdc_report", "in_file")]),
        ])
        # fmt:on
    return workflow
示例#5
0
def init_dmriprep_wf():
    """
    Create the base workflow.

    This workflow organizes the execution of *dMRIPrep*, with a sub-workflow for
    each subject. If FreeSurfer's recon-all is to be run, a FreeSurfer derivatives folder is
    created and populated with any needed template subjects.

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from dmriprep.config.testing import mock_config
            from dmriprep.workflows.base import init_dmriprep_wf
            with mock_config():
                wf = init_dmriprep_wf()

    """
    dmriprep_wf = Workflow(name="dmriprep_wf")
    dmriprep_wf.base_dir = config.execution.work_dir

    freesurfer = config.workflow.run_reconall
    if freesurfer:
        fsdir = pe.Node(
            BIDSFreeSurferDir(
                derivatives=config.execution.output_dir,
                freesurfer_home=os.getenv("FREESURFER_HOME"),
                spaces=config.workflow.spaces.get_fs_spaces(),
            ),
            name=f"fsdir_run_{config.execution.run_uuid.replace('-', '_')}",
            run_without_submitting=True,
        )
        if config.execution.fs_subjects_dir is not None:
            fsdir.inputs.subjects_dir = str(
                config.execution.fs_subjects_dir.absolute())

    for subject_id in config.execution.participant_label:
        single_subject_wf = init_single_subject_wf(subject_id)

        single_subject_wf.config["execution"]["crashdump_dir"] = str(
            config.execution.output_dir / "dmriprep" / f"sub-{subject_id}" /
            "log" / config.execution.run_uuid)

        for node in single_subject_wf._get_all_nodes():
            node.config = deepcopy(single_subject_wf.config)
        if freesurfer:
            dmriprep_wf.connect(fsdir, "subjects_dir", single_subject_wf,
                                "fsinputnode.subjects_dir")
        else:
            dmriprep_wf.add_nodes([single_subject_wf])

        # Dump a copy of the config file into the log directory
        log_dir = (config.execution.output_dir / "dmriprep" /
                   f"sub-{subject_id}" / "log" / config.execution.run_uuid)
        log_dir.mkdir(exist_ok=True, parents=True)
        config.to_filename(log_dir / "dmriprep.toml")

    return dmriprep_wf
示例#6
0
def init_faux_bold_wf(bids_layout, base_dir=None, name="faux_bold"):
    # create workflow
    wf = Workflow(name=name, base_dir=base_dir)
    input_node = pe.Node(
        niu.IdentityInterface([
            'base_bold_list',
            'second_bold_list',
            'task_name',
            'num_discard',
            'num_interp']),
        name='input_node',
    )

    output_node = pe.Node(
        niu.IdentityInterface([
            'faux_bold_files']),
        name='output_node')

    combine_bold = pe.MapNode(CombineRestBold(return_type="file"),
                              iterfield=['base_bold',
                                         'second_bold'],
                              name='combine_node')

    participants = bids_layout.get_subjects()

    base_bold_list = []
    second_bold_list = []
    for participant in participants:
        for run, lst in zip([1, 2], [base_bold_list, second_bold_list]):
            try:
                bold_file = bids_layout.get(
                    task="rest",
                    extension=".nii.gz",
                    run=run,
                    subject=participant,
                    return_type='file',
                )[0]
            except IndexError:
                raise IndexError(f"{participant} does not have rest run: {run}")

            lst.append(bold_file)

    input_node.inputs.base_bold_list = base_bold_list
    input_node.inputs.second_bold_list = second_bold_list

    wf.connect([
        (input_node, combine_bold,
            [('base_bold_list', 'base_bold'),
             ('second_bold_list', 'second_bold'),
             ('task_name', 'task_name'),
             ('num_discard', 'num_discard'),
             ('num_interp', 'num_interp')]),
        (combine_bold, output_node,
            [('faux_bold', 'faux_bold_files')])
    ])

    return wf
示例#7
0
def init_qwarp_inversion_wf(omp_nthreads=1, name="qwarp_invert_wf"):
    """
    Invert a warp produced by 3dqwarp and convert it to an ANTS formatted warp
    Workflow Graph
        .. workflow ::
            :graph2use: orig
            :simple_form: yes
            from sdcflows.workflows.base import init_qwarp_inversion_wf
            wf = init_qwarp_inversion_wf()
    Parameters
    ----------
    name : str
        Name for this workflow
    omp_nthreads : int
        Parallelize internal tasks across the number of CPUs given by this option.
    Inputs
    ------
    warp : pathlike
        The warp you want to invert.
    in_reference : pathlike
        The baseline reference image (must correspond to ``epi_pe_dir``).
    Outputs
    -------
    out_warp : pathlike
        The corresponding inverted :abbr:`DFM (displacements field map)` compatible with
        ANTs.
    """
    from ..interfaces.afni import InvertWarp
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
A warp produced by 3dQwarp was inverted by `3dNwarpCat` @afni (AFNI {afni_ver}).
""".format(afni_ver=''.join(['%02d' % v for v in afni.Info().version() or []]))

    inputnode = pe.Node(niu.IdentityInterface(fields=['warp', 'in_reference']),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=['out_warp']),
                         name='outputnode')

    invert = pe.Node(InvertWarp(), name='invert', n_procs=omp_nthreads)
    invert.inputs.outputtype = 'NIFTI_GZ'
    to_ants = pe.Node(niu.Function(function=_fix_hdr),
                      name='to_ants',
                      mem_gb=0.01)

    cphdr_warp = pe.Node(CopyHeader(), name='cphdr_warp', mem_gb=0.01)

    workflow.connect([
        (inputnode, invert, [('warp', 'in_file')]),
        (invert, cphdr_warp, [('out_file', 'in_file')]),
        (inputnode, cphdr_warp, [('in_reference', 'hdr_file')]),
        (cphdr_warp, to_ants, [('out_file', 'in_file')]),
        (to_ants, outputnode, [('out', 'out_warp')]),
    ])

    return workflow
示例#8
0
def init_anat_reports_wf(reportlets_dir,
                         template,
                         freesurfer,
                         name='anat_reports_wf'):
    """
    Set up a battery of datasinks to store reports in the right location
    """
    workflow = Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'source_file', 't1_conform_report', 'seg_report', 't1_2_mni_report',
        'recon_report'
    ]),
                        name='inputnode')

    ds_t1_conform_report = pe.Node(DerivativesDataSink(
        base_directory=reportlets_dir, suffix='conform'),
                                   name='ds_t1_conform_report',
                                   run_without_submitting=True)

    ds_t1_2_mni_report = pe.Node(DerivativesDataSink(
        base_directory=reportlets_dir, suffix='t1_2_mni'),
                                 name='ds_t1_2_mni_report',
                                 run_without_submitting=True)

    ds_t1_seg_mask_report = pe.Node(DerivativesDataSink(
        base_directory=reportlets_dir, suffix='seg_brainmask'),
                                    name='ds_t1_seg_mask_report',
                                    run_without_submitting=True)

    workflow.connect([
        (inputnode, ds_t1_conform_report, [('source_file', 'source_file'),
                                           ('t1_conform_report', 'in_file')]),
        (inputnode, ds_t1_seg_mask_report, [('source_file', 'source_file'),
                                            ('seg_report', 'in_file')]),
        (inputnode, ds_t1_2_mni_report, [('source_file', 'source_file'),
                                         ('t1_2_mni_report', 'in_file')])
    ])

    if freesurfer:
        ds_recon_report = pe.Node(DerivativesDataSink(
            base_directory=reportlets_dir, suffix='reconall'),
                                  name='ds_recon_report',
                                  run_without_submitting=True)
        workflow.connect([(inputnode, ds_recon_report,
                           [('source_file', 'source_file'),
                            ('recon_report', 'in_file')])])

    return workflow
示例#9
0
def init_pepolar_estimate_wf(debug=False, generate_report=True, name="pepolar_estimate_wf"):
    """Initialize a barebones TOPUP implementation."""
    from nipype.interfaces.afni import Automask
    from nipype.interfaces.fsl.epi import TOPUP
    from niworkflows.interfaces.nibabel import MergeSeries
    from sdcflows.interfaces.fmap import get_trt
    from ...interfaces.images import RescaleB0
    wf = Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(fields=["metadata", "in_data"]),
                        name="inputnode")
    outputnode = pe.Node(niu.IdentityInterface(fields=["fieldmap", "corrected", "corrected_mask"]),
                         name="outputnode")

    concat_blips = pe.Node(MergeSeries(), name="concat_blips")
    readout_time = pe.MapNode(niu.Function(
        input_names=["in_meta", "in_file"], function=get_trt), name="readout_time",
        iterfield=["in_meta", "in_file"], run_without_submitting=True
    )

    topup = pe.Node(TOPUP(config=_pkg_fname(
        "dmriprep", f"data/flirtsch/b02b0{'_quick' * debug}.cnf")), name="topup")

    pre_mask = pe.Node(Automask(dilate=1, outputtype="NIFTI_GZ"),
                       name="pre_mask")
    rescale_corrected = pe.Node(RescaleB0(), name="rescale_corrected")
    post_mask = pe.Node(Automask(outputtype="NIFTI_GZ"),
                        name="post_mask")
    wf.connect([
        (inputnode, concat_blips, [("in_data", "in_files")]),
        (inputnode, readout_time, [("in_data", "in_file"),
                                   ("metadata", "in_meta")]),
        (inputnode, topup, [(("metadata", _get_pedir), "encoding_direction")]),
        (readout_time, topup, [("out", "readout_times")]),
        (concat_blips, topup, [("out_file", "in_file")]),
        (topup, pre_mask, [("out_corrected", "in_file")]),
        (pre_mask, rescale_corrected, [("out_file", "mask_file")]),
        (topup, rescale_corrected, [("out_corrected", "in_file")]),
        (topup, outputnode, [("out_field", "fieldmap")]),
        (rescale_corrected, post_mask, [("out_ref", "in_file")]),
        (rescale_corrected, outputnode, [("out_ref", "corrected")]),
        (post_mask, outputnode, [("out_file", "corrected_mask")]),
    ])

    return wf
示例#10
0
def init_fmriprep_wf():
    """
    Build *fMRIPrep*'s pipeline.

    This workflow organizes the execution of FMRIPREP, with a sub-workflow for
    each subject.

    If FreeSurfer's ``recon-all`` is to be run, a corresponding folder is created
    and populated with any needed template subjects under the derivatives folder.

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from fprodents.workflows.tests import mock_config
            from fprodents.workflows.base import init_fmriprep_wf
            with mock_config():
                wf = init_fmriprep_wf()

    """
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow

    fmriprep_wf = Workflow(name="fmriprep_wf")
    fmriprep_wf.base_dir = config.execution.work_dir

    for subject_id in config.execution.participant_label:
        single_subject_wf = init_single_subject_wf(subject_id)

        # Dump a copy of the config file into the log directory
        log_dir = (config.execution.output_dir / "fmriprep" /
                   f"sub-{subject_id}" / "log" / config.execution.run_uuid)
        log_dir.mkdir(exist_ok=True, parents=True)
        config.to_filename(log_dir / "fmriprep.toml")

        single_subject_wf.config["execution"]["crashdump_dir"] = str(log_dir)
        for node in single_subject_wf._get_all_nodes():
            node.config = deepcopy(single_subject_wf.config)

        fmriprep_wf.add_nodes([single_subject_wf])

    return fmriprep_wf
示例#11
0
def init_segs_to_native_wf(name='segs_to_native', segmentation='aseg'):
    """
    Get a segmentation from FreeSurfer conformed space into native T1w space.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from smriprep.workflows.surfaces import init_segs_to_native_wf
        wf = init_segs_to_native_wf()


    **Parameters**
        segmentation
            The name of a segmentation ('aseg' or 'aparc_aseg' or 'wmparc')

    **Inputs**

        in_file
            Anatomical, merged T1w image after INU correction
        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID


    **Outputs**

        out_file
            The selected segmentation, after resampling in native space
    """
    workflow = Workflow(name='%s_%s' % (name, segmentation))
    inputnode = pe.Node(niu.IdentityInterface(
        ['in_file', 'subjects_dir', 'subject_id']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(['out_file']),
                         name='outputnode')
    # Extract the aseg and aparc+aseg outputs
    fssource = pe.Node(nio.FreeSurferSource(), name='fs_datasource')
    tonative = pe.Node(fs.Label2Vol(), name='tonative')
    tonii = pe.Node(fs.MRIConvert(out_type='niigz', resample_type='nearest'),
                    name='tonii')

    if segmentation.startswith('aparc'):
        if segmentation == 'aparc_aseg':

            def _sel(x):
                return [parc for parc in x if 'aparc+' in parc][0]
        elif segmentation == 'aparc_a2009s':

            def _sel(x):
                return [parc for parc in x if 'a2009s+' in parc][0]
        elif segmentation == 'aparc_dkt':

            def _sel(x):
                return [parc for parc in x if 'DKTatlas+' in parc][0]

        segmentation = (segmentation, _sel)

    workflow.connect([
        (inputnode, fssource, [('subjects_dir', 'subjects_dir'),
                               ('subject_id', 'subject_id')]),
        (inputnode, tonii, [('in_file', 'reslice_like')]),
        (fssource, tonative, [(segmentation, 'seg_file'),
                              ('rawavg', 'template_file'),
                              ('aseg', 'reg_header')]),
        (tonative, tonii, [('vol_label_file', 'in_file')]),
        (tonii, outputnode, [('out_file', 'out_file')]),
    ])
    return workflow
示例#12
0
def init_gifti_surface_wf(name='gifti_surface_wf'):
    r"""
    Prepare GIFTI surfaces from a FreeSurfer subjects directory.

    If midthickness (or graymid) surfaces do not exist, they are generated and
    saved to the subject directory as ``lh/rh.midthickness``.
    These, along with the gray/white matter boundary (``lh/rh.smoothwm``), pial
    sufaces (``lh/rh.pial``) and inflated surfaces (``lh/rh.inflated``) are
    converted to GIFTI files.
    Additionally, the vertex coordinates are :py:class:`recentered
    <smriprep.interfaces.NormalizeSurf>` to align with native T1w space.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from smriprep.workflows.surfaces import init_gifti_surface_wf
        wf = init_gifti_surface_wf()

    **Inputs**

        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID
        fsnative2t1w_xfm
            LTA formatted affine transform file (inverse)

    **Outputs**

        surfaces
            GIFTI surfaces for gray/white matter boundary, pial surface,
            midthickness (or graymid) surface, and inflated surfaces

    """
    workflow = Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(
        ['subjects_dir', 'subject_id', 'fsnative2t1w_xfm']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(['surfaces']),
                         name='outputnode')

    get_surfaces = pe.Node(nio.FreeSurferSource(), name='get_surfaces')

    midthickness = pe.MapNode(MakeMidthickness(thickness=True,
                                               distance=0.5,
                                               out_name='midthickness'),
                              iterfield='in_file',
                              name='midthickness')

    save_midthickness = pe.Node(nio.DataSink(parameterization=False),
                                name='save_midthickness')

    surface_list = pe.Node(niu.Merge(4, ravel_inputs=True),
                           name='surface_list',
                           run_without_submitting=True)
    fs2gii = pe.MapNode(fs.MRIsConvert(out_datatype='gii'),
                        iterfield='in_file',
                        name='fs2gii')
    fix_surfs = pe.MapNode(NormalizeSurf(),
                           iterfield='in_file',
                           name='fix_surfs')

    workflow.connect([
        (inputnode, get_surfaces, [('subjects_dir', 'subjects_dir'),
                                   ('subject_id', 'subject_id')]),
        (inputnode, save_midthickness, [('subjects_dir', 'base_directory'),
                                        ('subject_id', 'container')]),
        # Generate midthickness surfaces and save to FreeSurfer derivatives
        (get_surfaces, midthickness, [('smoothwm', 'in_file'),
                                      ('graymid', 'graymid')]),
        (midthickness, save_midthickness, [('out_file', 'surf.@graymid')]),
        # Produce valid GIFTI surface files (dense mesh)
        (get_surfaces, surface_list, [('smoothwm', 'in1'), ('pial', 'in2'),
                                      ('inflated', 'in3')]),
        (save_midthickness, surface_list, [('out_file', 'in4')]),
        (surface_list, fs2gii, [('out', 'in_file')]),
        (fs2gii, fix_surfs, [('converted', 'in_file')]),
        (inputnode, fix_surfs, [('fsnative2t1w_xfm', 'transform_file')]),
        (fix_surfs, outputnode, [('out_file', 'surfaces')]),
    ])
    return workflow
示例#13
0
def init_surface_recon_wf(omp_nthreads, hires, name='surface_recon_wf'):
    r"""
    Reconstruct anatomical surfaces using FreeSurfer's ``recon-all``.

    Reconstruction is performed in three phases.
    The first phase initializes the subject with T1w and T2w (if available)
    structural images and performs basic reconstruction (``autorecon1``) with the
    exception of skull-stripping.
    For example, a subject with only one session with T1w and T2w images
    would be processed by the following command::

        $ recon-all -sd <output dir>/freesurfer -subjid sub-<subject_label> \
            -i <bids-root>/sub-<subject_label>/anat/sub-<subject_label>_T1w.nii.gz \
            -T2 <bids-root>/sub-<subject_label>/anat/sub-<subject_label>_T2w.nii.gz \
            -autorecon1 \
            -noskullstrip

    The second phase imports an externally computed skull-stripping mask.
    This workflow refines the external brainmask using the internal mask
    implicit the the FreeSurfer's ``aseg.mgz`` segmentation,
    to reconcile ANTs' and FreeSurfer's brain masks.

    First, the ``aseg.mgz`` mask from FreeSurfer is refined in two
    steps, using binary morphological operations:

      1. With a binary closing operation the sulci are included
         into the mask. This results in a smoother brain mask
         that does not exclude deep, wide sulci.

      2. Fill any holes (typically, there could be a hole next to
         the pineal gland and the corpora quadrigemina if the great
         cerebral brain is segmented out).

    Second, the brain mask is grown, including pixels that have a high likelihood
    to the GM tissue distribution:

      3. Dilate and substract the brain mask, defining the region to search for candidate
         pixels that likely belong to cortical GM.

      4. Pixels found in the search region that are labeled as GM by ANTs
         (during ``antsBrainExtraction.sh``) are directly added to the new mask.

      5. Otherwise, estimate GM tissue parameters locally in  patches of ``ww`` size,
         and test the likelihood of the pixel to belong in the GM distribution.

    This procedure is inspired on mindboggle's solution to the problem:
    https://github.com/nipy/mindboggle/blob/7f91faaa7664d820fe12ccc52ebaf21d679795e2/mindboggle/guts/segment.py#L1660


    The final phase resumes reconstruction, using the T2w image to assist
    in finding the pial surface, if available.
    See :py:func:`~smriprep.workflows.surfaces.init_autorecon_resume_wf` for details.


    Memory annotations for FreeSurfer are based off `their documentation
    <https://surfer.nmr.mgh.harvard.edu/fswiki/SystemRequirements>`_.
    They specify an allocation of 4GB per subject. Here we define 5GB
    to have a certain margin.



    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from smriprep.workflows.surfaces import init_surface_recon_wf
        wf = init_surface_recon_wf(omp_nthreads=1, hires=True)

    **Parameters**

        omp_nthreads : int
            Maximum number of threads an individual process may use
        hires : bool
            Enable sub-millimeter preprocessing in FreeSurfer

    **Inputs**

        t1w
            List of T1-weighted structural images
        t2w
            List of T2-weighted structural images (only first used)
        flair
            List of FLAIR images
        skullstripped_t1
            Skull-stripped T1-weighted image (or mask of image)
        ants_segs
            Brain tissue segmentation from ANTS ``antsBrainExtraction.sh``
        corrected_t1
            INU-corrected, merged T1-weighted image
        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID

    **Outputs**

        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID
        t1w2fsnative_xfm
            LTA-style affine matrix translating from T1w to FreeSurfer-conformed subject space
        fsnative2t1w_xfm
            LTA-style affine matrix translating from FreeSurfer-conformed subject space to T1w
        surfaces
            GIFTI surfaces for gray/white matter boundary, pial surface,
            midthickness (or graymid) surface, and inflated surfaces
        out_brainmask
            Refined brainmask, derived from FreeSurfer's ``aseg`` volume
        out_aseg
            FreeSurfer's aseg segmentation, in native T1w space
        out_aparc
            FreeSurfer's aparc+aseg segmentation, in native T1w space

    **Subworkflows**

        * :py:func:`~smriprep.workflows.surfaces.init_autorecon_resume_wf`
        * :py:func:`~smriprep.workflows.surfaces.init_gifti_surface_wf`
    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
Brain surfaces were reconstructed using `recon-all` [FreeSurfer {fs_ver},
RRID:SCR_001847, @fs_reconall], and the brain mask estimated
previously was refined with a custom variation of the method to reconcile
ANTs-derived and FreeSurfer-derived segmentations of the cortical
gray-matter of Mindboggle [RRID:SCR_002438, @mindboggle].
""".format(fs_ver=fs.Info().looseversion() or '<ver>')

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        't1w', 't2w', 'flair', 'skullstripped_t1', 'corrected_t1', 'ants_segs',
        'subjects_dir', 'subject_id'
    ]),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'subjects_dir', 'subject_id', 't1w2fsnative_xfm', 'fsnative2t1w_xfm',
        'surfaces', 'out_brainmask', 'out_aseg', 'out_aparc'
    ]),
                         name='outputnode')

    recon_config = pe.Node(FSDetectInputs(hires_enabled=hires),
                           name='recon_config')

    fov_check = pe.Node(niu.Function(function=_check_cw256), name='fov_check')

    autorecon1 = pe.Node(fs.ReconAll(directive='autorecon1',
                                     openmp=omp_nthreads),
                         name='autorecon1',
                         n_procs=omp_nthreads,
                         mem_gb=5)
    autorecon1.interface._can_resume = False
    autorecon1.interface._always_run = True

    skull_strip_extern = pe.Node(FSInjectBrainExtracted(),
                                 name='skull_strip_extern')

    fsnative2t1w_xfm = pe.Node(RobustRegister(auto_sens=True,
                                              est_int_scale=True),
                               name='fsnative2t1w_xfm')
    t1w2fsnative_xfm = pe.Node(LTAConvert(out_lta=True, invert=True),
                               name='t1w2fsnative_xfm')

    autorecon_resume_wf = init_autorecon_resume_wf(omp_nthreads=omp_nthreads)
    gifti_surface_wf = init_gifti_surface_wf()

    aseg_to_native_wf = init_segs_to_native_wf()
    aparc_to_native_wf = init_segs_to_native_wf(segmentation='aparc_aseg')
    refine = pe.Node(RefineBrainMask(), name='refine')

    workflow.connect([
        # Configuration
        (inputnode, recon_config, [('t1w', 't1w_list'), ('t2w', 't2w_list'),
                                   ('flair', 'flair_list')]),
        # Passing subjects_dir / subject_id enforces serial order
        (inputnode, autorecon1, [('subjects_dir', 'subjects_dir'),
                                 ('subject_id', 'subject_id')]),
        (autorecon1, skull_strip_extern, [('subjects_dir', 'subjects_dir'),
                                          ('subject_id', 'subject_id')]),
        (skull_strip_extern, autorecon_resume_wf,
         [('subjects_dir', 'inputnode.subjects_dir'),
          ('subject_id', 'inputnode.subject_id')]),
        (autorecon_resume_wf, gifti_surface_wf,
         [('outputnode.subjects_dir', 'inputnode.subjects_dir'),
          ('outputnode.subject_id', 'inputnode.subject_id')]),
        # Reconstruction phases
        (inputnode, autorecon1, [('t1w', 'T1_files')]),
        (inputnode, fov_check, [('t1w', 'in_files')]),
        (fov_check, autorecon1, [('out', 'flags')]),
        (
            recon_config,
            autorecon1,
            [
                ('t2w', 'T2_file'),
                ('flair', 'FLAIR_file'),
                ('hires', 'hires'),
                # First run only (recon-all saves expert options)
                ('mris_inflate', 'mris_inflate')
            ]),
        (inputnode, skull_strip_extern, [('skullstripped_t1', 'in_brain')]),
        (recon_config, autorecon_resume_wf, [('use_t2w', 'inputnode.use_T2'),
                                             ('use_flair',
                                              'inputnode.use_FLAIR')]),
        # Construct transform from FreeSurfer conformed image to sMRIPrep
        # reoriented image
        (inputnode, fsnative2t1w_xfm, [('t1w', 'target_file')]),
        (autorecon1, fsnative2t1w_xfm, [('T1', 'source_file')]),
        (fsnative2t1w_xfm, gifti_surface_wf, [('out_reg_file',
                                               'inputnode.fsnative2t1w_xfm')]),
        (fsnative2t1w_xfm, t1w2fsnative_xfm, [('out_reg_file', 'in_lta')]),
        # Refine ANTs mask, deriving new mask from FS' aseg
        (inputnode, refine, [('corrected_t1', 'in_anat'),
                             ('ants_segs', 'in_ants')]),
        (inputnode, aseg_to_native_wf, [('corrected_t1', 'inputnode.in_file')
                                        ]),
        (autorecon_resume_wf, aseg_to_native_wf,
         [('outputnode.subjects_dir', 'inputnode.subjects_dir'),
          ('outputnode.subject_id', 'inputnode.subject_id')]),
        (inputnode, aparc_to_native_wf, [('corrected_t1', 'inputnode.in_file')
                                         ]),
        (autorecon_resume_wf, aparc_to_native_wf,
         [('outputnode.subjects_dir', 'inputnode.subjects_dir'),
          ('outputnode.subject_id', 'inputnode.subject_id')]),
        (aseg_to_native_wf, refine, [('outputnode.out_file', 'in_aseg')]),

        # Output
        (autorecon_resume_wf, outputnode,
         [('outputnode.subjects_dir', 'subjects_dir'),
          ('outputnode.subject_id', 'subject_id')]),
        (gifti_surface_wf, outputnode, [('outputnode.surfaces', 'surfaces')]),
        (t1w2fsnative_xfm, outputnode, [('out_lta', 't1w2fsnative_xfm')]),
        (fsnative2t1w_xfm, outputnode, [('out_reg_file', 'fsnative2t1w_xfm')]),
        (refine, outputnode, [('out_file', 'out_brainmask')]),
        (aseg_to_native_wf, outputnode, [('outputnode.out_file', 'out_aseg')]),
        (aparc_to_native_wf, outputnode, [('outputnode.out_file', 'out_aparc')
                                          ]),
    ])

    return workflow
示例#14
0
def init_autorecon_resume_wf(omp_nthreads, name='autorecon_resume_wf'):
    r"""
    Resume recon-all execution, assuming the `-autorecon1` stage has been completed.

    In order to utilize resources efficiently, this is broken down into five
    sub-stages; after the first stage, the second and third stages may be run
    simultaneously, and the fourth and fifth stages may be run simultaneously,
    if resources permit::

        $ recon-all -sd <output dir>/freesurfer -subjid sub-<subject_label> \
            -autorecon2-volonly
        $ recon-all -sd <output dir>/freesurfer -subjid sub-<subject_label> \
            -autorecon-hemi lh \
            -noparcstats -nocortparc2 -noparcstats2 -nocortparc3 \
            -noparcstats3 -nopctsurfcon -nohyporelabel -noaparc2aseg \
            -noapas2aseg -nosegstats -nowmparc -nobalabels
        $ recon-all -sd <output dir>/freesurfer -subjid sub-<subject_label> \
            -autorecon-hemi rh \
            -noparcstats -nocortparc2 -noparcstats2 -nocortparc3 \
            -noparcstats3 -nopctsurfcon -nohyporelabel -noaparc2aseg \
            -noapas2aseg -nosegstats -nowmparc -nobalabels
        $ recon-all -sd <output dir>/freesurfer -subjid sub-<subject_label> \
            -autorecon3 -hemi lh -T2pial
        $ recon-all -sd <output dir>/freesurfer -subjid sub-<subject_label> \
            -autorecon3 -hemi rh -T2pial

    The excluded steps in the second and third stages (``-no<option>``) are not
    fully hemisphere independent, and are therefore postponed to the final two
    stages.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from smriprep.workflows.surfaces import init_autorecon_resume_wf
        wf = init_autorecon_resume_wf(omp_nthreads=1)

    **Inputs**

        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID
        use_T2
            Refine pial surface using T2w image
        use_FLAIR
            Refine pial surface using FLAIR image

    **Outputs**

        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID

    """
    workflow = Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(
        fields=['subjects_dir', 'subject_id', 'use_T2', 'use_FLAIR']),
                        name='inputnode')

    outputnode = pe.Node(
        niu.IdentityInterface(fields=['subjects_dir', 'subject_id']),
        name='outputnode')

    autorecon2_vol = pe.Node(fs.ReconAll(directive='autorecon2-volonly',
                                         openmp=omp_nthreads),
                             n_procs=omp_nthreads,
                             mem_gb=5,
                             name='autorecon2_vol')
    autorecon2_vol.interface._always_run = True

    autorecon_surfs = pe.MapNode(fs.ReconAll(
        directive='autorecon-hemi',
        flags=[
            '-noparcstats', '-nocortparc2', '-noparcstats2', '-nocortparc3',
            '-noparcstats3', '-nopctsurfcon', '-nohyporelabel',
            '-noaparc2aseg', '-noapas2aseg', '-nosegstats', '-nowmparc',
            '-nobalabels'
        ],
        openmp=omp_nthreads),
                                 iterfield='hemi',
                                 n_procs=omp_nthreads,
                                 mem_gb=5,
                                 name='autorecon_surfs')
    autorecon_surfs.inputs.hemi = ['lh', 'rh']
    autorecon_surfs.interface._always_run = True

    autorecon3 = pe.MapNode(fs.ReconAll(directive='autorecon3',
                                        openmp=omp_nthreads),
                            iterfield='hemi',
                            n_procs=omp_nthreads,
                            mem_gb=5,
                            name='autorecon3')
    autorecon3.inputs.hemi = ['lh', 'rh']
    autorecon3.interface._always_run = True

    def _dedup(in_list):
        vals = set(in_list)
        if len(vals) > 1:
            raise ValueError(
                "Non-identical values can't be deduplicated:\n{!r}".format(
                    in_list))
        return vals.pop()

    workflow.connect([
        (inputnode, autorecon3, [('use_T2', 'use_T2'),
                                 ('use_FLAIR', 'use_FLAIR')]),
        (inputnode, autorecon2_vol, [('subjects_dir', 'subjects_dir'),
                                     ('subject_id', 'subject_id')]),
        (autorecon2_vol, autorecon_surfs, [('subjects_dir', 'subjects_dir'),
                                           ('subject_id', 'subject_id')]),
        (autorecon_surfs, autorecon3,
         [(('subjects_dir', _dedup), 'subjects_dir'),
          (('subject_id', _dedup), 'subject_id')]),
        (autorecon3, outputnode, [(('subjects_dir', _dedup), 'subjects_dir'),
                                  (('subject_id', _dedup), 'subject_id')]),
    ])

    return workflow
def init_fsl_bbr_wf(use_bbr,
                    bold2t1w_dof,
                    bold2t1w_init,
                    sloppy=False,
                    name='fsl_bbr_wf'):
    """
    Build a workflow to run FSL's ``flirt``.

    This workflow uses FSL FLIRT to register a BOLD image to a T1-weighted
    structural image, using a boundary-based registration (BBR) cost function.
    It is a counterpart to :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`,
    which performs the same task using FreeSurfer's ``bbregister``.

    The ``use_bbr`` option permits a high degree of control over registration.
    If ``False``, standard, rigid coregistration will be performed by FLIRT.
    If ``True``, FLIRT-BBR will be seeded with the initial transform found by
    the rigid coregistration.
    If ``None``, after FLIRT-BBR is run, the resulting affine transform
    will be compared to the initial transform found by FLIRT.
    Excessive deviation will result in rejecting the BBR refinement and
    accepting the original, affine registration.

    Workflow Graph
        .. workflow ::
            :graph2use: orig
            :simple_form: yes

            from fmriprep.workflows.bold.registration import init_fsl_bbr_wf
            wf = init_fsl_bbr_wf(use_bbr=True, bold2t1w_dof=9, bold2t1w_init='register')


    Parameters
    ----------
    use_bbr : :obj:`bool` or None
        Enable/disable boundary-based registration refinement.
        If ``None``, test BBR result for distortion before accepting.
    bold2t1w_dof : 6, 9 or 12
        Degrees-of-freedom for BOLD-T1w registration
    bold2t1w_init : str, 'header' or 'register'
        If ``'header'``, use header information for initialization of BOLD and T1 images.
        If ``'register'``, align volumes by their centers.
    name : :obj:`str`, optional
        Workflow name (default: fsl_bbr_wf)

    Inputs
    ------
    in_file
        Reference BOLD image to be registered
    t1w_brain
        Skull-stripped T1-weighted structural image
    t1w_dseg
        FAST segmentation of ``t1w_brain``
    fsnative2t1w_xfm
        Unused (see :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`)
    subjects_dir
        Unused (see :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`)
    subject_id
        Unused (see :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`)

    Outputs
    -------
    itk_bold_to_t1
        Affine transform from ``ref_bold_brain`` to T1w space (ITK format)
    itk_t1_to_bold
        Affine transform from T1 space to BOLD space (ITK format)
    out_report
        Reportlet for assessing registration quality
    fallback
        Boolean indicating whether BBR was rejected (rigid FLIRT registration returned)

    """
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.utils.images import dseg_label as _dseg_label
    from niworkflows.interfaces.freesurfer import PatchedLTAConvert as LTAConvert
    from niworkflows.interfaces.registration import FLIRTRPT
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
The BOLD reference was then co-registered to the T1w reference using
`flirt` [FSL {fsl_ver}, @flirt] with the boundary-based registration [@bbr]
cost-function.
Co-registration was configured with nine degrees of freedom to account
for distortions remaining in the BOLD reference.
""".format(fsl_ver=FLIRTRPT().version or '<ver>')

    inputnode = pe.Node(
        niu.IdentityInterface([
            'in_file',
            'fsnative2t1w_xfm',
            'subjects_dir',
            'subject_id',  # BBRegister
            't1w_dseg',
            't1w_brain'
        ]),  # FLIRT BBR
        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(
        ['itk_bold_to_t1', 'itk_t1_to_bold', 'out_report', 'fallback']),
                         name='outputnode')

    wm_mask = pe.Node(niu.Function(function=_dseg_label), name='wm_mask')
    wm_mask.inputs.label = 2  # BIDS default is WM=2
    flt_bbr_init = pe.Node(FLIRTRPT(dof=6,
                                    generate_report=not use_bbr,
                                    uses_qform=True),
                           name='flt_bbr_init')

    if bold2t1w_init not in ("register", "header"):
        raise ValueError(
            f"Unknown BOLD-T1w initialization option: {bold2t1w_init}")

    if bold2t1w_init == "header":
        raise NotImplementedError(
            "Header-based registration initialization not supported for FSL")

    invt_bbr = pe.Node(fsl.ConvertXFM(invert_xfm=True),
                       name='invt_bbr',
                       mem_gb=DEFAULT_MEMORY_MIN_GB)

    # BOLD to T1 transform matrix is from fsl, using c3 tools to convert to
    # something ANTs will like.
    fsl2itk_fwd = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_fwd',
                          mem_gb=DEFAULT_MEMORY_MIN_GB)
    fsl2itk_inv = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_inv',
                          mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, flt_bbr_init, [('in_file', 'in_file'),
                                   ('t1w_brain', 'reference')]),
        (inputnode, fsl2itk_fwd, [('t1w_brain', 'reference_file'),
                                  ('in_file', 'source_file')]),
        (inputnode, fsl2itk_inv, [('in_file', 'reference_file'),
                                  ('t1w_brain', 'source_file')]),
        (invt_bbr, fsl2itk_inv, [('out_file', 'transform_file')]),
        (fsl2itk_fwd, outputnode, [('itk_transform', 'itk_bold_to_t1')]),
        (fsl2itk_inv, outputnode, [('itk_transform', 'itk_t1_to_bold')]),
    ])

    # Short-circuit workflow building, use rigid registration
    if use_bbr is False:
        workflow.connect([
            (flt_bbr_init, invt_bbr, [('out_matrix_file', 'in_file')]),
            (flt_bbr_init, fsl2itk_fwd, [('out_matrix_file', 'transform_file')
                                         ]),
            (flt_bbr_init, outputnode, [('out_report', 'out_report')]),
        ])
        outputnode.inputs.fallback = True

        return workflow

    flt_bbr = pe.Node(FLIRTRPT(cost_func='bbr',
                               dof=bold2t1w_dof,
                               generate_report=True),
                      name='flt_bbr')

    FSLDIR = os.getenv('FSLDIR')
    if FSLDIR:
        flt_bbr.inputs.schedule = op.join(FSLDIR, 'etc/flirtsch/bbr.sch')
    else:
        # Should mostly be hit while building docs
        LOGGER.warning("FSLDIR unset - using packaged BBR schedule")
        flt_bbr.inputs.schedule = pkgr.resource_filename(
            'fmriprep', 'data/flirtsch/bbr.sch')

    workflow.connect([
        (inputnode, wm_mask, [('t1w_dseg', 'in_seg')]),
        (inputnode, flt_bbr, [('in_file', 'in_file')]),
        (flt_bbr_init, flt_bbr, [('out_matrix_file', 'in_matrix_file')]),
    ])

    if sloppy is True:
        downsample = pe.Node(niu.Function(
            function=_conditional_downsampling,
            output_names=["out_file", "out_mask"]),
                             name='downsample')
        workflow.connect([
            (inputnode, downsample, [("t1w_brain", "in_file")]),
            (wm_mask, downsample, [("out", "in_mask")]),
            (downsample, flt_bbr, [('out_file', 'reference'),
                                   ('out_mask', 'wm_seg')]),
        ])
    else:
        workflow.connect([
            (inputnode, flt_bbr, [('t1w_brain', 'reference')]),
            (wm_mask, flt_bbr, [('out', 'wm_seg')]),
        ])

    # Short-circuit workflow building, use boundary-based registration
    if use_bbr is True:
        workflow.connect([
            (flt_bbr, invt_bbr, [('out_matrix_file', 'in_file')]),
            (flt_bbr, fsl2itk_fwd, [('out_matrix_file', 'transform_file')]),
            (flt_bbr, outputnode, [('out_report', 'out_report')]),
        ])
        outputnode.inputs.fallback = False

        return workflow

    transforms = pe.Node(niu.Merge(2),
                         run_without_submitting=True,
                         name='transforms')
    reports = pe.Node(niu.Merge(2),
                      run_without_submitting=True,
                      name='reports')

    compare_transforms = pe.Node(niu.Function(function=compare_xforms),
                                 name='compare_transforms')

    select_transform = pe.Node(niu.Select(),
                               run_without_submitting=True,
                               name='select_transform')
    select_report = pe.Node(niu.Select(),
                            run_without_submitting=True,
                            name='select_report')

    fsl_to_lta = pe.MapNode(LTAConvert(out_lta=True),
                            iterfield=['in_fsl'],
                            name='fsl_to_lta')

    workflow.connect([
        (flt_bbr, transforms, [('out_matrix_file', 'in1')]),
        (flt_bbr_init, transforms, [('out_matrix_file', 'in2')]),
        # Convert FSL transforms to LTA (RAS2RAS) transforms and compare
        (inputnode, fsl_to_lta, [('in_file', 'source_file'),
                                 ('t1w_brain', 'target_file')]),
        (transforms, fsl_to_lta, [('out', 'in_fsl')]),
        (fsl_to_lta, compare_transforms, [('out_lta', 'lta_list')]),
        (compare_transforms, outputnode, [('out', 'fallback')]),
        # Select output transform
        (transforms, select_transform, [('out', 'inlist')]),
        (compare_transforms, select_transform, [('out', 'index')]),
        (select_transform, invt_bbr, [('out', 'in_file')]),
        (select_transform, fsl2itk_fwd, [('out', 'transform_file')]),
        (flt_bbr, reports, [('out_report', 'in1')]),
        (flt_bbr_init, reports, [('out_report', 'in2')]),
        (reports, select_report, [('out', 'inlist')]),
        (compare_transforms, select_report, [('out', 'index')]),
        (select_report, outputnode, [('out', 'out_report')]),
    ])

    return workflow
示例#16
0
def init_bold_preproc_report_wf(mem_gb,
                                reportlets_dir,
                                name='bold_preproc_report_wf'):
    """
    This workflow generates and saves a reportlet showing the effect of resampling
    the BOLD signal using the standard deviation maps.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.resampling import init_bold_preproc_report_wf
        wf = init_bold_preproc_report_wf(mem_gb=1, reportlets_dir='.')

    **Parameters**

        mem_gb : float
            Size of BOLD file in GB
        reportlets_dir : str
            Directory in which to save reportlets
        name : str, optional
            Workflow name (default: bold_preproc_report_wf)

    **Inputs**

        in_pre
            BOLD time-series, before resampling
        in_post
            BOLD time-series, after resampling
        name_source
            BOLD series NIfTI file
            Used to recover original information lost during processing

    """

    from nipype.algorithms.confounds import TSNR
    from niworkflows.interfaces import SimpleBeforeAfter

    workflow = Workflow(name=name)

    inputnode = pe.Node(
        niu.IdentityInterface(fields=['in_pre', 'in_post', 'name_source']),
        name='inputnode')

    pre_tsnr = pe.Node(TSNR(), name='pre_tsnr', mem_gb=mem_gb * 4.5)
    pos_tsnr = pe.Node(TSNR(), name='pos_tsnr', mem_gb=mem_gb * 4.5)

    bold_rpt = pe.Node(SimpleBeforeAfter(), name='bold_rpt', mem_gb=0.1)
    ds_report_bold = pe.Node(DerivativesDataSink(base_directory=reportlets_dir,
                                                 desc='preproc',
                                                 keep_dtype=True),
                             name='ds_report_bold',
                             mem_gb=DEFAULT_MEMORY_MIN_GB,
                             run_without_submitting=True)

    workflow.connect([
        (inputnode, ds_report_bold, [('name_source', 'source_file')]),
        (inputnode, pre_tsnr, [('in_pre', 'in_file')]),
        (inputnode, pos_tsnr, [('in_post', 'in_file')]),
        (pre_tsnr, bold_rpt, [('stddev_file', 'before')]),
        (pos_tsnr, bold_rpt, [('stddev_file', 'after')]),
        (bold_rpt, ds_report_bold, [('out_report', 'in_file')]),
    ])

    return workflow
示例#17
0
def init_bold_surf_wf(mem_gb,
                      output_spaces,
                      medial_surface_nan,
                      name='bold_surf_wf'):
    """
    This workflow samples functional images to FreeSurfer surfaces

    For each vertex, the cortical ribbon is sampled at six points (spaced 20% of thickness apart)
    and averaged.

    Outputs are in GIFTI format.

    .. workflow::
        :graph2use: colored
        :simple_form: yes

        from fmriprep.workflows.bold import init_bold_surf_wf
        wf = init_bold_surf_wf(mem_gb=0.1,
                               output_spaces=['T1w', 'fsnative',
                                             'template', 'fsaverage5'],
                               medial_surface_nan=False)

    **Parameters**

        output_spaces : list
            List of output spaces functional images are to be resampled to
            Target spaces beginning with ``fs`` will be selected for resampling,
            such as ``fsaverage`` or related template spaces
            If the list contains ``fsnative``, images will be resampled to the
            individual subject's native surface
        medial_surface_nan : bool
            Replace medial wall values with NaNs on functional GIFTI files

    **Inputs**

        source_file
            Motion-corrected BOLD series in T1 space
        t1_preproc
            Bias-corrected structural template image
        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID
        t1_2_fsnative_forward_transform
            LTA-style affine matrix translating from T1w to FreeSurfer-conformed subject space

    **Outputs**

        surfaces
            BOLD series, resampled to FreeSurfer surfaces

    """
    # Ensure volumetric spaces do not sneak into this workflow
    spaces = [space for space in output_spaces if space.startswith('fs')]

    workflow = Workflow(name=name)

    if spaces:
        workflow.__desc__ = """\
The BOLD time-series, were resampled to surfaces on the following
spaces: {out_spaces}.
""".format(out_spaces=', '.join(['*%s*' % s for s in spaces]))
    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'source_file', 't1_preproc', 'subject_id', 'subjects_dir',
        't1_2_fsnative_forward_transform'
    ]),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=['surfaces']),
                         name='outputnode')

    def select_target(subject_id, space):
        """ Given a source subject ID and a target space, get the target subject ID """
        return subject_id if space == 'fsnative' else space

    targets = pe.MapNode(niu.Function(function=select_target),
                         iterfield=['space'],
                         name='targets',
                         mem_gb=DEFAULT_MEMORY_MIN_GB)
    targets.inputs.space = spaces

    # Rename the source file to the output space to simplify naming later
    rename_src = pe.MapNode(niu.Rename(format_string='%(subject)s',
                                       keep_ext=True),
                            iterfield='subject',
                            name='rename_src',
                            run_without_submitting=True,
                            mem_gb=DEFAULT_MEMORY_MIN_GB)
    rename_src.inputs.subject = spaces

    resampling_xfm = pe.Node(LTAConvert(in_lta='identity.nofile',
                                        out_lta=True),
                             name='resampling_xfm')
    set_xfm_source = pe.Node(ConcatenateLTA(out_type='RAS2RAS'),
                             name='set_xfm_source')

    sampler = pe.MapNode(fs.SampleToSurface(sampling_method='average',
                                            sampling_range=(0, 1, 0.2),
                                            sampling_units='frac',
                                            interp_method='trilinear',
                                            cortex_mask=True,
                                            override_reg_subj=True,
                                            out_type='gii'),
                         iterfield=['source_file', 'target_subject'],
                         iterables=('hemi', ['lh', 'rh']),
                         name='sampler',
                         mem_gb=mem_gb * 3)

    medial_nans = pe.MapNode(MedialNaNs(),
                             iterfield=['in_file', 'target_subject'],
                             name='medial_nans',
                             mem_gb=DEFAULT_MEMORY_MIN_GB)

    merger = pe.JoinNode(niu.Merge(1, ravel_inputs=True),
                         name='merger',
                         joinsource='sampler',
                         joinfield=['in1'],
                         run_without_submitting=True,
                         mem_gb=DEFAULT_MEMORY_MIN_GB)

    update_metadata = pe.MapNode(GiftiSetAnatomicalStructure(),
                                 iterfield='in_file',
                                 name='update_metadata',
                                 mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, targets, [('subject_id', 'subject_id')]),
        (inputnode, rename_src, [('source_file', 'in_file')]),
        (inputnode, resampling_xfm, [('source_file', 'source_file'),
                                     ('t1_preproc', 'target_file')]),
        (inputnode, set_xfm_source, [('t1_2_fsnative_forward_transform',
                                      'in_lta2')]),
        (resampling_xfm, set_xfm_source, [('out_lta', 'in_lta1')]),
        (inputnode, sampler, [('subjects_dir', 'subjects_dir'),
                              ('subject_id', 'subject_id')]),
        (set_xfm_source, sampler, [('out_file', 'reg_file')]),
        (targets, sampler, [('out', 'target_subject')]),
        (rename_src, sampler, [('out_file', 'source_file')]),
        (merger, update_metadata, [('out', 'in_file')]),
        (update_metadata, outputnode, [('out_file', 'surfaces')]),
    ])

    if medial_surface_nan:
        workflow.connect([
            (inputnode, medial_nans, [('subjects_dir', 'subjects_dir')]),
            (sampler, medial_nans, [('out_file', 'in_file')]),
            (targets, medial_nans, [('out', 'target_subject')]),
            (medial_nans, merger, [('out_file', 'in1')]),
        ])
    else:
        workflow.connect(sampler, 'out_file', merger, 'in1')

    return workflow
示例#18
0
def init_3dQwarp_wf(omp_nthreads=1, debug=False, name="pepolar_estimate_wf"):
    """
    Create the PEPOLAR field estimation workflow based on AFNI's ``3dQwarp``.

    This workflow takes in two EPI files that MUST have opposed
    :abbr:`PE (phase-encoding)` direction.
    Therefore, EPIs with orthogonal PE directions are not supported.

    Workflow Graph
        .. workflow ::
            :graph2use: orig
            :simple_form: yes

            from sdcflows.workflows.fit.pepolar import init_3dQwarp_wf
            wf = init_3dQwarp_wf()

    Parameters
    ----------
    debug : :obj:`bool`
        Whether a fast configuration of topup (less accurate) should be applied.
    name : :obj:`str`
        Name for this workflow
    omp_nthreads : :obj:`int`
        Parallelize internal tasks across the number of CPUs given by this option.

    Inputs
    ------
    in_data : :obj:`list` of :obj:`str`
        A list of two EPI files, the first of which will be taken as reference.

    Outputs
    -------
    fmap : :obj:`str`
        The path of the estimated fieldmap.
    fmap_ref : :obj:`str`
        The path of an unwarped conversion of the first element of ``in_data``.

    """
    from nipype.interfaces import afni
    from niworkflows.interfaces.header import CopyHeader
    from niworkflows.interfaces.fixes import (
        FixHeaderRegistration as Registration,
        FixHeaderApplyTransforms as ApplyTransforms,
    )
    from niworkflows.interfaces.freesurfer import StructuralReference
    from niworkflows.func.util import init_enhance_and_skullstrip_bold_wf
    from ...utils.misc import front as _front, last as _last
    from ...interfaces.utils import Flatten, ConvertWarp

    workflow = Workflow(name=name)
    workflow.__desc__ = f"""{_PEPOLAR_DESC} \
with `3dQwarp` (@afni; AFNI {''.join(['%02d' % v for v in afni.Info().version() or []])}).
"""

    inputnode = pe.Node(niu.IdentityInterface(fields=["in_data", "metadata"]),
                        name="inputnode")

    outputnode = pe.Node(niu.IdentityInterface(fields=["fmap", "fmap_ref"]),
                         name="outputnode")

    flatten = pe.Node(Flatten(), name="flatten")
    sort_pe = pe.Node(
        niu.Function(function=_sorted_pe,
                     output_names=["sorted", "qwarp_args"]),
        name="sort_pe",
        run_without_submitting=True,
    )

    merge_pes = pe.MapNode(
        StructuralReference(
            auto_detect_sensitivity=True,
            initial_timepoint=1,
            fixed_timepoint=True,  # Align to first image
            intensity_scaling=True,
            # 7-DOF (rigid + intensity)
            no_iteration=True,
            subsample_threshold=200,
            out_file="template.nii.gz",
        ),
        name="merge_pes",
        iterfield=["in_files"],
    )

    pe0_wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=omp_nthreads,
                                                 name="pe0_wf")
    pe1_wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=omp_nthreads,
                                                 name="pe1_wf")

    align_pes = pe.Node(
        Registration(
            from_file=_pkg_fname("sdcflows", "data/translation_rigid.json"),
            output_warped_image=True,
        ),
        name="align_pes",
        n_procs=omp_nthreads,
    )

    qwarp = pe.Node(
        afni.QwarpPlusMinus(
            blur=[-1, -1],
            environ={"OMP_NUM_THREADS": f"{min(omp_nthreads, 4)}"},
            minpatch=9,
            nopadWARP=True,
            noweight=True,
            pblur=[0.05, 0.05],
        ),
        name="qwarp",
        n_procs=min(omp_nthreads, 4),
    )

    to_ants = pe.Node(ConvertWarp(), name="to_ants", mem_gb=0.01)

    cphdr_warp = pe.Node(CopyHeader(), name="cphdr_warp", mem_gb=0.01)

    unwarp_reference = pe.Node(
        ApplyTransforms(
            dimension=3,
            float=True,
            interpolation="LanczosWindowedSinc",
        ),
        name="unwarp_reference",
    )

    # fmt: off
    workflow.connect([
        (inputnode, flatten, [("in_data", "in_data"),
                              ("metadata", "in_meta")]),
        (flatten, sort_pe, [("out_list", "inlist")]),
        (sort_pe, qwarp, [("qwarp_args", "args")]),
        (sort_pe, merge_pes, [("sorted", "in_files")]),
        (merge_pes, pe0_wf, [(("out_file", _front), "inputnode.in_file")]),
        (merge_pes, pe1_wf, [(("out_file", _last), "inputnode.in_file")]),
        (pe0_wf, align_pes, [("outputnode.skull_stripped_file", "fixed_image")
                             ]),
        (pe1_wf, align_pes, [("outputnode.skull_stripped_file", "moving_image")
                             ]),
        (pe0_wf, qwarp, [("outputnode.skull_stripped_file", "in_file")]),
        (align_pes, qwarp, [("warped_image", "base_file")]),
        (inputnode, cphdr_warp, [(("in_data", _front), "hdr_file")]),
        (qwarp, cphdr_warp, [("source_warp", "in_file")]),
        (cphdr_warp, to_ants, [("out_file", "in_file")]),
        (to_ants, unwarp_reference, [("out_file", "transforms")]),
        (inputnode, unwarp_reference, [("in_reference", "reference_image"),
                                       ("in_reference", "input_image")]),
        (unwarp_reference, outputnode, [("output_image", "fmap_ref")]),
        (to_ants, outputnode, [("out_file", "fmap")]),
    ])
    # fmt: on
    return workflow
示例#19
0
def init_prepare_epi_wf(omp_nthreads, matched_pe=False, name="prepare_epi_wf"):
    """
    Prepare opposed-PE EPI images for PE-POLAR SDC.

    This workflow takes in a set of EPI files and returns two 3D volumes with
    matching and opposed PE directions, ready to be used in field distortion
    estimation.

    The procedure involves: estimating a robust template using FreeSurfer's
    ``mri_robust_template``, bias field correction using ANTs ``N4BiasFieldCorrection``
    and AFNI ``3dUnifize``, skullstripping using FSL BET and AFNI ``3dAutomask``,
    and rigid coregistration to the reference using ANTs.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from sdcflows.workflows.pepolar import init_prepare_epi_wf
        wf = init_prepare_epi_wf(omp_nthreads=8)


    **Parameters**:

        matched_pe : bool
            Whether the input ``fmaps_epi`` will contain images with matched
            PE blips or not. Please use :func:`sdcflows.workflows.pepolar.check_pes`
            to determine whether they exist or not.
        name : str
            Name for this workflow
        omp_nthreads : int
            Parallelize internal tasks across the number of CPUs given by this option.

    **Inputs**:

        epi_pe : str
            Phase-encoding direction of the EPI image to be corrected.
        maps_pe : list of tuple(pathlike, str)
            list of 3D or 4D NIfTI images
        ref_brain
            coregistration reference (skullstripped and bias field corrected)

    **Outputs**:

        opposed_pe : pathlike
            single 3D NIfTI file
        matched_pe : pathlike
            single 3D NIfTI file


    """
    inputnode = pe.Node(
        niu.IdentityInterface(fields=['epi_pe', 'maps_pe', 'ref_brain']),
        name='inputnode')

    outputnode = pe.Node(
        niu.IdentityInterface(fields=['opposed_pe', 'matched_pe']),
        name='outputnode')

    ants_settings = pkgr.resource_filename('sdcflows',
                                           'data/translation_rigid.json')

    split = pe.Node(niu.Function(function=_split_epi_lists), name='split')

    merge_op = pe.Node(
        StructuralReference(
            auto_detect_sensitivity=True,
            initial_timepoint=1,
            fixed_timepoint=True,  # Align to first image
            intensity_scaling=True,
            # 7-DOF (rigid + intensity)
            no_iteration=True,
            subsample_threshold=200,
            out_file='template.nii.gz'),
        name='merge_op')

    ref_op_wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=omp_nthreads,
                                                    name='ref_op_wf')

    op2ref_reg = pe.Node(ants.Registration(from_file=ants_settings,
                                           output_warped_image=True),
                         name='op2ref_reg',
                         n_procs=omp_nthreads)

    workflow = Workflow(name=name)
    workflow.connect([
        (inputnode, split, [('maps_pe', 'in_files'), ('epi_pe', 'pe_dir')]),
        (split, merge_op, [(('out', _front), 'in_files')]),
        (merge_op, ref_op_wf, [('out_file', 'inputnode.in_file')]),
        (ref_op_wf, op2ref_reg, [('outputnode.skull_stripped_file',
                                  'moving_image')]),
        (inputnode, op2ref_reg, [('ref_brain', 'fixed_image')]),
        (op2ref_reg, outputnode, [('warped_image', 'opposed_pe')]),
    ])

    if not matched_pe:
        workflow.connect([
            (inputnode, outputnode, [('ref_brain', 'matched_pe')]),
        ])
        return workflow

    merge_ma = pe.Node(
        StructuralReference(
            auto_detect_sensitivity=True,
            initial_timepoint=1,
            fixed_timepoint=True,  # Align to first image
            intensity_scaling=True,
            # 7-DOF (rigid + intensity)
            no_iteration=True,
            subsample_threshold=200,
            out_file='template.nii.gz'),
        name='merge_ma')

    ref_ma_wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=omp_nthreads,
                                                    name='ref_ma_wf')

    ma2ref_reg = pe.Node(ants.Registration(from_file=ants_settings,
                                           output_warped_image=True),
                         name='ma2ref_reg',
                         n_procs=omp_nthreads)

    workflow.connect([
        (split, merge_ma, [(('out', _last), 'in_files')]),
        (merge_ma, ref_ma_wf, [('out_file', 'inputnode.in_file')]),
        (ref_ma_wf, ma2ref_reg, [('outputnode.skull_stripped_file',
                                  'moving_image')]),
        (inputnode, ma2ref_reg, [('ref_brain', 'fixed_image')]),
        (ma2ref_reg, outputnode, [('warped_image', 'matched_pe')]),
    ])
    return workflow
示例#20
0
def init_topup_wf(omp_nthreads=1, debug=False, name="pepolar_estimate_wf"):
    """
    Create the PEPOLAR field estimation workflow based on FSL's ``topup``.

    Workflow Graph
        .. workflow ::
            :graph2use: orig
            :simple_form: yes

            from sdcflows.workflows.fit.pepolar import init_topup_wf
            wf = init_topup_wf()

    Parameters
    ----------
    debug : :obj:`bool`
        Whether a fast configuration of topup (less accurate) should be applied.
    name : :obj:`str`
        Name for this workflow
    omp_nthreads : :obj:`int`
        Parallelize internal tasks across the number of CPUs given by this option.

    Inputs
    ------
    in_data : :obj:`list` of :obj:`str`
        A list of EPI files that will be fed into TOPUP.
    metadata : :obj:`list` of :obj:`dict`
        A list of dictionaries containing the metadata corresponding to each file
        in ``in_data``.

    Outputs
    -------
    fmap : :obj:`str`
        The path of the estimated fieldmap.
    fmap_ref : :obj:`str`
        The path of an unwarped conversion of files in ``in_data``.
    fmap_mask : :obj:`str`
        The path of mask corresponding to the ``fmap_ref`` output.
    fmap_coeff : :obj:`str` or :obj:`list` of :obj:`str`
        The path(s) of the B-Spline coefficients supporting the fieldmap.

    """
    from nipype.interfaces.fsl.epi import TOPUP
    from niworkflows.interfaces.nibabel import MergeSeries
    from niworkflows.interfaces.images import IntraModalMerge

    from ...interfaces.epi import GetReadoutTime
    from ...interfaces.utils import Flatten
    from ...interfaces.bspline import TOPUPCoeffReorient
    from ..ancillary import init_brainextraction_wf

    workflow = Workflow(name=name)
    workflow.__postdesc__ = f"""\
{_PEPOLAR_DESC} with `topup` (@topup; FSL {TOPUP().version}).
"""

    inputnode = pe.Node(niu.IdentityInterface(fields=INPUT_FIELDS),
                        name="inputnode")
    outputnode = pe.Node(
        niu.IdentityInterface(fields=[
            "fmap",
            "fmap_ref",
            "fmap_coeff",
            "fmap_mask",
            "jacobians",
            "xfms",
            "out_warps",
        ]),
        name="outputnode",
    )

    flatten = pe.Node(Flatten(), name="flatten")
    concat_blips = pe.Node(MergeSeries(), name="concat_blips")
    readout_time = pe.MapNode(
        GetReadoutTime(),
        name="readout_time",
        iterfield=["metadata", "in_file"],
        run_without_submitting=True,
    )

    topup = pe.Node(
        TOPUP(config=_pkg_fname("sdcflows",
                                f"data/flirtsch/b02b0{'_quick' * debug}.cnf")),
        name="topup",
    )
    merge_corrected = pe.Node(IntraModalMerge(hmc=False, to_ras=False),
                              name="merge_corrected")

    fix_coeff = pe.Node(TOPUPCoeffReorient(),
                        name="fix_coeff",
                        run_without_submitting=True)

    brainextraction_wf = init_brainextraction_wf()

    # fmt: off
    workflow.connect([
        (inputnode, flatten, [("in_data", "in_data"),
                              ("metadata", "in_meta")]),
        (flatten, readout_time, [("out_data", "in_file"),
                                 ("out_meta", "metadata")]),
        (flatten, concat_blips, [("out_data", "in_files")]),
        (flatten, topup, [(("out_meta", _pe2fsl), "encoding_direction")]),
        (readout_time, topup, [("readout_time", "readout_times")]),
        (concat_blips, topup, [("out_file", "in_file")]),
        (topup, merge_corrected, [("out_corrected", "in_files")]),
        (topup, fix_coeff, [("out_fieldcoef", "in_coeff"),
                            ("out_corrected", "fmap_ref")]),
        (topup, outputnode, [("out_field", "fmap"), ("out_jacs", "jacobians"),
                             ("out_mats", "xfms"),
                             ("out_warps", "out_warps")]),
        (merge_corrected, brainextraction_wf, [("out_avg", "inputnode.in_file")
                                               ]),
        (merge_corrected, outputnode, [("out_avg", "fmap_ref")]),
        (brainextraction_wf, outputnode, [("outputnode.out_mask", "fmap_mask")
                                          ]),
        (fix_coeff, outputnode, [("out_coeff", "fmap_coeff")]),
    ])
    # fmt: on

    return workflow
示例#21
0
文件: base.py 项目: hensel-f/smriprep
def init_smriprep_wf(
    debug,
    fast_track,
    freesurfer,
    fs_subjects_dir,
    hires,
    layout,
    longitudinal,
    low_mem,
    omp_nthreads,
    output_dir,
    run_uuid,
    skull_strip_mode,
    skull_strip_fixed_seed,
    skull_strip_template,
    spaces,
    subject_list,
    work_dir,
    bids_filters,
):
    """
    Create the execution graph of *sMRIPrep*, with a sub-workflow for each subject.

    If FreeSurfer's ``recon-all`` is to be run, a FreeSurfer derivatives folder is
    created and populated with any needed template subjects.

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            import os
            from collections import namedtuple
            BIDSLayout = namedtuple('BIDSLayout', ['root'])
            os.environ['FREESURFER_HOME'] = os.getcwd()
            from smriprep.workflows.base import init_smriprep_wf
            from niworkflows.utils.spaces import SpatialReferences, Reference
            wf = init_smriprep_wf(
                debug=False,
                fast_track=False,
                freesurfer=True,
                fs_subjects_dir=None,
                hires=True,
                layout=BIDSLayout('.'),
                longitudinal=False,
                low_mem=False,
                omp_nthreads=1,
                output_dir='.',
                run_uuid='testrun',
                skull_strip_fixed_seed=False,
                skull_strip_mode='force',
                skull_strip_template=Reference('OASIS30ANTs'),
                spaces=SpatialReferences(spaces=['MNI152NLin2009cAsym', 'fsaverage5']),
                subject_list=['smripreptest'],
                work_dir='.',
                bids_filters=None,
            )

    Parameters
    ----------
    debug : :obj:`bool`
        Enable debugging outputs
    fast_track : :obj:`bool`
        Fast-track the workflow by searching for existing derivatives.
    freesurfer : :obj:`bool`
        Enable FreeSurfer surface reconstruction (may increase runtime)
    fs_subjects_dir : os.PathLike or None
        Use existing FreeSurfer subjects directory if provided
    hires : :obj:`bool`
        Enable sub-millimeter preprocessing in FreeSurfer
    layout : BIDSLayout object
        BIDS dataset layout
    longitudinal : :obj:`bool`
        Treat multiple sessions as longitudinal (may increase runtime)
        See sub-workflows for specific differences
    low_mem : :obj:`bool`
        Write uncompressed .nii files in some cases to reduce memory usage
    omp_nthreads : :obj:`int`
        Maximum number of threads an individual process may use
    output_dir : :obj:`str`
        Directory in which to save derivatives
    run_uuid : :obj:`str`
        Unique identifier for execution instance
    skull_strip_fixed_seed : :obj:`bool`
        Do not use a random seed for skull-stripping - will ensure
        run-to-run replicability when used with --omp-nthreads 1
    skull_strip_mode : :obj:`str`
        Determiner for T1-weighted skull stripping (`force` ensures skull stripping,
        `skip` ignores skull stripping, and `auto` automatically ignores skull stripping
        if pre-stripped brains are detected).
    skull_strip_template : :py:class:`~niworkflows.utils.spaces.Reference`
        Spatial reference to use in atlas-based brain extraction.
    spaces : :py:class:`~niworkflows.utils.spaces.SpatialReferences`
        Object containing standard and nonstandard space specifications.
    subject_list : :obj:`list`
        List of subject labels
    work_dir : :obj:`str`
        Directory in which to store workflow execution state and
        temporary files
    bids_filters : dict
        Provides finer specification of the pipeline input files through pybids entities filters.
        A dict with the following structure {<suffix>:{<entity>:<filter>,...},...}

    """
    smriprep_wf = Workflow(name='smriprep_wf')
    smriprep_wf.base_dir = work_dir

    if freesurfer:
        fsdir = pe.Node(BIDSFreeSurferDir(
            derivatives=output_dir,
            freesurfer_home=os.getenv('FREESURFER_HOME'),
            spaces=spaces.get_fs_spaces()),
                        name='fsdir_run_%s' % run_uuid.replace('-', '_'),
                        run_without_submitting=True)
        if fs_subjects_dir is not None:
            fsdir.inputs.subjects_dir = str(fs_subjects_dir.absolute())

    for subject_id in subject_list:
        single_subject_wf = init_single_subject_wf(
            debug=debug,
            freesurfer=freesurfer,
            fast_track=fast_track,
            hires=hires,
            layout=layout,
            longitudinal=longitudinal,
            low_mem=low_mem,
            name="single_subject_%s_wf" % subject_id,
            omp_nthreads=omp_nthreads,
            output_dir=output_dir,
            skull_strip_fixed_seed=skull_strip_fixed_seed,
            skull_strip_mode=skull_strip_mode,
            skull_strip_template=skull_strip_template,
            spaces=spaces,
            subject_id=subject_id,
            bids_filters=bids_filters,
        )

        single_subject_wf.config['execution']['crashdump_dir'] = (os.path.join(
            output_dir, "smriprep", "sub-" + subject_id, 'log', run_uuid))
        for node in single_subject_wf._get_all_nodes():
            node.config = deepcopy(single_subject_wf.config)
        if freesurfer:
            smriprep_wf.connect(fsdir, 'subjects_dir', single_subject_wf,
                                'inputnode.subjects_dir')
        else:
            smriprep_wf.add_nodes([single_subject_wf])

    return smriprep_wf
示例#22
0
文件: base.py 项目: hensel-f/smriprep
def init_single_subject_wf(
    debug,
    freesurfer,
    fast_track,
    hires,
    layout,
    longitudinal,
    low_mem,
    name,
    omp_nthreads,
    output_dir,
    skull_strip_fixed_seed,
    skull_strip_mode,
    skull_strip_template,
    spaces,
    subject_id,
    bids_filters,
):
    """
    Create a single subject workflow.

    This workflow organizes the preprocessing pipeline for a single subject.
    It collects and reports information about the subject, and prepares
    sub-workflows to perform anatomical and functional preprocessing.

    Anatomical preprocessing is performed in a single workflow, regardless of
    the number of sessions.
    Functional preprocessing is performed using a separate workflow for each
    individual BOLD series.

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from collections import namedtuple
            from niworkflows.utils.spaces import SpatialReferences, Reference
            from smriprep.workflows.base import init_single_subject_wf
            BIDSLayout = namedtuple('BIDSLayout', ['root'])
            wf = init_single_subject_wf(
                debug=False,
                freesurfer=True,
                fast_track=False,
                hires=True,
                layout=BIDSLayout('.'),
                longitudinal=False,
                low_mem=False,
                name='single_subject_wf',
                omp_nthreads=1,
                output_dir='.',
                skull_strip_fixed_seed=False,
                skull_strip_mode='force',
                skull_strip_template=Reference('OASIS30ANTs'),
                spaces=SpatialReferences(spaces=['MNI152NLin2009cAsym', 'fsaverage5']),
                subject_id='test',
                bids_filters=None,
            )

    Parameters
    ----------
    debug : :obj:`bool`
        Enable debugging outputs
    freesurfer : :obj:`bool`
        Enable FreeSurfer surface reconstruction (may increase runtime)
    fast_track : :obj:`bool`
        If ``True``, attempt to collect previously run derivatives.
    hires : :obj:`bool`
        Enable sub-millimeter preprocessing in FreeSurfer
    layout : BIDSLayout object
        BIDS dataset layout
    longitudinal : :obj:`bool`
        Treat multiple sessions as longitudinal (may increase runtime)
        See sub-workflows for specific differences
    low_mem : :obj:`bool`
        Write uncompressed .nii files in some cases to reduce memory usage
    name : :obj:`str`
        Name of workflow
    omp_nthreads : :obj:`int`
        Maximum number of threads an individual process may use
    output_dir : :obj:`str`
        Directory in which to save derivatives
    skull_strip_fixed_seed : :obj:`bool`
        Do not use a random seed for skull-stripping - will ensure
        run-to-run replicability when used with --omp-nthreads 1
    skull_strip_mode : :obj:`str`
        Determiner for T1-weighted skull stripping (`force` ensures skull stripping,
        `skip` ignores skull stripping, and `auto` automatically ignores skull stripping
        if pre-stripped brains are detected).
    skull_strip_template : :py:class:`~niworkflows.utils.spaces.Reference`
        Spatial reference to use in atlas-based brain extraction.
    spaces : :py:class:`~niworkflows.utils.spaces.SpatialReferences`
        Object containing standard and nonstandard space specifications.
    subject_id : :obj:`str`
        List of subject labels
    bids_filters : dict
        Provides finer specification of the pipeline input files through pybids entities filters.
        A dict with the following structure {<suffix>:{<entity>:<filter>,...},...}

    Inputs
    ------
    subjects_dir
        FreeSurfer SUBJECTS_DIR

    """
    from ..interfaces.reports import AboutSummary, SubjectSummary
    if name in ('single_subject_wf', 'single_subject_smripreptest_wf'):
        # for documentation purposes
        subject_data = {
            't1w': ['/completely/made/up/path/sub-01_T1w.nii.gz'],
        }
    else:
        subject_data = collect_data(layout,
                                    subject_id,
                                    bids_filters=bids_filters)[0]

    if not subject_data['t1w']:
        raise Exception("No T1w images found for participant {}. "
                        "All workflows require T1w images.".format(subject_id))

    workflow = Workflow(name=name)
    workflow.__desc__ = """
Results included in this manuscript come from preprocessing
performed using *sMRIPprep* {smriprep_ver}
(@fmriprep1; @fmriprep2; RRID:SCR_016216),
which is based on *Nipype* {nipype_ver}
(@nipype1; @nipype2; RRID:SCR_002502).

""".format(smriprep_ver=__version__, nipype_ver=nipype_ver)
    workflow.__postdesc__ = """

For more details of the pipeline, see [the section corresponding
to workflows in *sMRIPrep*'s documentation]\
(https://smriprep.readthedocs.io/en/latest/workflows.html \
"sMRIPrep's documentation").


### References

"""

    deriv_cache = None
    if fast_track:
        from ..utils.bids import collect_derivatives
        std_spaces = spaces.get_spaces(nonstandard=False, dim=(3, ))
        deriv_cache = collect_derivatives(
            Path(output_dir) / 'smriprep', subject_id, std_spaces, freesurfer)

    inputnode = pe.Node(niu.IdentityInterface(fields=['subjects_dir']),
                        name='inputnode')

    bidssrc = pe.Node(BIDSDataGrabber(subject_data=subject_data,
                                      anat_only=True),
                      name='bidssrc')

    bids_info = pe.Node(BIDSInfo(bids_dir=layout.root),
                        name='bids_info',
                        run_without_submitting=True)

    summary = pe.Node(
        SubjectSummary(output_spaces=spaces.get_spaces(nonstandard=False)),
        name='summary',
        run_without_submitting=True)

    about = pe.Node(AboutSummary(version=__version__,
                                 command=' '.join(sys.argv)),
                    name='about',
                    run_without_submitting=True)

    ds_report_summary = pe.Node(DerivativesDataSink(
        base_directory=output_dir,
        dismiss_entities=("session", ),
        desc='summary',
        datatype="figures"),
                                name='ds_report_summary',
                                run_without_submitting=True)

    ds_report_about = pe.Node(DerivativesDataSink(
        base_directory=output_dir,
        dismiss_entities=("session", ),
        desc='about',
        datatype="figures"),
                              name='ds_report_about',
                              run_without_submitting=True)

    # Preprocessing of T1w (includes registration to MNI)
    anat_preproc_wf = init_anat_preproc_wf(
        bids_root=layout.root,
        debug=debug,
        existing_derivatives=deriv_cache,
        freesurfer=freesurfer,
        hires=hires,
        longitudinal=longitudinal,
        name="anat_preproc_wf",
        t1w=subject_data['t1w'],
        omp_nthreads=omp_nthreads,
        output_dir=output_dir,
        skull_strip_fixed_seed=skull_strip_fixed_seed,
        skull_strip_mode=skull_strip_mode,
        skull_strip_template=skull_strip_template,
        spaces=spaces,
    )

    workflow.connect([
        (inputnode, anat_preproc_wf, [('subjects_dir',
                                       'inputnode.subjects_dir')]),
        (bidssrc, bids_info, [(('t1w', fix_multi_T1w_source_name), 'in_file')
                              ]),
        (inputnode, summary, [('subjects_dir', 'subjects_dir')]),
        (bidssrc, summary, [('t1w', 't1w'), ('t2w', 't2w')]),
        (bids_info, summary, [('subject', 'subject_id')]),
        (bids_info, anat_preproc_wf, [(('subject', _prefix),
                                       'inputnode.subject_id')]),
        (bidssrc, anat_preproc_wf, [('t1w', 'inputnode.t1w'),
                                    ('t2w', 'inputnode.t2w'),
                                    ('roi', 'inputnode.roi'),
                                    ('flair', 'inputnode.flair')]),
        (bidssrc, ds_report_summary, [(('t1w', fix_multi_T1w_source_name),
                                       'source_file')]),
        (summary, ds_report_summary, [('out_report', 'in_file')]),
        (bidssrc, ds_report_about, [(('t1w', fix_multi_T1w_source_name),
                                     'source_file')]),
        (about, ds_report_about, [('out_report', 'in_file')]),
    ])

    return workflow
示例#23
0
def init_phdiff_wf(omp_nthreads, phasetype='phasediff', name='phdiff_wf'):
    """
    Estimates the fieldmap using a phase-difference image and one or more
    magnitude images corresponding to two or more :abbr:`GRE (Gradient Echo sequence)`
    acquisitions. The `original code was taken from nipype
    <https://github.com/nipy/nipype/blob/master/nipype/workflows/dmri/fsl/artifacts.py#L514>`_.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.fieldmap.phdiff import init_phdiff_wf
        wf = init_phdiff_wf(omp_nthreads=1)


    Outputs::

      outputnode.fmap_ref - The average magnitude image, skull-stripped
      outputnode.fmap_mask - The brain mask applied to the fieldmap
      outputnode.fmap - The estimated fieldmap in Hz


    """

    workflow = Workflow(name=name)
    workflow.__desc__ = """\
A deformation field to correct for susceptibility distortions was estimated
based on a field map that was co-registered to the BOLD reference,
using a custom workflow of *fMRIPrep* derived from D. Greve's `epidewarp.fsl`
[script](http://www.nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl) and
further improvements of HCP Pipelines [@hcppipelines].
"""

    inputnode = pe.Node(
        niu.IdentityInterface(fields=['magnitude', 'phasediff']),
        name='inputnode')

    outputnode = pe.Node(
        niu.IdentityInterface(fields=['fmap', 'fmap_ref', 'fmap_mask']),
        name='outputnode')

    def _pick1st(inlist):
        return inlist[0]

    # Read phasediff echo times
    meta = pe.Node(ReadSidecarJSON(),
                   name='meta',
                   mem_gb=0.01,
                   run_without_submitting=True)

    # Merge input magnitude images
    magmrg = pe.Node(IntraModalMerge(), name='magmrg')

    # de-gradient the fields ("bias/illumination artifact")
    n4 = pe.Node(ants.N4BiasFieldCorrection(dimension=3, copy_header=True),
                 name='n4',
                 n_procs=omp_nthreads)
    bet = pe.Node(BETRPT(generate_report=True, frac=0.6, mask=True),
                  name='bet')
    ds_report_fmap_mask = pe.Node(DerivativesDataSink(desc='brain',
                                                      suffix='mask'),
                                  name='ds_report_fmap_mask',
                                  mem_gb=0.01,
                                  run_without_submitting=True)

    # uses mask from bet; outputs a mask
    # dilate = pe.Node(fsl.maths.MathsCommand(
    #     nan2zeros=True, args='-kernel sphere 5 -dilM'), name='MskDilate')

    # phase diff -> radians
    pha2rads = pe.Node(niu.Function(function=siemens2rads), name='pha2rads')

    # FSL PRELUDE will perform phase-unwrapping
    prelude = pe.Node(fsl.PRELUDE(), name='prelude')

    denoise = pe.Node(fsl.SpatialFilter(operation='median',
                                        kernel_shape='sphere',
                                        kernel_size=5),
                      name='denoise')

    demean = pe.Node(niu.Function(function=demean_image), name='demean')

    cleanup_wf = cleanup_edge_pipeline(name="cleanup_wf")

    compfmap = pe.Node(Phasediff2Fieldmap(), name='compfmap')

    # The phdiff2fmap interface is equivalent to:
    # rad2rsec (using rads2radsec from nipype.workflows.dmri.fsl.utils)
    # pre_fugue = pe.Node(fsl.FUGUE(save_fmap=True), name='ComputeFieldmapFUGUE')
    # rsec2hz (divide by 2pi)

    if phasetype == "phasediff":
        # Read phasediff echo times
        meta = pe.Node(ReadSidecarJSON(), name='meta', mem_gb=0.01)

        # phase diff -> radians
        pha2rads = pe.Node(niu.Function(function=siemens2rads),
                           name='pha2rads')
        # Read phasediff echo times
        meta = pe.Node(ReadSidecarJSON(),
                       name='meta',
                       mem_gb=0.01,
                       run_without_submitting=True)
        workflow.connect([
            (meta, compfmap, [('out_dict', 'metadata')]),
            (inputnode, pha2rads, [('phasediff', 'in_file')]),
            (pha2rads, prelude, [('out', 'phase_file')]),
            (inputnode, ds_report_fmap_mask, [('phasediff', 'source_file')]),
        ])

    elif phasetype == "phase":
        workflow.__desc__ += """\
The phase difference used for unwarping was calculated using two separate phase measurements
 [@pncprocessing].
    """
        # Special case for phase1, phase2 images
        meta = pe.MapNode(ReadSidecarJSON(),
                          name='meta',
                          mem_gb=0.01,
                          run_without_submitting=True,
                          iterfield=['in_file'])
        phases2fmap = pe.Node(Phases2Fieldmap(), name='phases2fmap')
        workflow.connect([
            (meta, phases2fmap, [('out_dict', 'metadatas')]),
            (inputnode, phases2fmap, [('phasediff', 'phase_files')]),
            (phases2fmap, prelude, [('out_file', 'phase_file')]),
            (phases2fmap, compfmap, [('phasediff_metadata', 'metadata')]),
            (phases2fmap, ds_report_fmap_mask, [('out_file', 'source_file')])
        ])

    workflow.connect([
        (inputnode, meta, [('phasediff', 'in_file')]),
        (inputnode, magmrg, [('magnitude', 'in_files')]),
        (magmrg, n4, [('out_avg', 'input_image')]),
        (n4, prelude, [('output_image', 'magnitude_file')]),
        (n4, bet, [('output_image', 'in_file')]),
        (bet, prelude, [('mask_file', 'mask_file')]),
        (prelude, denoise, [('unwrapped_phase_file', 'in_file')]),
        (denoise, demean, [('out_file', 'in_file')]),
        (demean, cleanup_wf, [('out', 'inputnode.in_file')]),
        (bet, cleanup_wf, [('mask_file', 'inputnode.in_mask')]),
        (cleanup_wf, compfmap, [('outputnode.out_file', 'in_file')]),
        (compfmap, outputnode, [('out_file', 'fmap')]),
        (bet, outputnode, [('mask_file', 'fmap_mask'),
                           ('out_file', 'fmap_ref')]),
        (bet, ds_report_fmap_mask, [('out_report', 'in_file')]),
    ])

    return workflow
示例#24
0
def init_syn_sdc_wf(omp_nthreads, epi_pe=None,
                    atlas_threshold=3, name='syn_sdc_wf'):
    """
    Build the *fieldmap-less* susceptibility-distortion estimation workflow.

    This workflow takes a skull-stripped T1w image and reference BOLD image and
    estimates a susceptibility distortion correction warp, using ANTs symmetric
    normalization (SyN) and the average fieldmap atlas described in
    [Treiber2016]_.

    SyN deformation is restricted to the phase-encoding (PE) direction.
    If no PE direction is specified, anterior-posterior PE is assumed.

    SyN deformation is also restricted to regions that are expected to have a
    >3mm (approximately 1 voxel) warp, based on the fieldmap atlas.

    This technique is a variation on those developed in [Huntenburg2014]_ and
    [Wang2017]_.

    Workflow Graph
        .. workflow ::
            :graph2use: orig
            :simple_form: yes

            from sdcflows.workflows.syn import init_syn_sdc_wf
            wf = init_syn_sdc_wf(
                epi_pe='j',
                omp_nthreads=8)

    Inputs
    ------
    in_reference
        reference image
    in_reference_brain
        skull-stripped reference image
    t1w_brain
        skull-stripped, bias-corrected structural image
    std2anat_xfm
        inverse registration transform of T1w image to MNI template

    Outputs
    -------
    out_reference
        the ``in_reference`` image after unwarping
    out_reference_brain
        the ``in_reference_brain`` image after unwarping
    out_warp
        the corresponding :abbr:`DFM (displacements field map)` compatible with
        ANTs
    out_mask
        mask of the unwarped input file

    References
    ----------
    .. [Treiber2016] Treiber, J. M. et al. (2016) Characterization and Correction
        of Geometric Distortions in 814 Diffusion Weighted Images,
        PLoS ONE 11(3): e0152472. doi:`10.1371/journal.pone.0152472
        <https://doi.org/10.1371/journal.pone.0152472>`_.
    .. [Wang2017] Wang S, et al. (2017) Evaluation of Field Map and Nonlinear
        Registration Methods for Correction of Susceptibility Artifacts
        in Diffusion MRI. Front. Neuroinform. 11:17.
        doi:`10.3389/fninf.2017.00017
        <https://doi.org/10.3389/fninf.2017.00017>`_.
    .. [Huntenburg2014] Huntenburg, J. M. (2014) Evaluating Nonlinear
        Coregistration of BOLD EPI and T1w Images. Berlin: Master
        Thesis, Freie Universität. `PDF
        <http://pubman.mpdl.mpg.de/pubman/item/escidoc:2327525:5/component/escidoc:2327523/master_thesis_huntenburg_4686947.pdf>`_.

    """
    if epi_pe is None or epi_pe[0] not in ['i', 'j']:
        LOGGER.warning('Incorrect phase-encoding direction, assuming PA (posterior-to-anterior).')
        epi_pe = 'j'

    workflow = Workflow(name=name)
    workflow.__desc__ = """\
A deformation field to correct for susceptibility distortions was estimated
based on *fMRIPrep*'s *fieldmap-less* approach.
The deformation field is that resulting from co-registering the BOLD reference
to the same-subject T1w-reference with its intensity inverted [@fieldmapless1;
@fieldmapless2].
Registration is performed with `antsRegistration` (ANTs {ants_ver}), and
the process regularized by constraining deformation to be nonzero only
along the phase-encoding direction, and modulated with an average fieldmap
template [@fieldmapless3].
""".format(ants_ver=Registration().version or '<ver>')
    inputnode = pe.Node(
        niu.IdentityInterface(['in_reference', 'in_reference_brain',
                               't1w_brain', 'std2anat_xfm']),
        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(['out_reference', 'out_reference_brain',
                               'out_mask', 'out_warp']),
        name='outputnode')

    # Collect predefined data
    # Atlas image and registration affine
    atlas_img = resource_filename('sdcflows', 'data/fmap_atlas.nii.gz')
    # Registration specifications
    affine_transform = resource_filename('sdcflows', 'data/affine.json')
    syn_transform = resource_filename('sdcflows', 'data/susceptibility_syn.json')

    invert_t1w = pe.Node(Rescale(invert=True), name='invert_t1w',
                         mem_gb=0.3)

    ref_2_t1 = pe.Node(Registration(from_file=affine_transform),
                       name='ref_2_t1', n_procs=omp_nthreads)
    t1_2_ref = pe.Node(ApplyTransforms(invert_transform_flags=[True]),
                       name='t1_2_ref', n_procs=omp_nthreads)

    # 1) BOLD -> T1; 2) MNI -> T1; 3) ATLAS -> MNI
    transform_list = pe.Node(niu.Merge(3), name='transform_list',
                             mem_gb=DEFAULT_MEMORY_MIN_GB)
    transform_list.inputs.in3 = resource_filename(
        'sdcflows', 'data/fmap_atlas_2_MNI152NLin2009cAsym_affine.mat')

    # Inverting (1), then applying in reverse order:
    #
    # ATLAS -> MNI -> T1 -> BOLD
    atlas_2_ref = pe.Node(
        ApplyTransforms(invert_transform_flags=[True, False, False]),
        name='atlas_2_ref', n_procs=omp_nthreads,
        mem_gb=0.3)
    atlas_2_ref.inputs.input_image = atlas_img

    threshold_atlas = pe.Node(
        fsl.maths.MathsCommand(args='-thr {:.8g} -bin'.format(atlas_threshold),
                               output_datatype='char'),
        name='threshold_atlas', mem_gb=0.3)

    fixed_image_masks = pe.Node(niu.Merge(2), name='fixed_image_masks',
                                mem_gb=DEFAULT_MEMORY_MIN_GB)
    fixed_image_masks.inputs.in1 = 'NULL'

    restrict = [[int(epi_pe[0] == 'i'), int(epi_pe[0] == 'j'), 0]] * 2
    syn = pe.Node(
        Registration(from_file=syn_transform, restrict_deformation=restrict),
        name='syn', n_procs=omp_nthreads)

    unwarp_ref = pe.Node(ApplyTransforms(
        dimension=3, float=True, interpolation='LanczosWindowedSinc'),
        name='unwarp_ref')

    skullstrip_bold_wf = init_skullstrip_bold_wf()

    workflow.connect([
        (inputnode, invert_t1w, [('t1w_brain', 'in_file'),
                                 ('in_reference', 'ref_file')]),
        (inputnode, ref_2_t1, [('in_reference_brain', 'moving_image')]),
        (invert_t1w, ref_2_t1, [('out_file', 'fixed_image')]),
        (inputnode, t1_2_ref, [('in_reference', 'reference_image')]),
        (invert_t1w, t1_2_ref, [('out_file', 'input_image')]),
        (ref_2_t1, t1_2_ref, [('forward_transforms', 'transforms')]),
        (ref_2_t1, transform_list, [('forward_transforms', 'in1')]),
        (inputnode, transform_list, [
            ('std2anat_xfm', 'in2')]),
        (inputnode, atlas_2_ref, [('in_reference', 'reference_image')]),
        (transform_list, atlas_2_ref, [('out', 'transforms')]),
        (atlas_2_ref, threshold_atlas, [('output_image', 'in_file')]),
        (threshold_atlas, fixed_image_masks, [('out_file', 'in2')]),
        (inputnode, syn, [('in_reference_brain', 'moving_image')]),
        (t1_2_ref, syn, [('output_image', 'fixed_image')]),
        (fixed_image_masks, syn, [('out', 'fixed_image_masks')]),
        (syn, outputnode, [('forward_transforms', 'out_warp')]),
        (syn, unwarp_ref, [('forward_transforms', 'transforms')]),
        (inputnode, unwarp_ref, [('in_reference', 'reference_image'),
                                 ('in_reference', 'input_image')]),
        (unwarp_ref, skullstrip_bold_wf, [
            ('output_image', 'inputnode.in_file')]),
        (unwarp_ref, outputnode, [('output_image', 'out_reference')]),
        (skullstrip_bold_wf, outputnode, [
            ('outputnode.skull_stripped_file', 'out_reference_brain'),
            ('outputnode.mask_file', 'out_mask')]),
    ])

    return workflow
示例#25
0
def init_bold_std_trans_wf(freesurfer,
                           mem_gb,
                           omp_nthreads,
                           standard_spaces,
                           name='bold_std_trans_wf',
                           use_compression=True,
                           use_fieldwarp=False):
    """
    This workflow samples functional images into standard space with a single
    resampling of the original BOLD series.

    .. workflow::
        :graph2use: colored
        :simple_form: yes

        from collections import OrderedDict
        from fmriprep.workflows.bold import init_bold_std_trans_wf
        wf = init_bold_std_trans_wf(
            freesurfer=True,
            mem_gb=3,
            omp_nthreads=1,
            standard_spaces=OrderedDict([('MNI152Lin', {}),
                                         ('fsaverage', {'density': '10k'})]),
        )

    **Parameters**

        freesurfer : bool
            Whether to generate FreeSurfer's aseg/aparc segmentations on BOLD space.
        mem_gb : float
            Size of BOLD file in GB
        omp_nthreads : int
            Maximum number of threads an individual process may use
        standard_spaces : OrderedDict
            Ordered dictionary where keys are TemplateFlow ID strings (e.g.,
            ``MNI152Lin``, ``MNI152NLin6Asym``, ``MNI152NLin2009cAsym``, or ``fsLR``),
            or paths pointing to custom templates organized in a TemplateFlow-like structure.
            Values of the dictionary aggregate modifiers (e.g., the value for the key ``MNI152Lin``
            could be ``{'resolution': 2}`` if one wants the resampling to be done on the 2mm
            resolution version of the selected template).
        name : str
            Name of workflow (default: ``bold_std_trans_wf``)
        use_compression : bool
            Save registered BOLD series as ``.nii.gz``
        use_fieldwarp : bool
            Include SDC warp in single-shot transform from BOLD to MNI

    **Inputs**

        anat2std_xfm
            List of anatomical-to-standard space transforms generated during
            spatial normalization.
        bold_aparc
            FreeSurfer's ``aparc+aseg.mgz`` atlas projected into the T1w reference
            (only if ``recon-all`` was run).
        bold_aseg
            FreeSurfer's ``aseg.mgz`` atlas projected into the T1w reference
            (only if ``recon-all`` was run).
        bold_mask
            Skull-stripping mask of reference image
        bold_split
            Individual 3D volumes, not motion corrected
        fieldwarp
            a :abbr:`DFM (displacements field map)` in ITK format
        hmc_xforms
            List of affine transforms aligning each volume to ``ref_image`` in ITK format
        itk_bold_to_t1
            Affine transform from ``ref_bold_brain`` to T1 space (ITK format)
        name_source
            BOLD series NIfTI file
            Used to recover original information lost during processing
        templates
            List of templates that were applied as targets during
            spatial normalization.

    **Outputs** - Two outputnodes are available. One output node (with name ``poutputnode``)
    will be parameterized in a Nipype sense (see `Nipype iterables
    <https://miykael.github.io/nipype_tutorial/notebooks/basic_iteration.html>`__), and a
    second node (``outputnode``) will collapse the parameterized outputs into synchronous
    lists of the following fields:

        bold_std
            BOLD series, resampled to template space
        bold_std_ref
            Reference, contrast-enhanced summary of the BOLD series, resampled to template space
        bold_mask_std
            BOLD series mask in template space
        bold_aseg_std
            FreeSurfer's ``aseg.mgz`` atlas, in template space at the BOLD resolution
            (only if ``recon-all`` was run)
        bold_aparc_std
            FreeSurfer's ``aparc+aseg.mgz`` atlas, in template space at the BOLD resolution
            (only if ``recon-all`` was run)
        templates
            Template identifiers synchronized correspondingly to previously
            described outputs.

    """

    # Filter ``standard_spaces``
    vol_std_spaces = [
        k for k in standard_spaces.keys() if not k.startswith('fs')
    ]

    workflow = Workflow(name=name)

    if len(vol_std_spaces) == 1:
        workflow.__desc__ = """\
The BOLD time-series were resampled into standard space,
generating a *preprocessed BOLD run in {tpl} space*.
""".format(tpl=vol_std_spaces)
    else:
        workflow.__desc__ = """\
The BOLD time-series were resampled into several standard spaces,
correspondingly generating the following *spatially-normalized,
preprocessed BOLD runs*: {tpl}.
""".format(tpl=', '.join(vol_std_spaces))

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'anat2std_xfm',
        'bold_aparc',
        'bold_aseg',
        'bold_mask',
        'bold_split',
        'fieldwarp',
        'hmc_xforms',
        'itk_bold_to_t1',
        'name_source',
        'templates',
    ]),
                        name='inputnode')

    select_std = pe.Node(KeySelect(fields=['resolution', 'anat2std_xfm']),
                         name='select_std',
                         run_without_submitting=True)

    select_std.inputs.resolution = [
        v.get('resolution') or v.get('res') or 'native'
        for k, v in list(standard_spaces.items()) if k in vol_std_spaces
    ]
    select_std.iterables = ('key', vol_std_spaces)

    select_tpl = pe.Node(niu.Function(function=_select_template),
                         name='select_tpl',
                         run_without_submitting=True)
    select_tpl.inputs.template_specs = standard_spaces

    gen_ref = pe.Node(GenerateSamplingReference(), name='gen_ref',
                      mem_gb=0.3)  # 256x256x256 * 64 / 8 ~ 150MB)

    mask_std_tfm = pe.Node(ApplyTransforms(interpolation='MultiLabel',
                                           float=True),
                           name='mask_std_tfm',
                           mem_gb=1)

    # Write corrected file in the designated output dir
    mask_merge_tfms = pe.Node(niu.Merge(2),
                              name='mask_merge_tfms',
                              run_without_submitting=True,
                              mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, select_std, [('templates', 'keys'),
                                 ('anat2std_xfm', 'anat2std_xfm')]),
        (inputnode, mask_std_tfm, [('bold_mask', 'input_image')]),
        (inputnode, gen_ref, [(('bold_split', _first), 'moving_image')]),
        (inputnode, mask_merge_tfms, [(('itk_bold_to_t1', _aslist), 'in2')]),
        (select_std, select_tpl, [('key', 'template')]),
        (select_std, mask_merge_tfms, [('anat2std_xfm', 'in1')]),
        (select_std, gen_ref, [(('resolution', _is_native), 'keep_native')]),
        (select_tpl, gen_ref, [('out', 'fixed_image')]),
        (mask_merge_tfms, mask_std_tfm, [('out', 'transforms')]),
        (gen_ref, mask_std_tfm, [('out_file', 'reference_image')]),
    ])

    nxforms = 4 if use_fieldwarp else 3
    merge_xforms = pe.Node(niu.Merge(nxforms),
                           name='merge_xforms',
                           run_without_submitting=True,
                           mem_gb=DEFAULT_MEMORY_MIN_GB)
    workflow.connect([(inputnode, merge_xforms, [('hmc_xforms',
                                                  'in%d' % nxforms)])])

    if use_fieldwarp:
        workflow.connect([(inputnode, merge_xforms, [('fieldwarp', 'in3')])])

    bold_to_std_transform = pe.Node(MultiApplyTransforms(
        interpolation="LanczosWindowedSinc", float=True, copy_dtype=True),
                                    name='bold_to_std_transform',
                                    mem_gb=mem_gb * 3 * omp_nthreads,
                                    n_procs=omp_nthreads)

    merge = pe.Node(Merge(compress=use_compression),
                    name='merge',
                    mem_gb=mem_gb * 3)

    # Generate a reference on the target T1w space
    gen_final_ref = init_bold_reference_wf(omp_nthreads=omp_nthreads,
                                           pre_mask=True)

    workflow.connect([
        (inputnode, merge_xforms, [(('itk_bold_to_t1', _aslist), 'in2')]),
        (inputnode, merge, [('name_source', 'header_source')]),
        (inputnode, bold_to_std_transform, [('bold_split', 'input_image')]),
        (select_std, merge_xforms, [('anat2std_xfm', 'in1')]),
        (merge_xforms, bold_to_std_transform, [('out', 'transforms')]),
        (gen_ref, bold_to_std_transform, [('out_file', 'reference_image')]),
        (bold_to_std_transform, merge, [('out_files', 'in_files')]),
        (merge, gen_final_ref, [('out_file', 'inputnode.bold_file')]),
        (mask_std_tfm, gen_final_ref, [('output_image', 'inputnode.bold_mask')
                                       ]),
    ])

    # Connect output nodes
    output_names = ['bold_std', 'bold_std_ref', 'bold_mask_std', 'templates']
    if freesurfer:
        output_names += ['bold_aseg_std', 'bold_aparc_std']

    # poutputnode - parametric output node
    poutputnode = pe.Node(niu.IdentityInterface(fields=output_names),
                          name='poutputnode')

    workflow.connect([
        (gen_final_ref, poutputnode, [('outputnode.ref_image', 'bold_std_ref')
                                      ]),
        (merge, poutputnode, [('out_file', 'bold_std')]),
        (mask_std_tfm, poutputnode, [('output_image', 'bold_mask_std')]),
        (select_std, poutputnode, [('key', 'templates')]),
    ])

    if freesurfer:
        # Sample the parcellation files to functional space
        aseg_std_tfm = pe.Node(ApplyTransforms(interpolation='MultiLabel',
                                               float=True),
                               name='aseg_std_tfm',
                               mem_gb=1)
        aparc_std_tfm = pe.Node(ApplyTransforms(interpolation='MultiLabel',
                                                float=True),
                                name='aparc_std_tfm',
                                mem_gb=1)

        workflow.connect([
            (inputnode, aseg_std_tfm, [('bold_aseg', 'input_image')]),
            (inputnode, aparc_std_tfm, [('bold_aparc', 'input_image')]),
            (select_std, aseg_std_tfm, [('anat2std_xfm', 'transforms')]),
            (select_std, aparc_std_tfm, [('anat2std_xfm', 'transforms')]),
            (gen_ref, aseg_std_tfm, [('out_file', 'reference_image')]),
            (gen_ref, aparc_std_tfm, [('out_file', 'reference_image')]),
            (aseg_std_tfm, poutputnode, [('output_image', 'bold_aseg_std')]),
            (aparc_std_tfm, poutputnode, [('output_image', 'bold_aparc_std')]),
        ])

    # Connect outputnode to the parameterized outputnode
    outputnode = pe.JoinNode(niu.IdentityInterface(fields=output_names),
                             name='outputnode',
                             joinsource='select_std')
    workflow.connect([(poutputnode, outputnode, [(f, f)
                                                 for f in output_names])])

    return workflow
示例#26
0
def init_topup_wf(
    grid_reference=0,
    omp_nthreads=1,
    sloppy=False,
    debug=False,
    name="pepolar_estimate_wf",
):
    """
    Create the PEPOLAR field estimation workflow based on FSL's ``topup``.

    Workflow Graph
        .. workflow ::
            :graph2use: orig
            :simple_form: yes

            from sdcflows.workflows.fit.pepolar import init_topup_wf
            wf = init_topup_wf()

    Parameters
    ----------
    grid_reference : :obj:`int`
        Index of the volume (after flattening) that will be taken for gridding reference.
    sloppy : :obj:`bool`
        Whether a fast configuration of topup (less accurate) should be applied.
    debug : :obj:`bool`
        Run in debug mode
    name : :obj:`str`
        Name for this workflow
    omp_nthreads : :obj:`int`
        Parallelize internal tasks across the number of CPUs given by this option.

    Inputs
    ------
    in_data : :obj:`list` of :obj:`str`
        A list of EPI files that will be fed into TOPUP.
    metadata : :obj:`list` of :obj:`dict`
        A list of dictionaries containing the metadata corresponding to each file
        in ``in_data``.

    Outputs
    -------
    fmap : :obj:`str`
        The path of the estimated fieldmap.
    fmap_ref : :obj:`str`
        The path of an unwarped conversion of files in ``in_data``.
    fmap_mask : :obj:`str`
        The path of mask corresponding to the ``fmap_ref`` output.
    fmap_coeff : :obj:`str` or :obj:`list` of :obj:`str`
        The path(s) of the B-Spline coefficients supporting the fieldmap.
    method: :obj:`str`
        Short description of the estimation method that was run.

    """
    from nipype.interfaces.fsl.epi import TOPUP
    from niworkflows.interfaces.nibabel import MergeSeries
    from niworkflows.interfaces.images import RobustAverage

    from ...utils.misc import front as _front
    from ...interfaces.epi import GetReadoutTime
    from ...interfaces.utils import Flatten, UniformGrid, PadSlices
    from ...interfaces.bspline import TOPUPCoeffReorient
    from ..ancillary import init_brainextraction_wf

    workflow = Workflow(name=name)
    workflow.__desc__ = f"""\
{_PEPOLAR_DESC} with `topup` (@topup; FSL {TOPUP().version}).
"""

    inputnode = pe.Node(niu.IdentityInterface(fields=INPUT_FIELDS),
                        name="inputnode")
    outputnode = pe.Node(
        niu.IdentityInterface(fields=[
            "fmap",
            "fmap_ref",
            "fmap_coeff",
            "fmap_mask",
            "jacobians",
            "xfms",
            "out_warps",
            "method",
        ]),
        name="outputnode",
    )
    outputnode.inputs.method = "PEB/PEPOLAR (phase-encoding based / PE-POLARity)"

    flatten = pe.Node(Flatten(), name="flatten")
    regrid = pe.Node(UniformGrid(reference=grid_reference), name="regrid")
    concat_blips = pe.Node(MergeSeries(), name="concat_blips")
    readout_time = pe.MapNode(
        GetReadoutTime(),
        name="readout_time",
        iterfield=["metadata", "in_file"],
        run_without_submitting=True,
    )
    pad_blip_slices = pe.Node(PadSlices(), name="pad_blip_slices")
    pad_ref_slices = pe.Node(PadSlices(), name="pad_ref_slices")

    topup = pe.Node(
        TOPUP(config=_pkg_fname(
            "sdcflows", f"data/flirtsch/b02b0{'_quick' * sloppy}.cnf")),
        name="topup",
    )
    ref_average = pe.Node(RobustAverage(), name="ref_average")

    fix_coeff = pe.Node(TOPUPCoeffReorient(),
                        name="fix_coeff",
                        run_without_submitting=True)

    brainextraction_wf = init_brainextraction_wf()

    # fmt: off
    workflow.connect([
        (inputnode, flatten, [("in_data", "in_data"),
                              ("metadata", "in_meta")]),
        (flatten, readout_time, [("out_data", "in_file"),
                                 ("out_meta", "metadata")]),
        (flatten, regrid, [("out_data", "in_data")]),
        (regrid, concat_blips, [("out_data", "in_files")]),
        (readout_time, topup, [("readout_time", "readout_times"),
                               ("pe_dir_fsl", "encoding_direction")]),
        (regrid, pad_ref_slices, [("reference", "in_file")]),
        (pad_ref_slices, fix_coeff, [("out_file", "fmap_ref")]),
        (readout_time, fix_coeff, [(("pe_direction", _front), "pe_dir")]),
        (topup, fix_coeff, [("out_fieldcoef", "in_coeff")]),
        (topup, outputnode, [("out_jacs", "jacobians"), ("out_mats", "xfms")]),
        (ref_average, brainextraction_wf, [("out_file", "inputnode.in_file")]),
        (brainextraction_wf, outputnode, [("outputnode.out_file", "fmap_ref"),
                                          ("outputnode.out_mask", "fmap_mask")
                                          ]),
        (fix_coeff, outputnode, [("out_coeff", "fmap_coeff")]),
    ])
    # fmt: on

    if not debug:
        # fmt: off
        workflow.connect([
            (concat_blips, pad_blip_slices, [("out_file", "in_file")]),
            (pad_blip_slices, topup, [("out_file", "in_file")]),
            (topup, ref_average, [("out_corrected", "in_file")]),
            (topup, outputnode, [("out_field", "fmap"),
                                 ("out_warps", "out_warps")]),
        ])
        # fmt: on
        return workflow

    from nipype.interfaces.afni.preprocess import Volreg
    from niworkflows.interfaces.nibabel import SplitSeries
    from ...interfaces.bspline import ApplyCoeffsField

    realign = pe.Node(
        Volreg(args=f"-base {grid_reference}", outputtype="NIFTI_GZ"),
        name="realign_blips",
    )
    split_blips = pe.Node(SplitSeries(), name="split_blips")
    unwarp = pe.Node(ApplyCoeffsField(), name="unwarp")
    unwarp.interface._always_run = True
    concat_corrected = pe.Node(MergeSeries(), name="concat_corrected")

    # fmt:off
    workflow.connect([
        (concat_blips, realign, [("out_file", "in_file")]),
        (realign, pad_blip_slices, [("out_file", "in_file")]),
        (pad_blip_slices, topup, [("out_file", "in_file")]),
        (fix_coeff, unwarp, [("out_coeff", "in_coeff")]),
        (realign, split_blips, [("out_file", "in_file")]),
        (split_blips, unwarp, [("out_files", "in_data")]),
        (readout_time, unwarp, [("readout_time", "ro_time"),
                                ("pe_direction", "pe_dir")]),
        (unwarp, outputnode, [("out_warp", "out_warps"),
                              ("out_field", "fmap")]),
        (unwarp, concat_corrected, [("out_corrected", "in_files")]),
        (concat_corrected, ref_average, [("out_file", "in_file")]),
    ])
    # fmt:on

    return workflow
示例#27
0
def init_bold_preproc_trans_wf(mem_gb,
                               omp_nthreads,
                               name='bold_preproc_trans_wf',
                               use_compression=True,
                               use_fieldwarp=False,
                               split_file=False,
                               interpolation='LanczosWindowedSinc'):
    """
    This workflow resamples the input fMRI in its native (original)
    space in a "single shot" from the original BOLD series.

    .. workflow::
        :graph2use: colored
        :simple_form: yes

        from fmriprep.workflows.bold import init_bold_preproc_trans_wf
        wf = init_bold_preproc_trans_wf(mem_gb=3, omp_nthreads=1)

    **Parameters**

        mem_gb : float
            Size of BOLD file in GB
        omp_nthreads : int
            Maximum number of threads an individual process may use
        name : str
            Name of workflow (default: ``bold_std_trans_wf``)
        use_compression : bool
            Save registered BOLD series as ``.nii.gz``
        use_fieldwarp : bool
            Include SDC warp in single-shot transform from BOLD to MNI
        split_file : bool
            Whether the input file should be splitted (it is a 4D file)
            or it is a list of 3D files (default ``False``, do not split)
        interpolation : str
            Interpolation type to be used by ANTs' ``applyTransforms``
            (default ``'LanczosWindowedSinc'``)

    **Inputs**

        bold_file
            Individual 3D volumes, not motion corrected
        bold_mask
            Skull-stripping mask of reference image
        name_source
            BOLD series NIfTI file
            Used to recover original information lost during processing
        hmc_xforms
            List of affine transforms aligning each volume to ``ref_image`` in ITK format
        fieldwarp
            a :abbr:`DFM (displacements field map)` in ITK format

    **Outputs**

        bold
            BOLD series, resampled in native space, including all preprocessing
        bold_mask
            BOLD series mask calculated with the new time-series
        bold_ref
            BOLD reference image: an average-like 3D image of the time-series
        bold_ref_brain
            Same as ``bold_ref``, but once the brain mask has been applied

    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
The BOLD time-series (including slice-timing correction when applied)
were resampled onto their original, native space by applying
{transforms}.
These resampled BOLD time-series will be referred to as *preprocessed
BOLD in original space*, or just *preprocessed BOLD*.
""".format(transforms="""\
a single, composite transform to correct for head-motion and
susceptibility distortions""" if use_fieldwarp else """\
the transforms to correct for head-motion""")

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'name_source', 'bold_file', 'bold_mask', 'hmc_xforms', 'fieldwarp'
    ]),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(
        fields=['bold', 'bold_mask', 'bold_ref', 'bold_ref_brain']),
                         name='outputnode')

    bold_transform = pe.Node(MultiApplyTransforms(interpolation=interpolation,
                                                  float=True,
                                                  copy_dtype=True),
                             name='bold_transform',
                             mem_gb=mem_gb * 3 * omp_nthreads,
                             n_procs=omp_nthreads)

    merge = pe.Node(Merge(compress=use_compression),
                    name='merge',
                    mem_gb=mem_gb * 3)

    # Generate a new BOLD reference
    bold_reference_wf = init_bold_reference_wf(omp_nthreads=omp_nthreads)
    bold_reference_wf.__desc__ = None  # Unset description to avoid second appearance

    workflow.connect([
        (inputnode, merge, [('name_source', 'header_source')]),
        (bold_transform, merge, [('out_files', 'in_files')]),
        (merge, bold_reference_wf, [('out_file', 'inputnode.bold_file')]),
        (merge, outputnode, [('out_file', 'bold')]),
        (bold_reference_wf, outputnode,
         [('outputnode.ref_image', 'bold_ref'),
          ('outputnode.ref_image_brain', 'bold_ref_brain'),
          ('outputnode.bold_mask', 'bold_mask')]),
    ])

    # Input file is not splitted
    if split_file:
        bold_split = pe.Node(FSLSplit(dimension='t'),
                             name='bold_split',
                             mem_gb=mem_gb * 3)
        workflow.connect([(inputnode, bold_split, [('bold_file', 'in_file')]),
                          (bold_split, bold_transform, [
                              ('out_files', 'input_image'),
                              (('out_files', _first), 'reference_image'),
                          ])])
    else:
        workflow.connect([
            (inputnode, bold_transform, [('bold_file', 'input_image'),
                                         (('bold_file', _first),
                                          'reference_image')]),
        ])

    if use_fieldwarp:
        merge_xforms = pe.Node(niu.Merge(2),
                               name='merge_xforms',
                               run_without_submitting=True,
                               mem_gb=DEFAULT_MEMORY_MIN_GB)
        workflow.connect([
            (inputnode, merge_xforms, [('fieldwarp', 'in1'),
                                       ('hmc_xforms', 'in2')]),
            (merge_xforms, bold_transform, [('out', 'transforms')]),
        ])
    else:

        def _aslist(val):
            return [val]

        workflow.connect([
            (inputnode, bold_transform, [(('hmc_xforms', _aslist),
                                          'transforms')]),
        ])

    # Code ready to generate a pre/post processing report
    # bold_bold_report_wf = init_bold_preproc_report_wf(
    #     mem_gb=mem_gb['resampled'],
    #     reportlets_dir=reportlets_dir
    # )
    # workflow.connect([
    #     (inputnode, bold_bold_report_wf, [
    #         ('bold_file', 'inputnode.name_source'),
    #         ('bold_file', 'inputnode.in_pre')]),  # This should be after STC
    #     (bold_bold_trans_wf, bold_bold_report_wf, [
    #         ('outputnode.bold', 'inputnode.in_post')]),
    # ])

    return workflow
示例#28
0
def init_single_subject_wf(
        layout, subject_id, task_id, echo_idx, name, reportlets_dir,
        output_dir, ignore, debug, low_mem, anat_only, longitudinal, t2s_coreg,
        omp_nthreads, skull_strip_template, skull_strip_fixed_seed, freesurfer,
        output_spaces, template, medial_surface_nan, cifti_output, hires,
        use_bbr, bold2t1w_dof, fmap_bspline, fmap_demean, use_syn, force_syn,
        template_out_grid, use_aroma, aroma_melodic_dim, err_on_aroma_warn):
    """
    This workflow organizes the preprocessing pipeline for a single subject.
    It collects and reports information about the subject, and prepares
    sub-workflows to perform anatomical and functional preprocessing.

    Anatomical preprocessing is performed in a single workflow, regardless of
    the number of sessions.
    Functional preprocessing is performed using a separate workflow for each
    individual BOLD series.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.base import init_single_subject_wf
        from collections import namedtuple
        BIDSLayout = namedtuple('BIDSLayout', ['root'], defaults='.')
        wf = init_single_subject_wf(layout=BIDSLayout(),
                                    subject_id='test',
                                    task_id='',
                                    echo_idx=None,
                                    name='single_subject_wf',
                                    reportlets_dir='.',
                                    output_dir='.',
                                    ignore=[],
                                    debug=False,
                                    low_mem=False,
                                    anat_only=False,
                                    longitudinal=False,
                                    t2s_coreg=False,
                                    omp_nthreads=1,
                                    skull_strip_template='OASIS30ANTs',
                                    skull_strip_fixed_seed=False,
                                    freesurfer=True,
                                    template='MNI152NLin2009cAsym',
                                    output_spaces=['T1w', 'fsnative',
                                                  'template', 'fsaverage5'],
                                    medial_surface_nan=False,
                                    cifti_output=False,
                                    hires=True,
                                    use_bbr=True,
                                    bold2t1w_dof=9,
                                    fmap_bspline=False,
                                    fmap_demean=True,
                                    use_syn=True,
                                    force_syn=True,
                                    template_out_grid='native',
                                    use_aroma=False,
                                    aroma_melodic_dim=-200,
                                    err_on_aroma_warn=False)

    Parameters

        layout : BIDSLayout object
            BIDS dataset layout
        subject_id : str
            List of subject labels
        task_id : str or None
            Task ID of BOLD series to preprocess, or ``None`` to preprocess all
        echo_idx : int or None
            Index of echo to preprocess in multiecho BOLD series,
            or ``None`` to preprocess all
        name : str
            Name of workflow
        ignore : list
            Preprocessing steps to skip (may include "slicetiming", "fieldmaps")
        debug : bool
            Enable debugging outputs
        low_mem : bool
            Write uncompressed .nii files in some cases to reduce memory usage
        anat_only : bool
            Disable functional workflows
        longitudinal : bool
            Treat multiple sessions as longitudinal (may increase runtime)
            See sub-workflows for specific differences
        t2s_coreg : bool
            For multi-echo EPI, use the calculated T2*-map for T2*-driven coregistration
        omp_nthreads : int
            Maximum number of threads an individual process may use
        skull_strip_template : str
            Name of ANTs skull-stripping template ('OASIS30ANTs' or 'NKI')
        skull_strip_fixed_seed : bool
            Do not use a random seed for skull-stripping - will ensure
            run-to-run replicability when used with --omp-nthreads 1
        reportlets_dir : str
            Directory in which to save reportlets
        output_dir : str
            Directory in which to save derivatives
        freesurfer : bool
            Enable FreeSurfer surface reconstruction (may increase runtime)
        output_spaces : list
            List of output spaces functional images are to be resampled to.
            Some parts of pipeline will only be instantiated for some output spaces.

            Valid spaces:

             - T1w
             - template
             - fsnative
             - fsaverage (or other pre-existing FreeSurfer templates)
        template : str
            Name of template targeted by ``template`` output space
        medial_surface_nan : bool
            Replace medial wall values with NaNs on functional GIFTI files
        cifti_output : bool
            Generate bold CIFTI file in output spaces
        hires : bool
            Enable sub-millimeter preprocessing in FreeSurfer
        use_bbr : bool or None
            Enable/disable boundary-based registration refinement.
            If ``None``, test BBR result for distortion before accepting.
        bold2t1w_dof : 6, 9 or 12
            Degrees-of-freedom for BOLD-T1w registration
        fmap_bspline : bool
            **Experimental**: Fit B-Spline field using least-squares
        fmap_demean : bool
            Demean voxel-shift map during unwarp
        use_syn : bool
            **Experimental**: Enable ANTs SyN-based susceptibility distortion correction (SDC).
            If fieldmaps are present and enabled, this is not run, by default.
        force_syn : bool
            **Temporary**: Always run SyN-based SDC
        template_out_grid : str
            Keyword ('native', '1mm' or '2mm') or path of custom reference
            image for normalization
        use_aroma : bool
            Perform ICA-AROMA on MNI-resampled functional series
        err_on_aroma_warn : bool
            Do not fail on ICA-AROMA errors

    Inputs

        subjects_dir
            FreeSurfer SUBJECTS_DIR

    """
    if name in ('single_subject_wf', 'single_subject_fmripreptest_wf'):
        # for documentation purposes
        subject_data = {
            't1w': ['/completely/made/up/path/sub-01_T1w.nii.gz'],
            'bold': ['/completely/made/up/path/sub-01_task-nback_bold.nii.gz']
        }
    else:
        subject_data = collect_data(layout, subject_id, task_id, echo_idx)[0]

    # Make sure we always go through these two checks
    if not anat_only and subject_data['bold'] == []:
        raise Exception("No BOLD images found for participant {} and task {}. "
                        "All workflows require BOLD images.".format(
                            subject_id, task_id if task_id else '<all>'))

    if not subject_data['t1w']:
        raise Exception("No T1w images found for participant {}. "
                        "All workflows require T1w images.".format(subject_id))

    workflow = Workflow(name=name)
    workflow.__desc__ = """
Results included in this manuscript come from preprocessing
performed using *fMRIPrep* {fmriprep_ver}
(@fmriprep1; @fmriprep2; RRID:SCR_016216),
which is based on *Nipype* {nipype_ver}
(@nipype1; @nipype2; RRID:SCR_002502).

""".format(fmriprep_ver=__version__, nipype_ver=nipype_ver)
    workflow.__postdesc__ = """

Many internal operations of *fMRIPrep* use
*Nilearn* {nilearn_ver} [@nilearn, RRID:SCR_001362],
mostly within the functional processing workflow.
For more details of the pipeline, see [the section corresponding
to workflows in *fMRIPrep*'s documentation]\
(https://fmriprep.readthedocs.io/en/latest/workflows.html \
"FMRIPrep's documentation").


### References

""".format(nilearn_ver=nilearn_ver)

    inputnode = pe.Node(niu.IdentityInterface(fields=['subjects_dir']),
                        name='inputnode')

    bidssrc = pe.Node(BIDSDataGrabber(subject_data=subject_data,
                                      anat_only=anat_only),
                      name='bidssrc')

    bids_info = pe.Node(BIDSInfo(bids_dir=layout.root, bids_validate=False),
                        name='bids_info')

    summary = pe.Node(SubjectSummary(output_spaces=output_spaces,
                                     template=template),
                      name='summary',
                      run_without_submitting=True)

    about = pe.Node(AboutSummary(version=__version__,
                                 command=' '.join(sys.argv)),
                    name='about',
                    run_without_submitting=True)

    ds_report_summary = pe.Node(DerivativesDataSink(
        base_directory=reportlets_dir, suffix='summary'),
                                name='ds_report_summary',
                                run_without_submitting=True)

    ds_report_about = pe.Node(DerivativesDataSink(
        base_directory=reportlets_dir, suffix='about'),
                              name='ds_report_about',
                              run_without_submitting=True)

    # Preprocessing of T1w (includes registration to MNI)
    anat_preproc_wf = init_anat_preproc_wf(
        bids_root=layout.root,
        debug=debug,
        freesurfer=freesurfer,
        fs_spaces=output_spaces,
        hires=hires,
        longitudinal=longitudinal,
        name="anat_preproc_wf",
        num_t1w=len(subject_data['t1w']),
        omp_nthreads=omp_nthreads,
        output_dir=output_dir,
        reportlets_dir=reportlets_dir,
        skull_strip_fixed_seed=skull_strip_fixed_seed,
        skull_strip_template=skull_strip_template,
        template=template,
    )

    workflow.connect([
        (inputnode, anat_preproc_wf, [('subjects_dir',
                                       'inputnode.subjects_dir')]),
        (bidssrc, bids_info, [(('t1w', fix_multi_T1w_source_name), 'in_file')
                              ]),
        (inputnode, summary, [('subjects_dir', 'subjects_dir')]),
        (bidssrc, summary, [('t1w', 't1w'), ('t2w', 't2w'), ('bold', 'bold')]),
        (bids_info, summary, [('subject', 'subject_id')]),
        (bids_info, anat_preproc_wf, [(('subject', _prefix),
                                       'inputnode.subject_id')]),
        (bidssrc, anat_preproc_wf, [('t1w', 'inputnode.t1w'),
                                    ('t2w', 'inputnode.t2w'),
                                    ('roi', 'inputnode.roi'),
                                    ('flair', 'inputnode.flair')]),
        (bidssrc, ds_report_summary, [(('t1w', fix_multi_T1w_source_name),
                                       'source_file')]),
        (summary, ds_report_summary, [('out_report', 'in_file')]),
        (bidssrc, ds_report_about, [(('t1w', fix_multi_T1w_source_name),
                                     'source_file')]),
        (about, ds_report_about, [('out_report', 'in_file')]),
    ])

    # Overwrite ``out_path_base`` of smriprep's DataSinks
    for node in workflow.list_node_names():
        if node.split('.')[-1].startswith('ds_'):
            workflow.get_node(node).interface.out_path_base = 'fmriprep'

    if anat_only:
        return workflow

    for bold_file in subject_data['bold']:
        func_preproc_wf = init_func_preproc_wf(
            bold_file=bold_file,
            layout=layout,
            ignore=ignore,
            freesurfer=freesurfer,
            use_bbr=use_bbr,
            t2s_coreg=t2s_coreg,
            bold2t1w_dof=bold2t1w_dof,
            reportlets_dir=reportlets_dir,
            output_spaces=output_spaces,
            template=template,
            medial_surface_nan=medial_surface_nan,
            cifti_output=cifti_output,
            output_dir=output_dir,
            omp_nthreads=omp_nthreads,
            low_mem=low_mem,
            fmap_bspline=fmap_bspline,
            fmap_demean=fmap_demean,
            use_syn=use_syn,
            force_syn=force_syn,
            debug=debug,
            template_out_grid=template_out_grid,
            use_aroma=use_aroma,
            aroma_melodic_dim=aroma_melodic_dim,
            err_on_aroma_warn=err_on_aroma_warn,
            num_bold=len(subject_data['bold']))

        workflow.connect([
            (
                anat_preproc_wf,
                func_preproc_wf,
                [
                    (('outputnode.t1_preproc', _pop), 'inputnode.t1_preproc'),
                    ('outputnode.t1_brain', 'inputnode.t1_brain'),
                    ('outputnode.t1_mask', 'inputnode.t1_mask'),
                    ('outputnode.t1_seg', 'inputnode.t1_seg'),
                    ('outputnode.t1_aseg', 'inputnode.t1_aseg'),
                    ('outputnode.t1_aparc', 'inputnode.t1_aparc'),
                    ('outputnode.t1_tpms', 'inputnode.t1_tpms'),
                    ('outputnode.t1_2_mni_forward_transform',
                     'inputnode.t1_2_mni_forward_transform'),
                    ('outputnode.t1_2_mni_reverse_transform',
                     'inputnode.t1_2_mni_reverse_transform'),
                    # Undefined if --no-freesurfer, but this is safe
                    ('outputnode.subjects_dir', 'inputnode.subjects_dir'),
                    ('outputnode.subject_id', 'inputnode.subject_id'),
                    ('outputnode.t1_2_fsnative_forward_transform',
                     'inputnode.t1_2_fsnative_forward_transform'),
                    ('outputnode.t1_2_fsnative_reverse_transform',
                     'inputnode.t1_2_fsnative_reverse_transform')
                ]),
        ])

    return workflow
示例#29
0
def init_pepolar_unwarp_wf(omp_nthreads=1,
                           matched_pe=False,
                           name="pepolar_unwarp_wf"):
    """
    Create the PE-Polar field estimation workflow.

    This workflow takes in a set of EPI files with opposite phase encoding
    direction than the target file and calculates a displacements field
    (in other words, an ANTs-compatible warp file).

    This procedure works if there is only one '_epi' file is present
    (as long as it has the opposite phase encoding direction to the target
    file). The target file will be used to estimate the field distortion.
    However, if there is another '_epi' file present with a matching
    phase encoding direction to the target it will be used instead.

    Currently, different phase encoding dimension in the target file and the
    '_epi' file(s) (for example 'i' and 'j') is not supported.

    The warp field correcting for the distortions is estimated using AFNI's
    3dQwarp, with displacement estimation limited to the target file phase
    encoding direction.

    It also calculates a new mask for the input dataset that takes into
    account the distortions.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from sdcflows.workflows.pepolar import init_pepolar_unwarp_wf
        wf = init_pepolar_unwarp_wf()


    **Parameters**:

        matched_pe : bool
            Whether the input ``fmaps_epi`` will contain images with matched
            PE blips or not. Please use :func:`sdcflows.workflows.pepolar.check_pes`
            to determine whether they exist or not.
        name : str
            Name for this workflow
        omp_nthreads : int
            Parallelize internal tasks across the number of CPUs given by this option.

    **Inputs**:

        fmaps_epi : list of tuple(pathlike, str)
            The list of EPI images that will be used in PE-Polar correction, and
            their corresponding ``PhaseEncodingDirection`` metadata.
            The workflow will use the ``bold_pe_dir`` input to separate out those
            EPI acquisitions with opposed PE blips and those with matched PE blips
            (the latter could be none, and ``in_reference_brain`` would then be
            used). The workflow raises a ``ValueError`` when no images with
            opposed PE blips are found.
        bold_pe_dir : str
            The baseline PE direction.
        in_reference : pathlike
            The baseline reference image (must correspond to ``bold_pe_dir``).
        in_reference_brain : pathlike
            The reference image above, but skullstripped.
        in_mask : pathlike
            Not used, present only for consistency across fieldmap estimation
            workflows.


    **Outputs**:

        out_reference : pathlike
            The ``in_reference`` after unwarping
        out_reference_brain : pathlike
            The ``in_reference`` after unwarping and skullstripping
        out_warp : pathlike
            The corresponding :abbr:`DFM (displacements field map)` compatible with
            ANTs.
        out_mask : pathlike
            Mask of the unwarped input file

    """
    workflow = Workflow(name=name)
    workflow.__desc__ = """\
A deformation field to correct for susceptibility distortions was estimated
based on two echo-planar imaging (EPI) references with opposing phase-encoding
directions, using `3dQwarp` @afni (AFNI {afni_ver}).
""".format(afni_ver=''.join(['%02d' % v for v in afni.Info().version() or []]))

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'fmaps_epi', 'in_reference', 'in_reference_brain', 'in_mask',
        'bold_pe_dir'
    ]),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'out_reference', 'out_reference_brain', 'out_warp', 'out_mask'
    ]),
                         name='outputnode')

    prepare_epi_wf = init_prepare_epi_wf(omp_nthreads=omp_nthreads,
                                         matched_pe=matched_pe,
                                         name="prepare_epi_wf")

    qwarp = pe.Node(afni.QwarpPlusMinus(
        pblur=[0.05, 0.05],
        blur=[-1, -1],
        noweight=True,
        minpatch=9,
        nopadWARP=True,
        environ={'OMP_NUM_THREADS': '%d' % omp_nthreads}),
                    name='qwarp',
                    n_procs=omp_nthreads)

    to_ants = pe.Node(niu.Function(function=_fix_hdr),
                      name='to_ants',
                      mem_gb=0.01)

    cphdr_warp = pe.Node(CopyHeader(), name='cphdr_warp', mem_gb=0.01)

    unwarp_reference = pe.Node(ANTSApplyTransformsRPT(
        dimension=3,
        generate_report=False,
        float=True,
        interpolation='LanczosWindowedSinc'),
                               name='unwarp_reference')

    enhance_and_skullstrip_bold_wf = init_enhance_and_skullstrip_bold_wf(
        omp_nthreads=omp_nthreads)

    workflow.connect([
        (inputnode, qwarp, [(('bold_pe_dir', _qwarp_args), 'args')]),
        (inputnode, cphdr_warp, [('in_reference', 'hdr_file')]),
        (inputnode, prepare_epi_wf, [('fmaps_epi', 'inputnode.maps_pe'),
                                     ('bold_pe_dir', 'inputnode.epi_pe'),
                                     ('in_reference_brain',
                                      'inputnode.ref_brain')]),
        (prepare_epi_wf, qwarp, [('outputnode.opposed_pe', 'base_file'),
                                 ('outputnode.matched_pe', 'in_file')]),
        (qwarp, cphdr_warp, [('source_warp', 'in_file')]),
        (cphdr_warp, to_ants, [('out_file', 'in_file')]),
        (to_ants, unwarp_reference, [('out', 'transforms')]),
        (inputnode, unwarp_reference, [('in_reference', 'reference_image'),
                                       ('in_reference', 'input_image')]),
        (unwarp_reference, enhance_and_skullstrip_bold_wf,
         [('output_image', 'inputnode.in_file')]),
        (unwarp_reference, outputnode, [('output_image', 'out_reference')]),
        (enhance_and_skullstrip_bold_wf, outputnode,
         [('outputnode.mask_file', 'out_mask'),
          ('outputnode.skull_stripped_file', 'out_reference_brain')]),
        (to_ants, outputnode, [('out', 'out_warp')]),
    ])

    return workflow
示例#30
0
def init_fmriprep_wf(layout, subject_list, task_id, echo_idx, run_uuid,
                     work_dir, output_dir, ignore, debug, low_mem, anat_only,
                     longitudinal, t2s_coreg, omp_nthreads,
                     skull_strip_template, skull_strip_fixed_seed, freesurfer,
                     output_spaces, template, medial_surface_nan, cifti_output,
                     hires, use_bbr, bold2t1w_dof, fmap_bspline, fmap_demean,
                     use_syn, force_syn, use_aroma, err_on_aroma_warn,
                     aroma_melodic_dim, template_out_grid):
    """
    This workflow organizes the execution of FMRIPREP, with a sub-workflow for
    each subject.

    If FreeSurfer's recon-all is to be run, a FreeSurfer derivatives folder is
    created and populated with any needed template subjects.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        import os
        from collections import namedtuple
        BIDSLayout = namedtuple('BIDSLayout', ['root'], defaults='.')
        from fmriprep.workflows.base import init_fmriprep_wf
        os.environ['FREESURFER_HOME'] = os.getcwd()
        wf = init_fmriprep_wf(layout=BIDSLayout(),
                              subject_list=['fmripreptest'],
                              task_id='',
                              echo_idx=None,
                              run_uuid='X',
                              work_dir='.',
                              output_dir='.',
                              ignore=[],
                              debug=False,
                              low_mem=False,
                              anat_only=False,
                              longitudinal=False,
                              t2s_coreg=False,
                              omp_nthreads=1,
                              skull_strip_template='OASIS30ANTs',
                              skull_strip_fixed_seed=False,
                              freesurfer=True,
                              output_spaces=['T1w', 'fsnative',
                                            'template', 'fsaverage5'],
                              template='MNI152NLin2009cAsym',
                              medial_surface_nan=False,
                              cifti_output=False,
                              hires=True,
                              use_bbr=True,
                              bold2t1w_dof=9,
                              fmap_bspline=False,
                              fmap_demean=True,
                              use_syn=True,
                              force_syn=True,
                              use_aroma=False,
                              err_on_aroma_warn=False,
                              aroma_melodic_dim=-200,
                              template_out_grid='native')


    Parameters

        layout : BIDSLayout object
            BIDS dataset layout
        subject_list : list
            List of subject labels
        task_id : str or None
            Task ID of BOLD series to preprocess, or ``None`` to preprocess all
        echo_idx : int or None
            Index of echo to preprocess in multiecho BOLD series,
            or ``None`` to preprocess all
        run_uuid : str
            Unique identifier for execution instance
        work_dir : str
            Directory in which to store workflow execution state and temporary files
        output_dir : str
            Directory in which to save derivatives
        ignore : list
            Preprocessing steps to skip (may include "slicetiming", "fieldmaps")
        debug : bool
            Enable debugging outputs
        low_mem : bool
            Write uncompressed .nii files in some cases to reduce memory usage
        anat_only : bool
            Disable functional workflows
        longitudinal : bool
            Treat multiple sessions as longitudinal (may increase runtime)
            See sub-workflows for specific differences
        t2s_coreg : bool
            For multi-echo EPI, use the calculated T2*-map for T2*-driven coregistration
        omp_nthreads : int
            Maximum number of threads an individual process may use
        skull_strip_template : str
            Name of ANTs skull-stripping template ('OASIS30ANTs' or 'NKI')
        skull_strip_fixed_seed : bool
            Do not use a random seed for skull-stripping - will ensure
            run-to-run replicability when used with --omp-nthreads 1
        freesurfer : bool
            Enable FreeSurfer surface reconstruction (may increase runtime)
        output_spaces : list
            List of output spaces functional images are to be resampled to.
            Some parts of pipeline will only be instantiated for some output spaces.

            Valid spaces:

             - T1w
             - template
             - fsnative
             - fsaverage (or other pre-existing FreeSurfer templates)
        template : str
            Name of template targeted by ``template`` output space
        medial_surface_nan : bool
            Replace medial wall values with NaNs on functional GIFTI files
        cifti_output : bool
            Generate bold CIFTI file in output spaces
        hires : bool
            Enable sub-millimeter preprocessing in FreeSurfer
        use_bbr : bool or None
            Enable/disable boundary-based registration refinement.
            If ``None``, test BBR result for distortion before accepting.
        bold2t1w_dof : 6, 9 or 12
            Degrees-of-freedom for BOLD-T1w registration
        fmap_bspline : bool
            **Experimental**: Fit B-Spline field using least-squares
        fmap_demean : bool
            Demean voxel-shift map during unwarp
        use_syn : bool
            **Experimental**: Enable ANTs SyN-based susceptibility distortion correction (SDC).
            If fieldmaps are present and enabled, this is not run, by default.
        force_syn : bool
            **Temporary**: Always run SyN-based SDC
        use_aroma : bool
            Perform ICA-AROMA on MNI-resampled functional series
        err_on_aroma_warn : bool
            Do not fail on ICA-AROMA errors
        template_out_grid : str
            Keyword ('native', '1mm' or '2mm') or path of custom reference
            image for normalization

    """
    fmriprep_wf = Workflow(name='fmriprep_wf')
    fmriprep_wf.base_dir = work_dir

    if freesurfer:
        fsdir = pe.Node(BIDSFreeSurferDir(
            derivatives=output_dir,
            freesurfer_home=os.getenv('FREESURFER_HOME'),
            spaces=output_spaces),
                        name='fsdir_run_' + run_uuid.replace('-', '_'),
                        run_without_submitting=True)

    reportlets_dir = os.path.join(work_dir, 'reportlets')
    for subject_id in subject_list:
        single_subject_wf = init_single_subject_wf(
            layout=layout,
            subject_id=subject_id,
            task_id=task_id,
            echo_idx=echo_idx,
            name="single_subject_" + subject_id + "_wf",
            reportlets_dir=reportlets_dir,
            output_dir=output_dir,
            ignore=ignore,
            debug=debug,
            low_mem=low_mem,
            anat_only=anat_only,
            longitudinal=longitudinal,
            t2s_coreg=t2s_coreg,
            omp_nthreads=omp_nthreads,
            skull_strip_template=skull_strip_template,
            skull_strip_fixed_seed=skull_strip_fixed_seed,
            freesurfer=freesurfer,
            output_spaces=output_spaces,
            template=template,
            medial_surface_nan=medial_surface_nan,
            cifti_output=cifti_output,
            hires=hires,
            use_bbr=use_bbr,
            bold2t1w_dof=bold2t1w_dof,
            fmap_bspline=fmap_bspline,
            fmap_demean=fmap_demean,
            use_syn=use_syn,
            force_syn=force_syn,
            template_out_grid=template_out_grid,
            use_aroma=use_aroma,
            aroma_melodic_dim=aroma_melodic_dim,
            err_on_aroma_warn=err_on_aroma_warn,
        )

        single_subject_wf.config['execution']['crashdump_dir'] = (os.path.join(
            output_dir, "fmriprep", "sub-" + subject_id, 'log', run_uuid))
        for node in single_subject_wf._get_all_nodes():
            node.config = deepcopy(single_subject_wf.config)
        if freesurfer:
            fmriprep_wf.connect(fsdir, 'subjects_dir', single_subject_wf,
                                'inputnode.subjects_dir')
        else:
            fmriprep_wf.add_nodes([single_subject_wf])

    return fmriprep_wf