示例#1
0
def init_anat_preproc_wf(skull_strip_ants, output_spaces, template, debug, freesurfer,
                         longitudinal, omp_nthreads, hires, reportlets_dir, output_dir,
                         name='anat_preproc_wf'):
    """T1w images preprocessing pipeline"""

    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(
        niu.IdentityInterface(fields=['t1w', 't2w', 'subjects_dir', 'subject_id']),
        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(
        fields=['t1_preproc', 't1_brain', 't1_mask', 't1_seg', 't1_tpms',
                't1_2_mni', 't1_2_mni_forward_transform', 't1_2_mni_reverse_transform',
                'mni_mask', 'mni_seg', 'mni_tpms',
                'subjects_dir', 'subject_id', 'fs_2_t1_transform', 'surfaces']),
        name='outputnode')

    # 0. Reorient T1w image(s) to RAS and resample to common voxel space
    t1_conform = pe.Node(ConformSeries(), name='t1_conform')

    # 1. Align and merge if several T1w images are provided
    t1_merge = pe.Node(
        # StructuralReference is fs.RobustTemplate if > 1 volume, copying otherwise
        StructuralReference(auto_detect_sensitivity=True,
                            initial_timepoint=1,      # For deterministic behavior
                            intensity_scaling=True,   # 7-DOF (rigid + intensity)
                            subsample_threshold=200,
                            ),
        name='t1_merge')

    # 1.5 Reorient template to RAS, if needed (mri_robust_template sets LIA)
    t1_reorient = pe.Node(ConformSeries(), name='t1_reorient')

    # 2. T1 Bias Field Correction
    # Bias field correction is handled in skull strip workflows.

    # 3. Skull-stripping
    skullstrip_wf = init_skullstrip_afni_wf(name='skullstrip_afni_wf')
    if skull_strip_ants:
        skullstrip_wf = init_skullstrip_ants_wf(name='skullstrip_ants_wf',
                                                debug=debug,
                                                omp_nthreads=omp_nthreads)

    # 4. Segmentation
    t1_seg = pe.Node(FASTRPT(generate_report=True, segments=True,
                             no_bias=True, probability_maps=True),
                     name='t1_seg', mem_gb=3)

    # 5. Spatial normalization (T1w to MNI registration)
    t1_2_mni = pe.Node(
        RobustMNINormalizationRPT(
            float=True,
            generate_report=True,
            num_threads=omp_nthreads,
            flavor='testing' if debug else 'precise',
        ),
        name='t1_2_mni',
        n_procs=omp_nthreads
    )

    # Resample the brain mask and the tissue probability maps into mni space
    mni_mask = pe.Node(
        ants.ApplyTransforms(dimension=3, default_value=0, float=True,
                             interpolation='NearestNeighbor'),
        name='mni_mask'
    )

    mni_seg = pe.Node(
        ants.ApplyTransforms(dimension=3, default_value=0, float=True,
                             interpolation='NearestNeighbor'),
        name='mni_seg'
    )

    mni_tpms = pe.MapNode(
        ants.ApplyTransforms(dimension=3, default_value=0, float=True,
                             interpolation='Linear'),
        iterfield=['input_image'],
        name='mni_tpms'
    )

    def set_threads(in_list, maximum):
        return min(len(in_list), maximum)

    def len_above_thresh(in_list, threshold, longitudinal):
        if longitudinal:
            return False
        return len(in_list) > threshold

    workflow.connect([
        (inputnode, t1_conform, [('t1w', 't1w_list')]),
        (t1_conform, t1_merge, [
            ('t1w_list', 'in_files'),
            (('t1w_list', set_threads, omp_nthreads), 'num_threads'),
            (('t1w_list', len_above_thresh, 2, longitudinal), 'fixed_timepoint'),
            (('t1w_list', len_above_thresh, 2, longitudinal), 'no_iteration'),
            (('t1w_list', add_suffix, '_template'), 'out_file')]),
        (t1_merge, t1_reorient, [('out_file', 't1w_list')]),
        (t1_reorient, skullstrip_wf, [('t1w_list', 'inputnode.in_file')]),
        (skullstrip_wf, t1_seg, [('outputnode.out_file', 'in_files')]),
        (skullstrip_wf, outputnode, [('outputnode.bias_corrected', 't1_preproc'),
                                     ('outputnode.out_file', 't1_brain'),
                                     ('outputnode.out_mask', 't1_mask')]),
        (t1_seg, outputnode, [('tissue_class_map', 't1_seg'),
                              ('probability_maps', 't1_tpms')]),
    ])

    if 'template' in output_spaces:
        template_str = nid.TEMPLATE_MAP[template]
        ref_img = op.join(nid.get_dataset(template_str), '1mm_T1.nii.gz')

        t1_2_mni.inputs.template = template_str
        mni_mask.inputs.reference_image = ref_img
        mni_seg.inputs.reference_image = ref_img
        mni_tpms.inputs.reference_image = ref_img

        workflow.connect([
            (skullstrip_wf, t1_2_mni, [('outputnode.bias_corrected', 'moving_image')]),
            (skullstrip_wf, t1_2_mni, [('outputnode.out_mask', 'moving_mask')]),
            (skullstrip_wf, mni_mask, [('outputnode.out_mask', 'input_image')]),
            (t1_2_mni, mni_mask, [('composite_transform', 'transforms')]),
            (t1_seg, mni_seg, [('tissue_class_map', 'input_image')]),
            (t1_2_mni, mni_seg, [('composite_transform', 'transforms')]),
            (t1_seg, mni_tpms, [('probability_maps', 'input_image')]),
            (t1_2_mni, mni_tpms, [('composite_transform', 'transforms')]),
            (t1_2_mni, outputnode, [
                ('warped_image', 't1_2_mni'),
                ('composite_transform', 't1_2_mni_forward_transform'),
                ('inverse_composite_transform', 't1_2_mni_reverse_transform')]),
            (mni_mask, outputnode, [('output_image', 'mni_mask')]),
            (mni_seg, outputnode, [('output_image', 'mni_seg')]),
            (mni_tpms, outputnode, [('output_image', 'mni_tpms')]),
        ])

    # 6. FreeSurfer reconstruction
    if freesurfer:
        surface_recon_wf = init_surface_recon_wf(name='surface_recon_wf',
                                                 omp_nthreads=omp_nthreads, hires=hires)

        workflow.connect([
            (inputnode, surface_recon_wf, [
                ('t2w', 'inputnode.t2w'),
                ('subjects_dir', 'inputnode.subjects_dir'),
                ('subject_id', 'inputnode.subject_id')]),
            (t1_reorient, surface_recon_wf, [('t1w_list', 'inputnode.t1w')]),
            (skullstrip_wf, surface_recon_wf, [
                ('outputnode.out_file', 'inputnode.skullstripped_t1')]),
            (surface_recon_wf, outputnode, [
                ('outputnode.subjects_dir', 'subjects_dir'),
                ('outputnode.subject_id', 'subject_id'),
                ('outputnode.fs_2_t1_transform', 'fs_2_t1_transform'),
                ('outputnode.surfaces', 'surfaces')]),
        ])

    anat_reports_wf = init_anat_reports_wf(
        reportlets_dir=reportlets_dir, skull_strip_ants=skull_strip_ants,
        output_spaces=output_spaces, template=template, freesurfer=freesurfer)
    workflow.connect([
        (inputnode, anat_reports_wf, [
            (('t1w', fix_multi_T1w_source_name), 'inputnode.source_file')]),
        (t1_conform, anat_reports_wf, [('out_report', 'inputnode.t1_conform_report')]),
        (t1_seg, anat_reports_wf, [('out_report', 'inputnode.t1_seg_report')]),
    ])

    if skull_strip_ants:
        workflow.connect([
            (skullstrip_wf, anat_reports_wf, [
                ('outputnode.out_report', 'inputnode.t1_skull_strip_report')])
        ])
    if freesurfer:
        workflow.connect([
            (surface_recon_wf, anat_reports_wf, [
                ('outputnode.out_report', 'inputnode.recon_report')])
        ])
    if 'template' in output_spaces:
        workflow.connect([
            (t1_2_mni, anat_reports_wf, [('out_report', 'inputnode.t1_2_mni_report')]),
        ])

    anat_derivatives_wf = init_anat_derivatives_wf(output_dir=output_dir,
                                                   output_spaces=output_spaces,
                                                   template=template,
                                                   freesurfer=freesurfer)

    workflow.connect([
        (inputnode, anat_derivatives_wf, [
            (('t1w', fix_multi_T1w_source_name), 'inputnode.source_file')]),
        (outputnode, anat_derivatives_wf, [
            ('t1_preproc', 'inputnode.t1_preproc'),
            ('t1_mask', 'inputnode.t1_mask'),
            ('t1_seg', 'inputnode.t1_seg'),
            ('t1_tpms', 'inputnode.t1_tpms'),
            ('t1_2_mni_forward_transform', 'inputnode.t1_2_mni_forward_transform'),
            ('t1_2_mni', 'inputnode.t1_2_mni'),
            ('mni_mask', 'inputnode.mni_mask'),
            ('mni_seg', 'inputnode.mni_seg'),
            ('mni_tpms', 'inputnode.mni_tpms'),
            ('surfaces', 'inputnode.surfaces'),
        ]),
    ])

    return workflow
示例#2
0
def init_single_subject_wf(subject_id, task_id, name, ignore, debug, anat_only,
                           omp_nthreads, skull_strip_ants, reportlets_dir,
                           output_dir, bids_dir, freesurfer, output_spaces,
                           template, hires, bold2t1w_dof, fmap_bspline,
                           fmap_demean, use_syn, force_syn, output_grid_ref,
                           use_aroma, ignore_aroma_err):
    """
    The adaptable fMRI preprocessing workflow
    """

    if name == 'single_subject_wf':
        # for documentation purposes
        subject_data = {
            'func': ['/completely/made/up/path/sub-01_task-nback_bold.nii.gz']
        }
        layout = None
    else:
        layout = BIDSLayout(bids_dir)

        subject_data = collect_bids_data(bids_dir, subject_id, task_id)

        if not anat_only and subject_data['func'] == []:
            raise Exception(
                "No BOLD images found for participant {} and task {}. "
                "All workflows require BOLD images.".format(
                    subject_id, task_id if task_id else '<all>'))

        if not subject_data['t1w']:
            raise Exception(
                "No T1w images found for participant {}. "
                "All workflows require T1w images.".format(subject_id))

    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(fields=['subjects_dir']),
                        name='inputnode')

    bidssrc = pe.Node(BIDSDataGrabber(subject_data=subject_data,
                                      anat_only=anat_only),
                      name='bidssrc')

    # Preprocessing of T1w (includes registration to MNI)
    anat_preproc_wf = init_anat_preproc_wf(name="anat_preproc_wf",
                                           skull_strip_ants=skull_strip_ants,
                                           output_spaces=output_spaces,
                                           template=template,
                                           debug=debug,
                                           omp_nthreads=omp_nthreads,
                                           freesurfer=freesurfer,
                                           hires=hires,
                                           reportlets_dir=reportlets_dir,
                                           output_dir=output_dir)

    workflow.connect([
        (inputnode, anat_preproc_wf, [('subjects_dir',
                                       'inputnode.subjects_dir')]),
        (bidssrc, anat_preproc_wf, [('t1w', 'inputnode.t1w'),
                                    ('t2w', 'inputnode.t2w')]),
    ])

    if anat_only:
        return workflow

    for bold_file in subject_data['func']:
        func_preproc_wf = init_func_preproc_wf(
            bold_file=bold_file,
            layout=layout,
            ignore=ignore,
            freesurfer=freesurfer,
            bold2t1w_dof=bold2t1w_dof,
            reportlets_dir=reportlets_dir,
            output_spaces=output_spaces,
            template=template,
            output_dir=output_dir,
            omp_nthreads=omp_nthreads,
            fmap_bspline=fmap_bspline,
            fmap_demean=fmap_demean,
            use_syn=use_syn,
            force_syn=force_syn,
            debug=debug,
            output_grid_ref=output_grid_ref,
            use_aroma=use_aroma,
            ignore_aroma_err=ignore_aroma_err)

        workflow.connect([(anat_preproc_wf, func_preproc_wf,
                           [('outputnode.t1_preproc', 'inputnode.t1_preproc'),
                            ('outputnode.t1_brain', 'inputnode.t1_brain'),
                            ('outputnode.t1_mask', 'inputnode.t1_mask'),
                            ('outputnode.t1_seg', 'inputnode.t1_seg'),
                            ('outputnode.t1_tpms', 'inputnode.t1_tpms'),
                            ('outputnode.t1_2_mni_forward_transform',
                             'inputnode.t1_2_mni_forward_transform'),
                            ('outputnode.t1_2_mni_reverse_transform',
                             'inputnode.t1_2_mni_reverse_transform')])])

        if freesurfer:
            workflow.connect([
                (anat_preproc_wf, func_preproc_wf,
                 [('outputnode.subjects_dir', 'inputnode.subjects_dir'),
                  ('outputnode.subject_id', 'inputnode.subject_id'),
                  ('outputnode.fs_2_t1_transform',
                   'inputnode.fs_2_t1_transform')]),
            ])

    return workflow
示例#3
0
def init_bold_stc_wf(metadata, name='bold_stc_wf'):
    """
    This workflow performs :abbr:`STC (slice-timing correction)` over the input
    :abbr:`BOLD (blood-oxygen-level dependent)` image.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold import init_bold_stc_wf
        wf = init_bold_stc_wf(
            metadata={"RepetitionTime": 2.0,
                      "SliceTiming": [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]},
            )

    **Parameters**

        metadata : dict
            BIDS metadata for BOLD file
        name : str
            Name of workflow (default: ``bold_stc_wf``)

    **Inputs**

        bold_file
            BOLD series NIfTI file
        skip_vols
            Number of non-steady-state volumes detected at beginning of ``bold_file``

    **Outputs**

        stc_file
            Slice-timing corrected BOLD series NIfTI file

    """
    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(
        niu.IdentityInterface(fields=['bold_file', 'skip_vols']),
        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=['stc_file']),
                         name='outputnode')

    LOGGER.info('Slice-timing correction will be included.')

    def create_custom_slice_timing_file_func(metadata):
        import os
        slice_timings = metadata["SliceTiming"]
        slice_timings_ms = [str(t) for t in slice_timings]
        out_file = "timings.1D"
        with open("timings.1D", "w") as fp:
            fp.write("\t".join(slice_timings_ms))

        return os.path.abspath(out_file)

    create_custom_slice_timing_file = pe.Node(
        niu.Function(function=create_custom_slice_timing_file_func),
        name="create_custom_slice_timing_file",
        mem_gb=DEFAULT_MEMORY_MIN_GB)
    create_custom_slice_timing_file.inputs.metadata = metadata

    # It would be good to fingerprint memory use of afni.TShift
    slice_timing_correction = pe.Node(afni.TShift(
        outputtype='NIFTI_GZ', tr='{}s'.format(metadata["RepetitionTime"])),
                                      name='slice_timing_correction')

    def _prefix_at(x):
        return "@" + x

    workflow.connect([
        (inputnode, slice_timing_correction, [('bold_file', 'in_file'),
                                              ('skip_vols', 'ignore')]),
        (create_custom_slice_timing_file, slice_timing_correction,
         [(('out', _prefix_at), 'tpattern')]),
        (slice_timing_correction, outputnode, [('out_file', 'stc_file')]),
    ])

    return workflow
示例#4
0
def init_bold_reg_wf(freesurfer, use_bbr, bold2t1w_dof, mem_gb, omp_nthreads,
                     name='bold_reg_wf', use_compression=True,
                     use_fieldwarp=False):
    """
    This workflow registers the reference BOLD image to T1-space, using a
    boundary-based registration (BBR) cost function.

    If FreeSurfer-based preprocessing is enabled, the ``bbregister`` utility
    is used to align the BOLD images to the reconstructed subject, and the
    resulting transform is adjusted to target the T1 space.
    If FreeSurfer-based preprocessing is disabled, FSL FLIRT is used with the
    BBR cost function to directly target the T1 space.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.registration import init_bold_reg_wf
        wf = init_bold_reg_wf(freesurfer=True,
                              mem_gb=3,
                              omp_nthreads=1,
                              use_bbr=True,
                              bold2t1w_dof=9)

    **Parameters**

        freesurfer : bool
            Enable FreeSurfer functional registration (bbregister)
        use_bbr : bool or None
            Enable/disable boundary-based registration refinement.
            If ``None``, test BBR result for distortion before accepting.
        bold2t1w_dof : 6, 9 or 12
            Degrees-of-freedom for BOLD-T1w registration
        mem_gb : float
            Size of BOLD file in GB
        omp_nthreads : int
            Maximum number of threads an individual process may use
        name : str
            Name of workflow (default: ``bold_reg_wf``)
        use_compression : bool
            Save registered BOLD series as ``.nii.gz``
        use_fieldwarp : bool
            Include SDC warp in single-shot transform from BOLD to T1

    **Inputs**

        name_source
            BOLD series NIfTI file
            Used to recover original information lost during processing
        ref_bold_brain
            Reference image to which BOLD series is aligned
            If ``fieldwarp == True``, ``ref_bold_brain`` should be unwarped
        ref_bold_mask
            Skull-stripping mask of reference image
        t1_preproc
            Bias-corrected structural template image
        t1_brain
            Skull-stripped ``t1_preproc``
        t1_mask
            Mask of the skull-stripped template image
        t1_seg
            Segmentation of preprocessed structural image, including
            gray-matter (GM), white-matter (WM) and cerebrospinal fluid (CSF)
        t1_aseg
            FreeSurfer's ``aseg.mgz`` atlas projected into the T1w reference
            (only if ``recon-all`` was run).
        t1_aparc
            FreeSurfer's ``aparc+aseg.mgz`` atlas projected into the T1w reference
            (only if ``recon-all`` was run).
        bold_split
            Individual 3D BOLD volumes, not motion corrected
        hmc_xforms
            List of affine transforms aligning each volume to ``ref_image`` in ITK format
        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID
        t1_2_fsnative_reverse_transform
            LTA-style affine matrix translating from FreeSurfer-conformed subject space to T1w
        fieldwarp
            a :abbr:`DFM (displacements field map)` in ITK format

    **Outputs**

        itk_bold_to_t1
            Affine transform from ``ref_bold_brain`` to T1 space (ITK format)
        itk_t1_to_bold
            Affine transform from T1 space to BOLD space (ITK format)
        bold_t1
            Motion-corrected BOLD series in T1 space
        bold_mask_t1
            BOLD mask in T1 space
        bold_aseg_t1
            FreeSurfer's ``aseg.mgz`` atlas, in T1w-space at the BOLD resolution
            (only if ``recon-all`` was run).
        bold_aparc_t1
            FreeSurfer's ``aparc+aseg.mgz`` atlas, in T1w-space at the BOLD resolution
            (only if ``recon-all`` was run).
        out_report
            Reportlet visualizing quality of registration
        fallback
            Boolean indicating whether BBR was rejected (mri_coreg registration returned)


    **Subworkflows**

        * :py:func:`~fmriprep.workflows.util.init_bbreg_wf`
        * :py:func:`~fmriprep.workflows.util.init_fsl_bbr_wf`

    """
    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(
        niu.IdentityInterface(
            fields=['name_source', 'ref_bold_brain', 'ref_bold_mask',
                    't1_preproc', 't1_brain', 't1_mask', 't1_seg',
                    't1_aseg', 't1_aparc', 'bold_split', 'hmc_xforms',
                    'subjects_dir', 'subject_id', 't1_2_fsnative_reverse_transform', 'fieldwarp']),
        name='inputnode'
    )
    outputnode = pe.Node(
        niu.IdentityInterface(fields=[
            'itk_bold_to_t1', 'itk_t1_to_bold', 'out_report', 'fallback',
            'bold_t1', 'bold_mask_t1', 'bold_aseg_t1', 'bold_aparc_t1']),
        name='outputnode'
    )

    if freesurfer:
        bbr_wf = init_bbreg_wf(use_bbr=use_bbr, bold2t1w_dof=bold2t1w_dof,
                               omp_nthreads=omp_nthreads)
    else:
        bbr_wf = init_fsl_bbr_wf(use_bbr=use_bbr, bold2t1w_dof=bold2t1w_dof)

    workflow.connect([
        (inputnode, bbr_wf, [
            ('ref_bold_brain', 'inputnode.in_file'),
            ('t1_2_fsnative_reverse_transform', 'inputnode.t1_2_fsnative_reverse_transform'),
            ('subjects_dir', 'inputnode.subjects_dir'),
            ('subject_id', 'inputnode.subject_id'),
            ('t1_seg', 'inputnode.t1_seg'),
            ('t1_brain', 'inputnode.t1_brain')]),
        (bbr_wf, outputnode, [('outputnode.itk_bold_to_t1', 'itk_bold_to_t1'),
                              ('outputnode.itk_t1_to_bold', 'itk_t1_to_bold'),
                              ('outputnode.out_report', 'out_report'),
                              ('outputnode.fallback', 'fallback')]),
    ])

    gen_ref = pe.Node(GenerateSamplingReference(), name='gen_ref',
                      mem_gb=0.3)  # 256x256x256 * 64 / 8 ~ 150MB

    mask_t1w_tfm = pe.Node(
        ApplyTransforms(interpolation='MultiLabel', float=True),
        name='mask_t1w_tfm', mem_gb=0.1
    )

    workflow.connect([
        (inputnode, gen_ref, [('ref_bold_brain', 'moving_image'),
                              ('t1_brain', 'fixed_image'),
                              ('t1_mask', 'fov_mask')]),
        (inputnode, mask_t1w_tfm, [('ref_bold_mask', 'input_image')]),
        (gen_ref, mask_t1w_tfm, [('out_file', 'reference_image')]),
        (bbr_wf, mask_t1w_tfm, [('outputnode.itk_bold_to_t1', 'transforms')]),
        (mask_t1w_tfm, outputnode, [('output_image', 'bold_mask_t1')]),
    ])

    if freesurfer:
        # Resample aseg and aparc in T1w space (no transforms needed)
        aseg_t1w_tfm = pe.Node(
            ApplyTransforms(interpolation='MultiLabel', transforms='identity', float=True),
            name='aseg_t1w_tfm', mem_gb=0.1)
        aparc_t1w_tfm = pe.Node(
            ApplyTransforms(interpolation='MultiLabel', transforms='identity', float=True),
            name='aparc_t1w_tfm', mem_gb=0.1)

        workflow.connect([
            (inputnode, aseg_t1w_tfm, [('t1_aseg', 'input_image')]),
            (inputnode, aparc_t1w_tfm, [('t1_aparc', 'input_image')]),
            (gen_ref, aseg_t1w_tfm, [('out_file', 'reference_image')]),
            (gen_ref, aparc_t1w_tfm, [('out_file', 'reference_image')]),
            (aseg_t1w_tfm, outputnode, [('output_image', 'bold_aseg_t1')]),
            (aparc_t1w_tfm, outputnode, [('output_image', 'bold_aparc_t1')]),
        ])

    # Merge transforms placing the head motion correction last
    nforms = 2 + int(use_fieldwarp)
    merge_xforms = pe.Node(niu.Merge(nforms), name='merge_xforms',
                           run_without_submitting=True, mem_gb=DEFAULT_MEMORY_MIN_GB)
    workflow.connect([
        (inputnode, merge_xforms, [('hmc_xforms', 'in%d' % nforms)])
    ])

    if use_fieldwarp:
        workflow.connect([
            (inputnode, merge_xforms, [('fieldwarp', 'in2')])
        ])

    bold_to_t1w_transform = pe.Node(
        MultiApplyTransforms(interpolation="LanczosWindowedSinc", float=True, copy_dtype=True),
        name='bold_to_t1w_transform', mem_gb=mem_gb * 3 * omp_nthreads, n_procs=omp_nthreads)

    merge = pe.Node(Merge(compress=use_compression), name='merge', mem_gb=mem_gb)

    workflow.connect([
        (bbr_wf, merge_xforms, [('outputnode.itk_bold_to_t1', 'in1')]),
        (merge_xforms, bold_to_t1w_transform, [('out', 'transforms')]),
        (inputnode, merge, [('name_source', 'header_source')]),
        (merge, outputnode, [('out_file', 'bold_t1')]),
        (inputnode, bold_to_t1w_transform, [('bold_split', 'input_image')]),
        (gen_ref, bold_to_t1w_transform, [('out_file', 'reference_image')]),
        (bold_to_t1w_transform, merge, [('out_files', 'in_files')]),
    ])

    return workflow
示例#5
0
def init_bold_confs_wf(bold_file_size_gb,
                       use_aroma,
                       ignore_aroma_err,
                       metadata,
                       name="bold_confs_wf"):
    """
    This workflow calculates confounds for a BOLD series, and aggregates them
    into a :abbr:`TSV (tab-separated value)` file, for use as nuisance
    regressors in a :abbr:`GLM (general linear model)`.

    The following confounds are calculated, with column headings in parentheses:

    #. White matter / global signals (WhiteMatter, GlobalSignal)
    #. DVARS - standard, nonstandard, and voxel-wise standard variants
        (stdDVARS, non-stdDVARS, vx-wisestdDVARS)
    #. Framewise displacement, based on MCFLIRT motion parameters (FramewiseDisplacement)
    #. tCompCor
    #. aCompCor
    #. Cosine basis set for high-pass filtering w/ 0.008 Hz cut-off (CosineXX)
    #. Non-steady-state volumes (NonSteadyStateXX)
    #. MCFLIRT motion parameters, in mm and rad (X, Y, Z, RotX, RotY, RotZ)
    #. ICA-AROMA-identified noise components, if enabled (AROMAAggrCompXX)

    Prior to estimating aCompCor and tCompCor, non-steady-state volumes are
    censored and high-pass filtered using a :abbr:`DCT (discrete cosine
    transform)` basis.
    The cosine basis, as well as one regressor per censored volume, are included
    for convenience.

    .. workflow::
        :graph2use: orig
        :simpleform: yes

        from fmriprep.workflows.confounds import init_bold_confs_wf
        wf = init_bold_confs_wf(bold_file_size_gb=1,
                                use_aroma=True,
                                ignore_aroma_err=True,
                                metadata={})

    Parameters

        bold_file_size_gb : float
            Size of BOLD file in GB
        use_aroma : bool
            Perform ICA-AROMA on MNI-resampled functional series
        ignore_aroma_err : bool
            Do not fail on ICA-AROMA errors
        metadata : dict
            BIDS metadata for BOLD file

    Inputs

        bold_t1
            BOLD image, resampled in T1w space
        movpar_file
            SPM-formatted motion parameters file
        t1_mask
            Mask of the skull-stripped template image
        t1_tpms
            List of tissue probability maps in T1w space
        bold_mask_t1
            BOLD series mask in T1w space
        bold_mni
            BOLD series, resampled to template space
        bold_mask_mni
            BOLD series mask in template space

    Outputs

        confounds_file
            TSV of all aggregated confounds
        confounds_list
            List of calculated confounds for reporting
        acompcor_report
            Reportlet visualizing white-matter/CSF mask used for aCompCor
        tcompcor_report
            Reportlet visualizing ROI identified in tCompCor
        ica_aroma_report
            Reportlet visualizing MELODIC ICs, with ICA-AROMA signal/noise labels
        aroma_noise_ics
            CSV of noise components identified by ICA-AROMA
        melodic_mix
            FSL MELODIC mixing matrix
        nonaggr_denoised_file
            BOLD series with non-aggressive ICA-AROMA denoising applied
    """

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'bold_t1', 'movpar_file', 't1_mask', 't1_tpms', 'bold_mask_t1',
        'bold_mni', 'bold_mask_mni'
    ]),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'confounds_file', 'confounds_list', 'acompcor_report',
        'tcompcor_report', 'ica_aroma_report', 'aroma_noise_ics',
        'melodic_mix', 'nonaggr_denoised_file'
    ]),
                         name='outputnode')

    # ICA-AROMA
    if use_aroma:
        ica_aroma_wf = init_ica_aroma_wf(name='ica_aroma_wf',
                                         ignore_aroma_err=ignore_aroma_err)

    # DVARS
    dvars = pe.Node(nac.ComputeDVARS(save_all=True, remove_zerovariance=True),
                    name="dvars",
                    mem_gb=bold_file_size_gb * 3)

    # Frame displacement
    fdisp = pe.Node(nac.FramewiseDisplacement(parameter_source="SPM"),
                    name="fdisp",
                    mem_gb=bold_file_size_gb * 3)

    # CompCor
    non_steady_state = pe.Node(nac.NonSteadyStateDetector(),
                               name='non_steady_state')
    tcompcor = pe.Node(TCompCorRPT(components_file='tcompcor.tsv',
                                   generate_report=True,
                                   pre_filter='cosine',
                                   save_pre_filter=True,
                                   percentile_threshold=.05),
                       name="tcompcor",
                       mem_gb=bold_file_size_gb * 3)
    acompcor = pe.Node(ACompCorRPT(components_file='acompcor.tsv',
                                   pre_filter='cosine',
                                   save_pre_filter=True,
                                   generate_report=True),
                       name="acompcor",
                       mem_gb=bold_file_size_gb * 3)

    csf_roi = pe.Node(TPM2ROI(erode_mm=0, mask_erode_mm=30), name='csf_roi')
    wm_roi = pe.Node(TPM2ROI(erode_mm=6, mask_erode_mm=10), name='wm_roi')
    merge_rois = pe.Node(niu.Merge(2),
                         name='merge_rois',
                         run_without_submitting=True,
                         mem_gb=0.01)
    combine_rois = pe.Node(CombineROIs(), name='combine_rois')
    concat_rois = pe.Node(ConcatROIs(), name='concat_rois')

    # Global and segment regressors
    signals = pe.Node(SignalExtraction(
        detrend=True, class_labels=["WhiteMatter", "GlobalSignal"]),
                      name="signals",
                      mem_gb=bold_file_size_gb * 3)

    # Arrange confounds
    add_header = pe.Node(
        AddTSVHeader(columns=["X", "Y", "Z", "RotX", "RotY", "RotZ"]),
        name="add_header",
        mem_gb=0.01,
        run_without_submitting=True)
    concat = pe.Node(GatherConfounds(),
                     name="concat",
                     mem_gb=0.01,
                     run_without_submitting=True)

    # Set TR if present
    if 'RepetitionTime' in metadata:
        tcompcor.inputs.repetition_time = metadata['RepetitionTime']
        acompcor.inputs.repetition_time = metadata['RepetitionTime']

    def _pick_csf(files):
        return files[0]

    def _pick_wm(files):
        return files[2]

    workflow = pe.Workflow(name=name)
    workflow.connect([
        # connect inputnode to each non-anatomical confound node
        (inputnode, dvars, [('bold_t1', 'in_file'),
                            ('bold_mask_t1', 'in_mask')]),
        (inputnode, fdisp, [('movpar_file', 'in_file')]),
        (inputnode, non_steady_state, [('bold_t1', 'in_file')]),
        (inputnode, tcompcor, [('bold_t1', 'realigned_file')]),
        (non_steady_state, tcompcor, [('n_volumes_to_discard',
                                       'ignore_initial_volumes')]),
        (non_steady_state, acompcor, [('n_volumes_to_discard',
                                       'ignore_initial_volumes')]),
        (inputnode, csf_roi, [(('t1_tpms', _pick_csf), 't1_tpm'),
                              ('t1_mask', 't1_mask'),
                              ('bold_mask_t1', 'bold_mask')]),
        (csf_roi, tcompcor, [('eroded_mask', 'mask_files')]),
        (inputnode, wm_roi, [(('t1_tpms', _pick_wm), 't1_tpm'),
                             ('t1_mask', 't1_mask'),
                             ('bold_mask_t1', 'bold_mask')]),
        (csf_roi, merge_rois, [('roi_file', 'in1')]),
        (wm_roi, merge_rois, [('roi_file', 'in2')]),
        (merge_rois, combine_rois, [('out', 'in_files')]),
        (inputnode, combine_rois, [('bold_t1', 'ref_header')]),

        # anatomical confound: aCompCor.
        (inputnode, acompcor, [('bold_t1', 'realigned_file')]),
        (combine_rois, acompcor, [('out_file', 'mask_files')]),
        (wm_roi, concat_rois, [('roi_file', 'in_file')]),
        (inputnode, concat_rois, [('bold_mask_t1', 'in_mask')]),
        (inputnode, concat_rois, [('bold_t1', 'ref_header')]),

        # anatomical confound: signal extraction
        (concat_rois, signals, [('out_file', 'label_files')]),
        (inputnode, signals, [('bold_t1', 'in_file')]),

        # connect the confound nodes to the concatenate node
        (inputnode, add_header, [('movpar_file', 'in_file')]),
        (signals, concat, [('out_file', 'signals')]),
        (dvars, concat, [('out_all', 'dvars')]),
        (fdisp, concat, [('out_file', 'fd')]),
        (tcompcor, concat, [('components_file', 'tcompcor'),
                            ('pre_filter_file', 'cos_basis')]),
        (acompcor, concat, [('components_file', 'acompcor')]),
        (add_header, concat, [('out_file', 'motion')]),
        (concat, outputnode, [('confounds_file', 'confounds_file'),
                              ('confounds_list', 'confounds_list')]),
        (acompcor, outputnode, [('out_report', 'acompcor_report')]),
        (tcompcor, outputnode, [('out_report', 'tcompcor_report')]),
    ])

    if use_aroma:
        workflow.connect([
            (inputnode, ica_aroma_wf,
             [('bold_mni', 'inputnode.bold_mni'),
              ('bold_mask_mni', 'inputnode.bold_mask_mni'),
              ('movpar_file', 'inputnode.movpar_file')]),
            (ica_aroma_wf, concat, [('outputnode.aroma_confounds', 'aroma')]),
            (ica_aroma_wf, outputnode,
             [('outputnode.out_report', 'ica_aroma_report'),
              ('outputnode.aroma_noise_ics', 'aroma_noise_ics'),
              ('outputnode.melodic_mix', 'melodic_mix'),
              ('outputnode.nonaggr_denoised_file', 'nonaggr_denoised_file')])
        ])
    return workflow
示例#6
0
文件: base.py 项目: ValHayot/fmriprep
def init_func_preproc_wf(bold_file,
                         ignore,
                         freesurfer,
                         use_bbr,
                         t2s_coreg,
                         bold2t1w_dof,
                         reportlets_dir,
                         output_spaces,
                         template,
                         output_dir,
                         omp_nthreads,
                         fmap_bspline,
                         fmap_demean,
                         use_syn,
                         force_syn,
                         use_aroma,
                         ignore_aroma_err,
                         medial_surface_nan,
                         debug,
                         low_mem,
                         output_grid_ref,
                         layout=None):
    """
    This workflow controls the functional preprocessing stages of FMRIPREP.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold import init_func_preproc_wf
        wf = init_func_preproc_wf('/completely/made/up/path/sub-01_task-nback_bold.nii.gz',
                                  omp_nthreads=1,
                                  ignore=[],
                                  freesurfer=True,
                                  reportlets_dir='.',
                                  output_dir='.',
                                  template='MNI152NLin2009cAsym',
                                  output_spaces=['T1w', 'fsnative',
                                                 'template', 'fsaverage5'],
                                  debug=False,
                                  use_bbr=True,
                                  t2s_coreg=False,
                                  bold2t1w_dof=9,
                                  fmap_bspline=True,
                                  fmap_demean=True,
                                  use_syn=True,
                                  force_syn=True,
                                  low_mem=False,
                                  output_grid_ref=None,
                                  medial_surface_nan=False,
                                  use_aroma=False,
                                  ignore_aroma_err=False)

    **Parameters**

        bold_file : str
            BOLD series NIfTI file
        ignore : list
            Preprocessing steps to skip (may include "slicetiming", "fieldmaps")
        freesurfer : bool
            Enable FreeSurfer functional registration (bbregister) and resampling
            BOLD series to FreeSurfer surface meshes.
        use_bbr : bool or None
            Enable/disable boundary-based registration refinement.
            If ``None``, test BBR result for distortion before accepting.
        t2s_coreg : bool
            Use multiple BOLD echos to create T2*-map for T2*-driven coregistration
        bold2t1w_dof : 6, 9 or 12
            Degrees-of-freedom for BOLD-T1w registration
        reportlets_dir : str
            Directory in which to save reportlets
        output_spaces : list
            List of output spaces functional images are to be resampled to.
            Some parts of pipeline will only be instantiated for some output spaces.

            Valid spaces:

                - T1w
                - template
                - fsnative
                - fsaverage (or other pre-existing FreeSurfer templates)
        template : str
            Name of template targeted by `'template'` output space
        output_dir : str
            Directory in which to save derivatives
        omp_nthreads : int
            Maximum number of threads an individual process may use
        fmap_bspline : bool
            **Experimental**: Fit B-Spline field using least-squares
        fmap_demean : bool
            Demean voxel-shift map during unwarp
        use_syn : bool
            **Experimental**: Enable ANTs SyN-based susceptibility distortion correction (SDC).
            If fieldmaps are present and enabled, this is not run, by default.
        force_syn : bool
            **Temporary**: Always run SyN-based SDC
        use_aroma : bool
            Perform ICA-AROMA on MNI-resampled functional series
        ignore_aroma_err : bool
            Do not fail on ICA-AROMA errors
        medial_surface_nan : bool
            Replace medial wall values with NaNs on functional GIFTI files
        debug : bool
            Enable debugging outputs
        low_mem : bool
            Write uncompressed .nii files in some cases to reduce memory usage
        output_grid_ref : str or None
            Path of custom reference image for normalization
        layout : BIDSLayout
            BIDSLayout structure to enable metadata retrieval

    **Inputs**

        bold_file
            BOLD series NIfTI file
        t1_preproc
            Bias-corrected structural template image
        t1_brain
            Skull-stripped ``t1_preproc``
        t1_mask
            Mask of the skull-stripped template image
        t1_seg
            Segmentation of preprocessed structural image, including
            gray-matter (GM), white-matter (WM) and cerebrospinal fluid (CSF)
        t1_tpms
            List of tissue probability maps in T1w space
        t1_2_mni_forward_transform
            ANTs-compatible affine-and-warp transform file
        t1_2_mni_reverse_transform
            ANTs-compatible affine-and-warp transform file (inverse)
        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID
        t1_2_fsnative_forward_transform
            LTA-style affine matrix translating from T1w to FreeSurfer-conformed subject space
        t1_2_fsnative_reverse_transform
            LTA-style affine matrix translating from FreeSurfer-conformed subject space to T1w


    **Outputs**

        bold_t1
            BOLD series, resampled to T1w space
        bold_mask_t1
            BOLD series mask in T1w space
        bold_mni
            BOLD series, resampled to template space
        bold_mask_mni
            BOLD series mask in template space
        confounds
            TSV of confounds
        surfaces
            BOLD series, resampled to FreeSurfer surfaces
        aroma_noise_ics
            Noise components identified by ICA-AROMA
        melodic_mix
            FSL MELODIC mixing matrix


    **Subworkflows**

        * :py:func:`~fmriprep.workflows.bold.util.init_bold_reference_wf`
        * :py:func:`~fmriprep.workflows.bold.stc.init_bold_stc_wf`
        * :py:func:`~fmriprep.workflows.bold.hmc.init_bold_hmc_wf`
        * :py:func:`~fmriprep.workflows.bold.t2s.init_bold_t2s_wf`
        * :py:func:`~fmriprep.workflows.bold.registration.init_bold_reg_wf`
        * :py:func:`~fmriprep.workflows.bold.confounds.init_bold_confounds_wf`
        * :py:func:`~fmriprep.workflows.bold.confounds.init_ica_aroma_wf`
        * :py:func:`~fmriprep.workflows.bold.resampling.init_bold_mni_trans_wf`
        * :py:func:`~fmriprep.workflows.bold.resampling.init_bold_preproc_trans_wf`
        * :py:func:`~fmriprep.workflows.bold.resampling.init_bold_surf_wf`
        * :py:func:`~fmriprep.workflows.fieldmap.pepolar.init_pepolar_unwarp_wf`
        * :py:func:`~fmriprep.workflows.fieldmap.init_fmap_estimator_wf`
        * :py:func:`~fmriprep.workflows.fieldmap.init_sdc_unwarp_wf`
        * :py:func:`~fmriprep.workflows.fieldmap.init_nonlinear_sdc_wf`

    """

    ref_file = bold_file
    mem_gb = {'filesize': 1, 'resampled': 1, 'largemem': 1}
    bold_tlen = 10
    multiecho = isinstance(bold_file, list)

    if multiecho:
        tes = [layout.get_metadata(echo)['EchoTime'] for echo in bold_file]
        ref_file = dict(zip(tes, bold_file))[min(tes)]

    if os.path.isfile(ref_file):
        bold_tlen, mem_gb = _create_mem_gb(ref_file)

    wf_name = _get_wf_name(ref_file)
    LOGGER.log(
        25, ('Creating bold processing workflow for "%s" (%.2f GB / %d TRs). '
             'Memory resampled/largemem=%.2f/%.2f GB.'), ref_file,
        mem_gb['filesize'], bold_tlen, mem_gb['resampled'], mem_gb['largemem'])

    # For doc building purposes
    if layout is None or bold_file == 'bold_preprocesing':
        LOGGER.log(25, 'No valid layout: building empty workflow.')
        metadata = {
            'RepetitionTime': 2.0,
            'SliceTiming': [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
            'PhaseEncodingDirection': 'j',
        }
        fmaps = [{
            'type':
            'phasediff',
            'phasediff':
            'sub-03/ses-2/fmap/sub-03_ses-2_run-1_phasediff.nii.gz',
            'magnitude1':
            'sub-03/ses-2/fmap/sub-03_ses-2_run-1_magnitude1.nii.gz',
            'magnitude2':
            'sub-03/ses-2/fmap/sub-03_ses-2_run-1_magnitude2.nii.gz',
        }]
        run_stc = True
        multiecho = False
    else:
        metadata = layout.get_metadata(ref_file)

        # Find fieldmaps. Options: (phase1|phase2|phasediff|epi|fieldmap|syn)
        fmaps = []
        if 'fieldmaps' not in ignore:
            fmaps = layout.get_fieldmap(ref_file, return_list=True)
            for fmap in fmaps:
                fmap['metadata'] = layout.get_metadata(fmap[fmap['type']])

        # Run SyN if forced or in the absence of fieldmap correction
        if force_syn or (use_syn and not fmaps):
            fmaps.append({'type': 'syn'})

        # Short circuits: (True and True and (False or 'TooShort')) == 'TooShort'
        run_stc = ("SliceTiming" in metadata and 'slicetiming' not in ignore
                   and (_get_series_len(bold_file) > 4 or "TooShort"))

    # Use T2* as target for ME-EPI in co-registration
    if t2s_coreg and not multiecho:
        LOGGER.warning(
            "No multiecho BOLD images found for T2* coregistration. "
            "Using standard EPI-T1 coregistration.")
        t2s_coreg = False

    # Build workflow
    workflow = pe.Workflow(name=wf_name)
    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'bold_file', 'subjects_dir', 'subject_id', 't1_preproc', 't1_brain',
        't1_mask', 't1_seg', 't1_tpms', 't1_aseg', 't1_aparc',
        't1_2_mni_forward_transform', 't1_2_mni_reverse_transform',
        't1_2_fsnative_forward_transform', 't1_2_fsnative_reverse_transform'
    ]),
                        name='inputnode')
    inputnode.inputs.bold_file = bold_file

    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'bold_t1', 'bold_mask_t1', 'bold_aseg_t1', 'bold_aparc_t1', 'bold_mni',
        'bold_mask_mni', 'confounds', 'surfaces', 't2s_map', 'aroma_noise_ics',
        'melodic_mix', 'nonaggr_denoised_file'
    ]),
                         name='outputnode')

    # BOLD buffer: an identity used as a pointer to either the original BOLD
    # or the STC'ed one for further use.
    boldbuffer = pe.Node(niu.IdentityInterface(fields=['bold_file']),
                         name='boldbuffer')

    summary = pe.Node(FunctionalSummary(
        output_spaces=output_spaces,
        slice_timing=run_stc,
        registration='FreeSurfer' if freesurfer else 'FSL',
        registration_dof=bold2t1w_dof,
        pe_direction=metadata.get("PhaseEncodingDirection")),
                      name='summary',
                      mem_gb=DEFAULT_MEMORY_MIN_GB,
                      run_without_submitting=True)

    func_reports_wf = init_func_reports_wf(reportlets_dir=reportlets_dir,
                                           freesurfer=freesurfer,
                                           use_aroma=use_aroma,
                                           use_syn=use_syn,
                                           t2s_coreg=t2s_coreg)

    func_derivatives_wf = init_func_derivatives_wf(output_dir=output_dir,
                                                   output_spaces=output_spaces,
                                                   template=template,
                                                   freesurfer=freesurfer,
                                                   use_aroma=use_aroma)

    workflow.connect([
        (inputnode, func_reports_wf, [('bold_file', 'inputnode.source_file')]),
        (inputnode, func_derivatives_wf, [('bold_file',
                                           'inputnode.source_file')]),
        (outputnode, func_derivatives_wf, [
            ('bold_t1', 'inputnode.bold_t1'),
            ('bold_aseg_t1', 'inputnode.bold_aseg_t1'),
            ('bold_aparc_t1', 'inputnode.bold_aparc_t1'),
            ('bold_mask_t1', 'inputnode.bold_mask_t1'),
            ('bold_mni', 'inputnode.bold_mni'),
            ('bold_mask_mni', 'inputnode.bold_mask_mni'),
            ('confounds', 'inputnode.confounds'),
            ('surfaces', 'inputnode.surfaces'),
            ('aroma_noise_ics', 'inputnode.aroma_noise_ics'),
            ('melodic_mix', 'inputnode.melodic_mix'),
            ('nonaggr_denoised_file', 'inputnode.nonaggr_denoised_file'),
        ]),
    ])

    # The first reference uses T2 contrast enhancement
    bold_reference_wf = init_bold_reference_wf(omp_nthreads=omp_nthreads,
                                               enhance_t2=True)

    # Top-level BOLD splitter
    bold_split = pe.Node(FSLSplit(dimension='t'),
                         name='bold_split',
                         mem_gb=mem_gb['filesize'] * 3)

    # HMC on the BOLD
    bold_hmc_wf = init_bold_hmc_wf(name='bold_hmc_wf',
                                   mem_gb=mem_gb['filesize'],
                                   omp_nthreads=omp_nthreads)

    # mean BOLD registration to T1w
    bold_reg_wf = init_bold_reg_wf(name='bold_reg_wf',
                                   freesurfer=freesurfer,
                                   use_bbr=use_bbr,
                                   bold2t1w_dof=bold2t1w_dof,
                                   mem_gb=mem_gb['resampled'],
                                   omp_nthreads=omp_nthreads,
                                   use_compression=False,
                                   use_fieldwarp=(fmaps is not None
                                                  or use_syn))

    # get confounds
    bold_confounds_wf = init_bold_confs_wf(mem_gb=mem_gb['largemem'],
                                           metadata=metadata,
                                           name='bold_confounds_wf')
    bold_confounds_wf.get_node('inputnode').inputs.t1_transform_flags = [False]

    # Apply transforms in 1 shot
    # Only use uncompressed output if AROMA is to be run
    bold_bold_trans_wf = init_bold_preproc_trans_wf(
        mem_gb=mem_gb['resampled'],
        omp_nthreads=omp_nthreads,
        use_compression=not low_mem,
        use_fieldwarp=(fmaps is not None or use_syn),
        name='bold_bold_trans_wf')

    # SLICE-TIME CORRECTION (or bypass) #############################################
    if run_stc is True:  # bool('TooShort') == True, so check True explicitly
        bold_stc_wf = init_bold_stc_wf(name='bold_stc_wf', metadata=metadata)
        workflow.connect([
            (bold_stc_wf, boldbuffer, [('outputnode.stc_file', 'bold_file')]),
            (bold_reference_wf, bold_stc_wf,
             [('outputnode.bold_file', 'inputnode.bold_file'),
              ('outputnode.skip_vols', 'inputnode.skip_vols')]),
        ])
    else:  # bypass STC from original BOLD to the splitter through boldbuffer
        workflow.connect([
            (bold_reference_wf, boldbuffer, [('outputnode.bold_file',
                                              'bold_file')]),
        ])

    # SDC (SUSCEPTIBILITY DISTORTION CORRECTION) or bypass ##########################
    bold_sdc_wf = init_sdc_wf(fmaps,
                              metadata,
                              omp_nthreads=omp_nthreads,
                              debug=debug,
                              fmap_demean=fmap_demean,
                              fmap_bspline=fmap_bspline)
    bold_sdc_wf.inputs.inputnode.template = template

    if not fmaps:
        LOGGER.warning('SDC: no fieldmaps found or they were ignored (%s).',
                       ref_file)
    elif fmaps[0]['type'] == 'syn':
        LOGGER.warning(
            'SDC: no fieldmaps found or they were ignored. '
            'Using EXPERIMENTAL "fieldmap-less SyN" correction '
            'for dataset %s.', ref_file)
    else:
        LOGGER.log(
            25, 'SDC: fieldmap estimation of type "%s" intended for %s found.',
            fmaps[0]['type'], ref_file)

    # MAIN WORKFLOW STRUCTURE #######################################################
    workflow.connect([
        # BOLD buffer has slice-time corrected if it was run, original otherwise
        (boldbuffer, bold_split, [('bold_file', 'in_file')]),
        # Generate early reference
        (inputnode, bold_reference_wf, [('bold_file', 'inputnode.bold_file')]),
        (bold_reference_wf, func_reports_wf,
         [('outputnode.validation_report', 'inputnode.validation_report')]),
        # EPI-T1 registration workflow
        (
            inputnode,
            bold_reg_wf,
            [
                ('bold_file', 'inputnode.name_source'),
                ('t1_preproc', 'inputnode.t1_preproc'),
                ('t1_brain', 'inputnode.t1_brain'),
                ('t1_mask', 'inputnode.t1_mask'),
                ('t1_seg', 'inputnode.t1_seg'),
                ('t1_aseg', 'inputnode.t1_aseg'),
                ('t1_aparc', 'inputnode.t1_aparc'),
                # Undefined if --no-freesurfer, but this is safe
                ('subjects_dir', 'inputnode.subjects_dir'),
                ('subject_id', 'inputnode.subject_id'),
                ('t1_2_fsnative_reverse_transform',
                 'inputnode.t1_2_fsnative_reverse_transform')
            ]),
        (bold_split, bold_reg_wf, [('out_files', 'inputnode.bold_split')]),
        (bold_hmc_wf, bold_reg_wf, [('outputnode.xforms',
                                     'inputnode.hmc_xforms')]),
        (bold_reg_wf, func_reports_wf, [
            ('outputnode.out_report', 'inputnode.bold_reg_report'),
            ('outputnode.fallback', 'inputnode.bold_reg_fallback'),
        ]),
        (bold_reg_wf, outputnode, [('outputnode.bold_t1', 'bold_t1'),
                                   ('outputnode.bold_aseg_t1', 'bold_aseg_t1'),
                                   ('outputnode.bold_aparc_t1',
                                    'bold_aparc_t1')]),
        (bold_reg_wf, summary, [('outputnode.fallback', 'fallback')]),
        # SDC (or pass-through workflow)
        (inputnode, bold_sdc_wf, [('t1_brain', 'inputnode.t1_brain'),
                                  ('t1_2_mni_reverse_transform',
                                   'inputnode.t1_2_mni_reverse_transform')]),
        (bold_reference_wf, bold_sdc_wf,
         [('outputnode.ref_image', 'inputnode.bold_ref'),
          ('outputnode.ref_image_brain', 'inputnode.bold_ref_brain'),
          ('outputnode.bold_mask', 'inputnode.bold_mask')]),
        (bold_sdc_wf, bold_reg_wf,
         [('outputnode.bold_ref_brain', 'inputnode.ref_bold_brain'),
          ('outputnode.bold_mask', 'inputnode.ref_bold_mask'),
          ('outputnode.out_warp', 'inputnode.fieldwarp')]),
        (bold_sdc_wf, bold_bold_trans_wf,
         [('outputnode.out_warp', 'inputnode.fieldwarp'),
          ('outputnode.bold_mask', 'inputnode.bold_mask')]),
        (bold_sdc_wf, summary, [('outputnode.method', 'distortion_correction')
                                ]),
        # Connect bold_confounds_wf
        (inputnode, bold_confounds_wf, [('t1_tpms', 'inputnode.t1_tpms'),
                                        ('t1_mask', 'inputnode.t1_mask')]),
        (bold_hmc_wf, bold_confounds_wf, [('outputnode.movpar_file',
                                           'inputnode.movpar_file')]),
        (bold_reg_wf, bold_confounds_wf, [('outputnode.itk_t1_to_bold',
                                           'inputnode.t1_bold_xform')]),
        (bold_confounds_wf, func_reports_wf, [('outputnode.rois_report',
                                               'inputnode.bold_rois_report')]),
        (bold_confounds_wf, outputnode, [
            ('outputnode.confounds_file', 'confounds'),
        ]),
        # Connect bold_bold_trans_wf
        (inputnode, bold_bold_trans_wf, [('bold_file', 'inputnode.name_source')
                                         ]),
        (bold_split, bold_bold_trans_wf, [('out_files', 'inputnode.bold_split')
                                          ]),
        (bold_hmc_wf, bold_bold_trans_wf, [('outputnode.xforms',
                                            'inputnode.hmc_xforms')]),
        (bold_bold_trans_wf, bold_confounds_wf,
         [('outputnode.bold', 'inputnode.bold'),
          ('outputnode.bold_mask', 'inputnode.bold_mask')]),
        # Summary
        (outputnode, summary, [('confounds', 'confounds_file')]),
        (summary, func_reports_wf, [('out_report', 'inputnode.summary_report')
                                    ]),
    ])

    if fmaps:
        from ..fieldmap.unwarp import init_fmap_unwarp_report_wf
        sdc_type = fmaps[0]['type']

        # Report on BOLD correction
        fmap_unwarp_report_wf = init_fmap_unwarp_report_wf(suffix='sdc_%s' %
                                                           sdc_type)
        workflow.connect([
            (inputnode, fmap_unwarp_report_wf, [('t1_seg', 'inputnode.in_seg')
                                                ]),
            (bold_reference_wf, fmap_unwarp_report_wf,
             [('outputnode.ref_image', 'inputnode.in_pre')]),
            (bold_reg_wf, fmap_unwarp_report_wf, [('outputnode.itk_t1_to_bold',
                                                   'inputnode.in_xfm')]),
            (bold_sdc_wf, fmap_unwarp_report_wf, [('outputnode.bold_ref',
                                                   'inputnode.in_post')]),
        ])

        if force_syn and sdc_type != 'syn':
            syn_unwarp_report_wf = init_fmap_unwarp_report_wf(
                suffix='forcedsyn', name='syn_unwarp_report_wf')
            workflow.connect([
                (inputnode, syn_unwarp_report_wf, [('t1_seg',
                                                    'inputnode.in_seg')]),
                (bold_reference_wf, syn_unwarp_report_wf,
                 [('outputnode.ref_image', 'inputnode.in_pre')]),
                (bold_reg_wf, syn_unwarp_report_wf,
                 [('outputnode.itk_t1_to_bold', 'inputnode.in_xfm')]),
                (bold_sdc_wf, syn_unwarp_report_wf,
                 [('outputnode.syn_bold_ref', 'inputnode.in_post')]),
            ])

    # Fill-in datasinks of reportlets seen so far
    for node in workflow.list_node_names():
        if node.split('.')[-1].startswith('ds_report'):
            workflow.get_node(node).inputs.base_directory = reportlets_dir
            workflow.get_node(node).inputs.source_file = bold_file

    # if multiecho data, select first echo for hmc correction
    if multiecho:
        inputnode.iterables = ('bold_file', bold_file)

        me_first_echo = pe.JoinNode(interface=FirstEcho(te_list=tes),
                                    joinfield=['in_files', 'ref_imgs'],
                                    joinsource='inputnode',
                                    name='me_first_echo')
        workflow.connect([(bold_reference_wf, me_first_echo,
                           [('outputnode.bold_file', 'in_files'),
                            ('outputnode.raw_ref_image', 'ref_imgs')]),
                          (me_first_echo, bold_hmc_wf,
                           [('first_image', 'inputnode.bold_file'),
                            ('first_ref_image', 'inputnode.raw_ref_image')])])

        if t2s_coreg:
            # use a joinNode to gather all preprocessed echos
            join_split_echos = pe.JoinNode(
                niu.IdentityInterface(fields=['echo_files']),
                joinsource='inputnode',
                joinfield='echo_files',
                name='join_split_echos')

            # create a T2* map
            bold_t2s_wf = init_bold_t2s_wf(echo_times=tes,
                                           name='bold_t2s_wf',
                                           mem_gb=mem_gb['filesize'],
                                           omp_nthreads=omp_nthreads)

            subset_reg_reports = pe.JoinNode(niu.Select(index=0),
                                             name='subset_reg_reports',
                                             joinsource=inputnode,
                                             joinfield=['inlist'])

            subset_reg_fallbacks = pe.JoinNode(niu.Select(index=0),
                                               name='subset_reg_fallbacks',
                                               joinsource=inputnode,
                                               joinfield=['inlist'])

            first_echo = pe.Node(niu.IdentityInterface(fields=['first_echo']),
                                 name='first_echo')
            first_echo.inputs.first_echo = ref_file

            # remove duplicate registration reports
            workflow.disconnect([
                (bold_reg_wf, func_reports_wf,
                 [('outputnode.out_report', 'inputnode.bold_reg_report'),
                  ('outputnode.fallback', 'inputnode.bold_reg_fallback')]),
                (bold_sdc_wf, bold_reg_wf,
                 [('outputnode.out_warp', 'inputnode.fieldwarp'),
                  ('outputnode.bold_ref_brain', 'inputnode.ref_bold_brain'),
                  ('outputnode.bold_mask', 'inputnode.ref_bold_mask')]),
            ])

            workflow.connect([
                (first_echo, func_reports_wf, [('first_echo',
                                                'inputnode.first_echo')]),
                (bold_split, join_split_echos, [('out_files', 'echo_files')]),
                (join_split_echos, bold_t2s_wf, [('echo_files',
                                                  'inputnode.echo_split')]),
                (bold_hmc_wf, bold_t2s_wf, [('outputnode.xforms',
                                             'inputnode.hmc_xforms')]),
                (bold_t2s_wf, bold_reg_wf,
                 [('outputnode.t2s_map', 'inputnode.ref_bold_brain'),
                  ('outputnode.oc_mask', 'inputnode.ref_bold_mask')]),
                (bold_reg_wf, subset_reg_reports, [('outputnode.out_report',
                                                    'inlist')]),
                (bold_reg_wf, subset_reg_fallbacks, [('outputnode.fallback',
                                                      'inlist')]),
                (subset_reg_reports, func_reports_wf,
                 [('out', 'inputnode.bold_reg_report')]),
                (subset_reg_fallbacks, func_reports_wf,
                 [('out', 'inputnode.bold_reg_fallback')]),
            ])
    else:
        workflow.connect([(bold_reference_wf, bold_hmc_wf, [
            ('outputnode.raw_ref_image', 'inputnode.raw_ref_image'),
            ('outputnode.bold_file', 'inputnode.bold_file')
        ])])

    # Map final BOLD mask into T1w space (if required)
    if 'T1w' in output_spaces:
        from niworkflows.interfaces.fixes import (FixHeaderApplyTransforms as
                                                  ApplyTransforms)

        boldmask_to_t1w = pe.Node(ApplyTransforms(interpolation='MultiLabel',
                                                  float=True),
                                  name='boldmask_to_t1w',
                                  mem_gb=0.1)
        workflow.connect([
            (bold_bold_trans_wf, boldmask_to_t1w, [('outputnode.bold_mask',
                                                    'input_image')]),
            (bold_reg_wf, boldmask_to_t1w,
             [('outputnode.bold_mask_t1', 'reference_image'),
              ('outputnode.itk_bold_to_t1', 'transforms')]),
            (boldmask_to_t1w, outputnode, [('output_image', 'bold_mask_t1')]),
        ])

    if 'template' in output_spaces:
        # Apply transforms in 1 shot
        # Only use uncompressed output if AROMA is to be run
        bold_mni_trans_wf = init_bold_mni_trans_wf(
            template=template,
            mem_gb=mem_gb['resampled'],
            omp_nthreads=omp_nthreads,
            output_grid_ref=output_grid_ref,
            use_compression=not (low_mem and use_aroma),
            use_fieldwarp=fmaps is not None,
            name='bold_mni_trans_wf')

        workflow.connect([
            (inputnode, bold_mni_trans_wf,
             [('bold_file', 'inputnode.name_source'),
              ('t1_2_mni_forward_transform',
               'inputnode.t1_2_mni_forward_transform')]),
            (bold_split, bold_mni_trans_wf, [('out_files',
                                              'inputnode.bold_split')]),
            (bold_hmc_wf, bold_mni_trans_wf, [('outputnode.xforms',
                                               'inputnode.hmc_xforms')]),
            (bold_reg_wf, bold_mni_trans_wf, [('outputnode.itk_bold_to_t1',
                                               'inputnode.itk_bold_to_t1')]),
            (bold_bold_trans_wf, bold_mni_trans_wf, [('outputnode.bold_mask',
                                                      'inputnode.bold_mask')]),
            (bold_sdc_wf, bold_mni_trans_wf, [('outputnode.out_warp',
                                               'inputnode.fieldwarp')]),
            (bold_mni_trans_wf, outputnode,
             [('outputnode.bold_mni', 'bold_mni'),
              ('outputnode.bold_mask_mni', 'bold_mask_mni')]),
        ])

        if use_aroma:  # ICA-AROMA workflow
            """
            ica_aroma_report
                Reportlet visualizing MELODIC ICs, with ICA-AROMA signal/noise labels
            aroma_noise_ics
                CSV of noise components identified by ICA-AROMA
            melodic_mix
                FSL MELODIC mixing matrix
            nonaggr_denoised_file
                BOLD series with non-aggressive ICA-AROMA denoising applied

            """
            from .confounds import init_ica_aroma_wf
            from ...interfaces import JoinTSVColumns
            ica_aroma_wf = init_ica_aroma_wf(name='ica_aroma_wf',
                                             ignore_aroma_err=ignore_aroma_err)
            join = pe.Node(JoinTSVColumns(), name='aroma_confounds')

            workflow.disconnect([
                (bold_confounds_wf, outputnode, [
                    ('outputnode.confounds_file', 'confounds'),
                ]),
            ])
            workflow.connect([
                (bold_hmc_wf, ica_aroma_wf, [('outputnode.movpar_file',
                                              'inputnode.movpar_file')]),
                (bold_mni_trans_wf, ica_aroma_wf,
                 [('outputnode.bold_mask_mni', 'inputnode.bold_mask_mni'),
                  ('outputnode.bold_mni', 'inputnode.bold_mni')]),
                (bold_confounds_wf, join, [('outputnode.confounds_file',
                                            'in_file')]),
                (ica_aroma_wf, join, [('outputnode.aroma_confounds',
                                       'join_file')]),
                (ica_aroma_wf, outputnode,
                 [('outputnode.aroma_noise_ics', 'aroma_noise_ics'),
                  ('outputnode.melodic_mix', 'melodic_mix'),
                  ('outputnode.nonaggr_denoised_file', 'nonaggr_denoised_file')
                  ]),
                (join, outputnode, [('out_file', 'confounds')]),
                (ica_aroma_wf, func_reports_wf,
                 [('outputnode.out_report', 'inputnode.ica_aroma_report')]),
            ])

    # SURFACES ##################################################################################
    if freesurfer and any(space.startswith('fs') for space in output_spaces):
        LOGGER.log(25, 'Creating BOLD surface-sampling workflow.')
        bold_surf_wf = init_bold_surf_wf(mem_gb=mem_gb['resampled'],
                                         output_spaces=output_spaces,
                                         medial_surface_nan=medial_surface_nan,
                                         name='bold_surf_wf')
        workflow.connect([
            (inputnode, bold_surf_wf,
             [('t1_preproc', 'inputnode.t1_preproc'),
              ('subjects_dir', 'inputnode.subjects_dir'),
              ('subject_id', 'inputnode.subject_id'),
              ('t1_2_fsnative_forward_transform',
               'inputnode.t1_2_fsnative_forward_transform')]),
            (bold_reg_wf, bold_surf_wf, [('outputnode.bold_t1',
                                          'inputnode.source_file')]),
            (bold_surf_wf, outputnode, [('outputnode.surfaces', 'surfaces')]),
        ])

    # REPORTING ############################################################
    bold_bold_report_wf = init_bold_preproc_report_wf(
        mem_gb=mem_gb['resampled'], reportlets_dir=reportlets_dir)

    workflow.connect([
        (inputnode, bold_bold_report_wf,
         [('bold_file', 'inputnode.name_source'),
          ('bold_file', 'inputnode.in_pre')]),  # This should be after STC
        (bold_bold_trans_wf, bold_bold_report_wf, [('outputnode.bold',
                                                    'inputnode.in_post')]),
    ])

    return workflow
示例#7
0
文件: base.py 项目: ValHayot/fmriprep
def init_func_derivatives_wf(output_dir,
                             output_spaces,
                             template,
                             freesurfer,
                             use_aroma,
                             name='func_derivatives_wf'):
    """
    Set up a battery of datasinks to store derivatives in the right location
    """
    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'source_file', 'bold_t1', 'bold_mask_t1', 'bold_mni', 'bold_mask_mni',
        'bold_aseg_t1', 'bold_aparc_t1', 'confounds', 'surfaces',
        'aroma_noise_ics', 'melodic_mix', 'nonaggr_denoised_file'
    ]),
                        name='inputnode')

    suffix_fmt = 'space-{}_{}'.format
    variant_suffix_fmt = 'space-{}_variant-{}_{}'.format

    ds_confounds = pe.Node(DerivativesDataSink(base_directory=output_dir,
                                               suffix='confounds'),
                           name="ds_confounds",
                           run_without_submitting=True,
                           mem_gb=DEFAULT_MEMORY_MIN_GB)
    workflow.connect([
        (inputnode, ds_confounds, [('source_file', 'source_file'),
                                   ('confounds', 'in_file')]),
    ])

    # Resample to T1w space
    if 'T1w' in output_spaces:
        ds_bold_t1 = pe.Node(DerivativesDataSink(base_directory=output_dir,
                                                 suffix=suffix_fmt(
                                                     'T1w', 'preproc')),
                             name='ds_bold_t1',
                             run_without_submitting=True,
                             mem_gb=DEFAULT_MEMORY_MIN_GB)

        ds_bold_mask_t1 = pe.Node(DerivativesDataSink(
            base_directory=output_dir, suffix=suffix_fmt('T1w', 'brainmask')),
                                  name='ds_bold_mask_t1',
                                  run_without_submitting=True,
                                  mem_gb=DEFAULT_MEMORY_MIN_GB)
        workflow.connect([
            (inputnode, ds_bold_t1, [('source_file', 'source_file'),
                                     ('bold_t1', 'in_file')]),
            (inputnode, ds_bold_mask_t1, [('source_file', 'source_file'),
                                          ('bold_mask_t1', 'in_file')]),
        ])

    # Resample to template (default: MNI)
    if 'template' in output_spaces:
        ds_bold_mni = pe.Node(DerivativesDataSink(base_directory=output_dir,
                                                  suffix=suffix_fmt(
                                                      template, 'preproc')),
                              name='ds_bold_mni',
                              run_without_submitting=True,
                              mem_gb=DEFAULT_MEMORY_MIN_GB)
        ds_bold_mask_mni = pe.Node(DerivativesDataSink(
            base_directory=output_dir,
            suffix=suffix_fmt(template, 'brainmask')),
                                   name='ds_bold_mask_mni',
                                   run_without_submitting=True,
                                   mem_gb=DEFAULT_MEMORY_MIN_GB)
        workflow.connect([
            (inputnode, ds_bold_mni, [('source_file', 'source_file'),
                                      ('bold_mni', 'in_file')]),
            (inputnode, ds_bold_mask_mni, [('source_file', 'source_file'),
                                           ('bold_mask_mni', 'in_file')]),
        ])

    if freesurfer:
        ds_bold_aseg_t1 = pe.Node(DerivativesDataSink(
            base_directory=output_dir, suffix='space-T1w_label-aseg_roi'),
                                  name='ds_bold_aseg_t1',
                                  run_without_submitting=True,
                                  mem_gb=DEFAULT_MEMORY_MIN_GB)
        ds_bold_aparc_t1 = pe.Node(DerivativesDataSink(
            base_directory=output_dir, suffix='space-T1w_label-aparcaseg_roi'),
                                   name='ds_bold_aparc_t1',
                                   run_without_submitting=True,
                                   mem_gb=DEFAULT_MEMORY_MIN_GB)
        workflow.connect([
            (inputnode, ds_bold_aseg_t1, [('source_file', 'source_file'),
                                          ('bold_aseg_t1', 'in_file')]),
            (inputnode, ds_bold_aparc_t1, [('source_file', 'source_file'),
                                           ('bold_aparc_t1', 'in_file')]),
        ])

    # fsaverage space
    if freesurfer and any(space.startswith('fs') for space in output_spaces):
        name_surfs = pe.MapNode(GiftiNameSource(
            pattern=r'(?P<LR>[lr])h.(?P<space>\w+).gii',
            template='space-{space}.{LR}.func'),
                                iterfield='in_file',
                                name='name_surfs',
                                mem_gb=DEFAULT_MEMORY_MIN_GB,
                                run_without_submitting=True)
        ds_bold_surfs = pe.MapNode(
            DerivativesDataSink(base_directory=output_dir),
            iterfield=['in_file', 'suffix'],
            name='ds_bold_surfs',
            run_without_submitting=True,
            mem_gb=DEFAULT_MEMORY_MIN_GB)
        workflow.connect([
            (inputnode, name_surfs, [('surfaces', 'in_file')]),
            (inputnode, ds_bold_surfs, [('source_file', 'source_file'),
                                        ('surfaces', 'in_file')]),
            (name_surfs, ds_bold_surfs, [('out_name', 'suffix')]),
        ])

    if use_aroma:
        ds_aroma_noise_ics = pe.Node(DerivativesDataSink(
            base_directory=output_dir, suffix='AROMAnoiseICs'),
                                     name="ds_aroma_noise_ics",
                                     run_without_submitting=True,
                                     mem_gb=DEFAULT_MEMORY_MIN_GB)
        ds_melodic_mix = pe.Node(DerivativesDataSink(base_directory=output_dir,
                                                     suffix='MELODICmix'),
                                 name="ds_melodic_mix",
                                 run_without_submitting=True,
                                 mem_gb=DEFAULT_MEMORY_MIN_GB)
        ds_aroma_mni = pe.Node(DerivativesDataSink(
            base_directory=output_dir,
            suffix=variant_suffix_fmt(template, 'smoothAROMAnonaggr',
                                      'preproc')),
                               name='ds_aroma_mni',
                               run_without_submitting=True,
                               mem_gb=DEFAULT_MEMORY_MIN_GB)

        workflow.connect([
            (inputnode, ds_aroma_noise_ics, [('source_file', 'source_file'),
                                             ('aroma_noise_ics', 'in_file')]),
            (inputnode, ds_melodic_mix, [('source_file', 'source_file'),
                                         ('melodic_mix', 'in_file')]),
            (inputnode, ds_aroma_mni, [('source_file', 'source_file'),
                                       ('nonaggr_denoised_file', 'in_file')]),
        ])

    return workflow
示例#8
0
def init_bold_hmc_wf(mem_gb, omp_nthreads, name='bold_hmc_wf'):
    """
    This workflow estimates the motion parameters to perform
    :abbr:`HMC (head motion correction)` over the input
    :abbr:`BOLD (blood-oxygen-level dependent)` image.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold import init_bold_hmc_wf
        wf = init_bold_hmc_wf(
            mem_gb=3,
            omp_nthreads=1)

    **Parameters**

        mem_gb : float
            Size of BOLD file in GB
        omp_nthreads : int
            Maximum number of threads an individual process may use
        name : str
            Name of workflow (default: ``bold_hmc_wf``)

    **Inputs**

        bold_file
            BOLD series NIfTI file
        raw_ref_image
            Reference image to which BOLD series is motion corrected

    **Outputs**

        xforms
            ITKTransform file aligning each volume to ``ref_image``
        movpar_file
            MCFLIRT motion parameters, normalized to SPM format (X, Y, Z, Rx, Ry, Rz)

    """
    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(
        niu.IdentityInterface(fields=['bold_file', 'raw_ref_image']),
        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(fields=['xforms', 'movpar_file']),
        name='outputnode')

    # Head motion correction (hmc)
    mcflirt = pe.Node(fsl.MCFLIRT(save_mats=True, save_plots=True),
                      name='mcflirt',
                      mem_gb=mem_gb * 3)

    fsl2itk = pe.Node(MCFLIRT2ITK(),
                      name='fsl2itk',
                      mem_gb=0.05,
                      n_procs=omp_nthreads)

    normalize_motion = pe.Node(NormalizeMotionParams(format='FSL'),
                               name="normalize_motion",
                               mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, mcflirt, [('raw_ref_image', 'ref_file'),
                              ('bold_file', 'in_file')]),
        (inputnode, fsl2itk, [('raw_ref_image', 'in_source'),
                              ('raw_ref_image', 'in_reference')]),
        (mcflirt, fsl2itk, [('mat_file', 'in_files')]),
        (mcflirt, normalize_motion, [('par_file', 'in_file')]),
        (fsl2itk, outputnode, [('out_file', 'xforms')]),
        (normalize_motion, outputnode, [('out_file', 'movpar_file')]),
    ])

    return workflow
示例#9
0
def init_enhance_and_skullstrip_bold_wf(name='enhance_and_skullstrip_bold_wf',
                                        omp_nthreads=1,
                                        enhance_t2=False):
    """
    This workflow takes in a :abbr:`BOLD (blood-oxygen level-dependant)`
    :abbr:`fMRI (functional MRI)` average/summary (e.g. a reference image
    averaging non-steady-state timepoints), and sharpens the histogram
    with the application of the N4 algorithm for removing the
    :abbr:`INU (intensity non-uniformity)` bias field and calculates a signal
    mask.

    Steps of this workflow are:


      1. Calculate a conservative mask using Nilearn's ``create_epi_mask``.
      2. Run ANTs' ``N4BiasFieldCorrection`` on the input
         :abbr:`BOLD (blood-oxygen level-dependant)` average, using the
         mask generated in 1) instead of the internal Otsu thresholding.
      3. Calculate a loose mask using FSL's ``bet``, with one mathematical morphology
         dilation of one iteration and a sphere of 6mm as structuring element.
      4. Mask the :abbr:`INU (intensity non-uniformity)`-corrected image
         with the latest mask calculated in 3), then use AFNI's ``3dUnifize``
         to *standardize* the T2* contrast distribution.
      5. Calculate a mask using AFNI's ``3dAutomask`` after the contrast
         enhancement of 4).
      6. Calculate a final mask as the intersection of 3) and 5).
      7. Apply final mask on the enhanced reference.



    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.util import init_enhance_and_skullstrip_bold_wf
        wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=1)

    **Parameters**
        name : str
            Name of workflow (default: ``enhance_and_skullstrip_bold_wf``)
        omp_nthreads : int
            number of threads available to parallel nodes
        enhance_t2 : bool
            perform logarithmic transform of input BOLD image to improve contrast
            before calculating the preliminary mask


    **Inputs**

        in_file
            BOLD image (single volume)


    **Outputs**

        bias_corrected_file
            the ``in_file`` after `N4BiasFieldCorrection`_
        skull_stripped_file
            the ``bias_corrected_file`` after skull-stripping
        mask_file
            mask of the skull-stripped input file
        out_report
            reportlet for the skull-stripping

    .. _N4BiasFieldCorrection: https://hdl.handle.net/10380/3053
    """
    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(fields=['in_file']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(
        fields=['mask_file', 'skull_stripped_file', 'bias_corrected_file']),
                         name='outputnode')

    # Create a loose mask to avoid N4 internal's Otsu mask
    n4_mask = pe.Node(MaskEPI(upper_cutoff=0.75,
                              enhance_t2=enhance_t2,
                              opening=1,
                              no_sanitize=True),
                      name='n4_mask')

    # Run N4 normally, force num_threads=1 for stability (images are small, no need for >1)
    n4_correct = pe.Node(ants.N4BiasFieldCorrection(dimension=3,
                                                    copy_header=True),
                         name='n4_correct',
                         n_procs=1)

    # Create a generous BET mask out of the bias-corrected EPI
    skullstrip_first_pass = pe.Node(fsl.BET(frac=0.2, mask=True),
                                    name='skullstrip_first_pass')
    bet_dilate = pe.Node(fsl.DilateImage(operation='max',
                                         kernel_shape='sphere',
                                         kernel_size=6.0,
                                         internal_datatype='char'),
                         name='skullstrip_first_dilate')
    bet_mask = pe.Node(fsl.ApplyMask(), name='skullstrip_first_mask')

    # Use AFNI's unifize for T2 constrast & fix header
    unifize = pe.Node(
        afni.Unifize(
            t2=True,
            outputtype='NIFTI_GZ',
            # Default -clfrac is 0.1, 0.4 was too conservative
            # -rbt because I'm a Jedi AFNI Master (see 3dUnifize's documentation)
            args='-clfrac 0.2 -rbt 18.3 65.0 90.0',
            out_file="uni.nii.gz"),
        name='unifize')
    fixhdr_unifize = pe.Node(CopyXForm(), name='fixhdr_unifize', mem_gb=0.1)

    # Run ANFI's 3dAutomask to extract a refined brain mask
    skullstrip_second_pass = pe.Node(afni.Automask(dilate=1,
                                                   outputtype='NIFTI_GZ'),
                                     name='skullstrip_second_pass')
    fixhdr_skullstrip2 = pe.Node(CopyXForm(),
                                 name='fixhdr_skullstrip2',
                                 mem_gb=0.1)

    # Take intersection of both masks
    combine_masks = pe.Node(fsl.BinaryMaths(operation='mul'),
                            name='combine_masks')

    # Compute masked brain
    apply_mask = pe.Node(fsl.ApplyMask(), name='apply_mask')

    workflow.connect([
        (inputnode, n4_mask, [('in_file', 'in_files')]),
        (inputnode, n4_correct, [('in_file', 'input_image')]),
        (inputnode, fixhdr_unifize, [('in_file', 'hdr_file')]),
        (inputnode, fixhdr_skullstrip2, [('in_file', 'hdr_file')]),
        (n4_mask, n4_correct, [('out_mask', 'mask_image')]),
        (n4_correct, skullstrip_first_pass, [('output_image', 'in_file')]),
        (skullstrip_first_pass, bet_dilate, [('mask_file', 'in_file')]),
        (bet_dilate, bet_mask, [('out_file', 'mask_file')]),
        (skullstrip_first_pass, bet_mask, [('out_file', 'in_file')]),
        (bet_mask, unifize, [('out_file', 'in_file')]),
        (unifize, fixhdr_unifize, [('out_file', 'in_file')]),
        (fixhdr_unifize, skullstrip_second_pass, [('out_file', 'in_file')]),
        (skullstrip_first_pass, combine_masks, [('mask_file', 'in_file')]),
        (skullstrip_second_pass, fixhdr_skullstrip2, [('out_file', 'in_file')
                                                      ]),
        (fixhdr_skullstrip2, combine_masks, [('out_file', 'operand_file')]),
        (fixhdr_unifize, apply_mask, [('out_file', 'in_file')]),
        (combine_masks, apply_mask, [('out_file', 'mask_file')]),
        (combine_masks, outputnode, [('out_file', 'mask_file')]),
        (apply_mask, outputnode, [('out_file', 'skull_stripped_file')]),
        (n4_correct, outputnode, [('output_image', 'bias_corrected_file')]),
    ])

    return workflow
示例#10
0
def init_fmap_unwarp_report_wf(reportlets_dir, name='fmap_unwarp_report_wf'):
    """
    This workflow generates and saves a reportlet showing the effect of fieldmap
    unwarping a BOLD image.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.fieldmap.unwarp import init_fmap_unwarp_report_wf
        wf = init_fmap_unwarp_report_wf(reportlets_dir='.')

    **Parameters**

        reportlets_dir : str
            Directory in which to save reportlets
        name : str, optional
            Workflow name (default: fmap_unwarp_report_wf)

    **Inputs**

        in_pre
            Reference image, before unwarping
        in_post
            Reference image, after unwarping
        in_seg
            Segmentation of preprocessed structural image, including
            gray-matter (GM), white-matter (WM) and cerebrospinal fluid (CSF)
        in_xfm
            Affine transform from T1 space to BOLD space (ITK format)
        name_source
            BOLD series NIfTI file
            Used to recover original information lost during processing

    """

    from niworkflows.nipype.pipeline import engine as pe
    from niworkflows.nipype.interfaces import utility as niu
    from niworkflows.interfaces.fixes import FixHeaderApplyTransforms as ApplyTransforms

    from niworkflows.interfaces import SimpleBeforeAfter
    from ...interfaces.images import extract_wm
    from ...interfaces import DerivativesDataSink

    DEFAULT_MEMORY_MIN_GB = 0.01

    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(
        fields=['in_pre', 'in_post', 'in_seg', 'in_xfm', 'name_source']),
                        name='inputnode')

    map_seg = pe.Node(ApplyTransforms(dimension=3,
                                      float=True,
                                      interpolation='NearestNeighbor'),
                      name='map_seg',
                      mem_gb=0.3)

    sel_wm = pe.Node(niu.Function(function=extract_wm),
                     name='sel_wm',
                     mem_gb=DEFAULT_MEMORY_MIN_GB)

    bold_rpt = pe.Node(SimpleBeforeAfter(), name='bold_rpt', mem_gb=0.1)
    bold_rpt_ds = pe.Node(DerivativesDataSink(base_directory=reportlets_dir,
                                              suffix='variant-hmcsdc_preproc'),
                          name='bold_rpt_ds',
                          mem_gb=DEFAULT_MEMORY_MIN_GB,
                          run_without_submitting=True)
    workflow.connect([
        (inputnode, bold_rpt, [('in_post', 'after'), ('in_pre', 'before')]),
        (inputnode, bold_rpt_ds, [('name_source', 'source_file')]),
        (bold_rpt, bold_rpt_ds, [('out_report', 'in_file')]),
        (inputnode, map_seg, [('in_post', 'reference_image'),
                              ('in_seg', 'input_image'),
                              ('in_xfm', 'transforms')]),
        (map_seg, sel_wm, [('output_image', 'in_seg')]),
        (sel_wm, bold_rpt, [('out', 'wm_seg')]),
    ])

    return workflow
示例#11
0
def init_sdc_unwarp_wf(reportlets_dir,
                       omp_nthreads,
                       fmap_bspline,
                       fmap_demean,
                       debug,
                       name='sdc_unwarp_wf'):
    """
    This workflow takes in a displacements fieldmap and calculates the corresponding
    displacements field (in other words, an ANTs-compatible warp file).

    It also calculates a new mask for the input dataset that takes into account the distortions.
    The mask is restricted to the field of view of the fieldmap since outside of it corrections
    could not be performed.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.fieldmap.unwarp import init_sdc_unwarp_wf
        wf = init_sdc_unwarp_wf(reportlets_dir='.', omp_nthreads=8,
                                fmap_bspline=False, fmap_demean=True,
                                debug=False)


    Inputs

        in_reference
            the reference image
        in_mask
            a brain mask corresponding to ``in_reference``
        name_source
            path to the original _bold file being unwarped
        fmap
            the fieldmap in Hz
        fmap_ref
            the reference (anatomical) image corresponding to ``fmap``
        fmap_mask
            a brain mask corresponding to ``fmap``


    Outputs

        out_reference
            the ``in_reference`` after unwarping
        out_reference_brain
            the ``in_reference`` after unwarping and skullstripping
        out_warp
            the corresponding :abbr:`DFM (displacements field map)` compatible with
            ANTs
        out_jacobian
            the jacobian of the field (for drop-out alleviation)
        out_mask
            mask of the unwarped input file

    """

    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'in_reference', 'in_reference_brain', 'in_mask', 'name_source',
        'fmap_ref', 'fmap_mask', 'fmap'
    ]),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'out_reference', 'out_reference_brain', 'out_warp', 'out_mask',
        'out_jacobian'
    ]),
                         name='outputnode')

    meta = pe.Node(ReadSidecarJSON(),
                   name='meta',
                   mem_gb=0.01,
                   run_without_submitting=True)

    # Register the reference of the fieldmap to the reference
    # of the target image (the one that shall be corrected)
    ants_settings = pkgr.resource_filename('fmriprep',
                                           'data/fmap-any_registration.json')
    if debug:
        ants_settings = pkgr.resource_filename(
            'fmriprep', 'data/fmap-any_registration_testing.json')
    fmap2ref_reg = pe.Node(ANTSRegistrationRPT(
        generate_report=True,
        from_file=ants_settings,
        output_inverse_warped_image=True,
        output_warped_image=True),
                           name='fmap2ref_reg',
                           n_procs=omp_nthreads)

    ds_reg = pe.Node(DerivativesDataSink(base_directory=reportlets_dir,
                                         suffix='fmap_reg'),
                     name='ds_reg',
                     mem_gb=0.01,
                     run_without_submitting=True)

    # Map the VSM into the EPI space
    fmap2ref_apply = pe.Node(ANTSApplyTransformsRPT(generate_report=True,
                                                    dimension=3,
                                                    interpolation='BSpline',
                                                    float=True),
                             name='fmap2ref_apply')

    fmap_mask2ref_apply = pe.Node(ANTSApplyTransformsRPT(
        generate_report=False,
        dimension=3,
        interpolation='NearestNeighbor',
        float=True),
                                  name='fmap_mask2ref_apply')

    ds_reg_vsm = pe.Node(DerivativesDataSink(base_directory=reportlets_dir,
                                             suffix='fmap_reg_vsm'),
                         name='ds_reg_vsm',
                         mem_gb=0.01,
                         run_without_submitting=True)

    # Fieldmap to rads and then to voxels (VSM - voxel shift map)
    torads = pe.Node(niu.Function(function=_hz2rads), name='torads')

    get_ees = pe.Node(niu.Function(function=_get_ees, output_names=['ees']),
                      name='get_ees')

    gen_vsm = pe.Node(fsl.FUGUE(save_unmasked_shift=True), name='gen_vsm')
    # Convert the VSM into a DFM (displacements field map)
    # or: FUGUE shift to ANTS warping.
    vsm2dfm = pe.Node(itk.FUGUEvsm2ANTSwarp(), name='vsm2dfm')
    jac_dfm = pe.Node(ants.CreateJacobianDeterminantImage(
        imageDimension=3, outputImage='jacobian.nii.gz'),
                      name='jac_dfm')

    unwarp_reference = pe.Node(ANTSApplyTransformsRPT(
        dimension=3,
        generate_report=False,
        float=True,
        interpolation='LanczosWindowedSinc'),
                               name='unwarp_reference')

    fieldmap_fov_mask = pe.Node(niu.Function(function=_fill_with_ones),
                                name='fieldmap_fov_mask')

    fmap_fov2ref_apply = pe.Node(ANTSApplyTransformsRPT(
        generate_report=False,
        dimension=3,
        interpolation='NearestNeighbor',
        float=True),
                                 name='fmap_fov2ref_apply')

    apply_fov_mask = pe.Node(fsl.ApplyMask(), name="apply_fov_mask")

    enhance_and_skullstrip_bold_wf = init_enhance_and_skullstrip_bold_wf(
        omp_nthreads=omp_nthreads)

    workflow.connect([
        (inputnode, meta, [('name_source', 'in_file')]),
        (inputnode, fmap2ref_reg, [('fmap_ref', 'moving_image')]),
        (inputnode, fmap2ref_apply, [('in_reference', 'reference_image')]),
        (fmap2ref_reg, fmap2ref_apply, [('composite_transform', 'transforms')
                                        ]),
        (inputnode, fmap_mask2ref_apply, [('in_reference', 'reference_image')
                                          ]),
        (fmap2ref_reg, fmap_mask2ref_apply, [('composite_transform',
                                              'transforms')]),
        (inputnode, ds_reg_vsm, [('name_source', 'source_file')]),
        (fmap2ref_apply, ds_reg_vsm, [('out_report', 'in_file')]),
        (inputnode, fmap2ref_reg, [('in_reference_brain', 'fixed_image')]),
        (inputnode, ds_reg, [('name_source', 'source_file')]),
        (fmap2ref_reg, ds_reg, [('out_report', 'in_file')]),
        (inputnode, fmap2ref_apply, [('fmap', 'input_image')]),
        (inputnode, fmap_mask2ref_apply, [('fmap_mask', 'input_image')]),
        (fmap2ref_apply, torads, [('output_image', 'in_file')]),
        (meta, get_ees, [('out_dict', 'in_meta')]),
        (inputnode, get_ees, [('name_source', 'in_file')]),
        (get_ees, gen_vsm, [('ees', 'dwell_time')]),
        (meta, gen_vsm, [(('out_dict', _get_pedir_fugue), 'unwarp_direction')
                         ]),
        (meta, vsm2dfm, [(('out_dict', _get_pedir_bids), 'pe_dir')]),
        (torads, gen_vsm, [('out', 'fmap_in_file')]),
        (vsm2dfm, unwarp_reference, [('out_file', 'transforms')]),
        (inputnode, unwarp_reference, [('in_reference', 'reference_image')]),
        (inputnode, unwarp_reference, [('in_reference', 'input_image')]),
        (vsm2dfm, outputnode, [('out_file', 'out_warp')]),
        (vsm2dfm, jac_dfm, [('out_file', 'deformationField')]),
        (inputnode, fieldmap_fov_mask, [('fmap_ref', 'in_file')]),
        (fieldmap_fov_mask, fmap_fov2ref_apply, [('out', 'input_image')]),
        (inputnode, fmap_fov2ref_apply, [('in_reference', 'reference_image')]),
        (fmap2ref_reg, fmap_fov2ref_apply, [('composite_transform',
                                             'transforms')]),
        (fmap_fov2ref_apply, apply_fov_mask, [('output_image', 'mask_file')]),
        (unwarp_reference, apply_fov_mask, [('output_image', 'in_file')]),
        (apply_fov_mask, enhance_and_skullstrip_bold_wf,
         [('out_file', 'inputnode.in_file')]),
        (apply_fov_mask, outputnode, [('out_file', 'out_reference')]),
        (enhance_and_skullstrip_bold_wf, outputnode,
         [('outputnode.mask_file', 'out_mask'),
          ('outputnode.skull_stripped_file', 'out_reference_brain')]),
        (jac_dfm, outputnode, [('jacobian_image', 'out_jacobian')]),
    ])

    if not fmap_bspline:
        workflow.connect([(fmap_mask2ref_apply, gen_vsm, [('output_image',
                                                           'mask_file')])])

    if fmap_demean:
        # Demean within mask
        demean = pe.Node(niu.Function(function=_demean), name='demean')

        workflow.connect([
            (gen_vsm, demean, [('shift_out_file', 'in_file')]),
            (fmap_mask2ref_apply, demean, [('output_image', 'in_mask')]),
            (demean, vsm2dfm, [('out', 'in_file')]),
        ])

    else:
        workflow.connect([
            (gen_vsm, vsm2dfm, [('shift_out_file', 'in_file')]),
        ])

    return workflow
示例#12
0
def init_fmap_wf(reportlets_dir, omp_nthreads, fmap_bspline, name='fmap_wf'):
    """
    Fieldmap workflow - when we have a sequence that directly measures the fieldmap
    we just need to mask it (using the corresponding magnitude image) to remove the
    noise in the surrounding air region, and ensure that units are Hz.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.fieldmap.fmap import init_fmap_wf
        wf = init_fmap_wf(reportlets_dir='.', omp_nthreads=6,
                          fmap_bspline=False)

    """

    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(
        fields=['magnitude', 'fieldmap']), name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=['fmap', 'fmap_ref', 'fmap_mask']),
                         name='outputnode')

    # Merge input magnitude images
    magmrg = pe.Node(IntraModalMerge(), name='magmrg')
    # Merge input fieldmap images
    fmapmrg = pe.Node(IntraModalMerge(zero_based_avg=False, hmc=False),
                      name='fmapmrg')

    # de-gradient the fields ("bias/illumination artifact")
    n4_correct = pe.Node(ants.N4BiasFieldCorrection(dimension=3, copy_header=True),
                         name='n4_correct')
    bet = pe.Node(BETRPT(generate_report=True, frac=0.6, mask=True),
                  name='bet')
    ds_fmap_mask = pe.Node(
        DerivativesDataSink(base_directory=reportlets_dir,
                            suffix='fmap_mask'), name='ds_fmap_mask')

    workflow.connect([
        (inputnode, magmrg, [('magnitude', 'in_files')]),
        (inputnode, fmapmrg, [('fieldmap', 'in_files')]),
        (magmrg, n4_correct, [('out_file', 'input_image')]),
        (n4_correct, bet, [('output_image', 'in_file')]),
        (bet, outputnode, [('mask_file', 'fmap_mask'),
                           ('out_file', 'fmap_ref')]),
        (inputnode, ds_fmap_mask, [('fieldmap', 'source_file')]),
        (bet, ds_fmap_mask, [('out_report', 'in_file')]),
    ])

    if fmap_bspline:
        # despike_threshold=1.0, mask_erode=1),
        fmapenh = pe.Node(FieldEnhance(
            unwrap=False, despike=False, njobs=omp_nthreads),
            name='fmapenh')
        fmapenh.interface.num_threads = omp_nthreads
        fmapenh.interface.estimated_memory_gb = 4

        workflow.connect([
            (bet, fmapenh, [('mask_file', 'in_mask'),
                            ('out_file', 'in_magnitude')]),
            (fmapmrg, fmapenh, [('out_file', 'in_file')]),
            (fmapenh, outputnode, [('out_file', 'fmap')]),
        ])

    else:
        torads = pe.Node(niu.Function(output_names=['out_file', 'cutoff_hz'],
                                      function=_torads), name='torads')
        prelude = pe.Node(fsl.PRELUDE(), name='prelude')
        tohz = pe.Node(niu.Function(function=_tohz), name='tohz')

        denoise = pe.Node(fsl.SpatialFilter(operation='median', kernel_shape='sphere',
                                            kernel_size=3), name='denoise')
        demean = pe.Node(niu.Function(function=demean_image), name='demean')
        cleanup_wf = cleanup_edge_pipeline(name='cleanup_wf')

        applymsk = pe.Node(ApplyMask(), name='applymsk')

        workflow.connect([
            (bet, prelude, [('mask_file', 'mask_file'),
                            ('out_file', 'magnitude_file')]),
            (fmapmrg, torads, [('out_file', 'in_file')]),
            (torads, tohz, [('cutoff_hz', 'cutoff_hz')]),
            (torads, prelude, [('out_file', 'phase_file')]),
            (prelude, tohz, [('unwrapped_phase_file', 'in_file')]),
            (tohz, denoise, [('out', 'in_file')]),
            (denoise, demean, [('out_file', 'in_file')]),
            (demean, cleanup_wf, [('out', 'inputnode.in_file')]),
            (bet, cleanup_wf, [('mask_file', 'inputnode.in_mask')]),
            (cleanup_wf, applymsk, [('outputnode.out_file', 'in_file')]),
            (bet, applymsk, [('mask_file', 'in_mask')]),
            (applymsk, outputnode, [('out_file', 'fmap')]),
        ])

    return workflow
示例#13
0
def init_anat_derivatives_wf(output_dir, output_spaces, template, freesurfer,
                             name='anat_derivatives_wf'):
    """
    Set up a battery of datasinks to store derivatives in the right location
    """
    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(
        niu.IdentityInterface(
            fields=['source_file', 't1_preproc', 't1_mask', 't1_seg', 't1_tpms',
                    't1_2_mni_forward_transform', 't1_2_mni', 'mni_mask',
                    'mni_seg', 'mni_tpms', 'surfaces']),
        name='inputnode')

    ds_t1_preproc = pe.Node(
        DerivativesDataSink(base_directory=output_dir, suffix='preproc'),
        name='ds_t1_preproc', run_without_submitting=True)

    ds_t1_mask = pe.Node(
        DerivativesDataSink(base_directory=output_dir, suffix='brainmask'),
        name='ds_t1_mask', run_without_submitting=True)

    ds_t1_seg = pe.Node(
        DerivativesDataSink(base_directory=output_dir, suffix='dtissue'),
        name='ds_t1_seg', run_without_submitting=True)

    ds_t1_tpms = pe.Node(
        DerivativesDataSink(base_directory=output_dir,
                            suffix='class-{extra_value}_probtissue'),
        name='ds_t1_tpms', run_without_submitting=True)
    ds_t1_tpms.inputs.extra_values = ['CSF', 'GM', 'WM']

    suffix_fmt = 'space-{}_{}'.format
    ds_t1_mni = pe.Node(
        DerivativesDataSink(base_directory=output_dir,
                            suffix=suffix_fmt(template, 'preproc')),
        name='ds_t1_mni', run_without_submitting=True)

    ds_mni_mask = pe.Node(
        DerivativesDataSink(base_directory=output_dir,
                            suffix=suffix_fmt(template, 'brainmask')),
        name='ds_mni_mask', run_without_submitting=True)

    ds_mni_seg = pe.Node(
        DerivativesDataSink(base_directory=output_dir,
                            suffix=suffix_fmt(template, 'dtissue')),
        name='ds_mni_seg', run_without_submitting=True)

    ds_mni_tpms = pe.Node(
        DerivativesDataSink(base_directory=output_dir,
                            suffix=suffix_fmt(template, 'class-{extra_value}_probtissue')),
        name='ds_mni_tpms', run_without_submitting=True)
    ds_mni_tpms.inputs.extra_values = ['CSF', 'GM', 'WM']

    ds_t1_mni_warp = pe.Node(
        DerivativesDataSink(base_directory=output_dir, suffix=suffix_fmt(template, 'warp')),
        name='ds_t1_mni_warp', run_without_submitting=True)

    name_surfs = pe.MapNode(GiftiNameSource(pattern=r'(?P<LR>[lr])h.(?P<surf>.+)_converted.gii',
                                            template='{surf}.{LR}.surf'),
                            iterfield='in_file',
                            name='name_surfs',
                            run_without_submitting=True)

    ds_surfs = pe.MapNode(
        DerivativesDataSink(base_directory=output_dir),
        iterfield=['in_file', 'suffix'], name='ds_surfs', run_without_submitting=True)

    workflow.connect([
        (inputnode, ds_t1_preproc, [('source_file', 'source_file'),
                                    ('t1_preproc', 'in_file')]),
        (inputnode, ds_t1_mask, [('source_file', 'source_file'),
                                 ('t1_mask', 'in_file')]),
        (inputnode, ds_t1_seg, [('source_file', 'source_file'),
                                ('t1_seg', 'in_file')]),
        (inputnode, ds_t1_tpms, [('source_file', 'source_file'),
                                 ('t1_tpms', 'in_file')]),
    ])

    if freesurfer:
        workflow.connect([
            (inputnode, name_surfs, [('surfaces', 'in_file')]),
            (inputnode, ds_surfs, [('source_file', 'source_file'),
                                   ('surfaces', 'in_file')]),
            (name_surfs, ds_surfs, [('out_name', 'suffix')]),
        ])
    if 'template' in output_spaces:
        workflow.connect([
            (inputnode, ds_t1_mni_warp, [('source_file', 'source_file'),
                                         ('t1_2_mni_forward_transform', 'in_file')]),
            (inputnode, ds_t1_mni, [('source_file', 'source_file'),
                                    ('t1_2_mni', 'in_file')]),
            (inputnode, ds_mni_mask, [('source_file', 'source_file'),
                                      ('mni_mask', 'in_file')]),
            (inputnode, ds_mni_seg, [('source_file', 'source_file'),
                                     ('mni_seg', 'in_file')]),
            (inputnode, ds_mni_tpms, [('source_file', 'source_file'),
                                      ('mni_tpms', 'in_file')]),
        ])

    return workflow
示例#14
0
def init_autorecon_resume_wf(omp_nthreads, name='autorecon_resume_wf'):
    """
    Resume broken recon-all execution
    """
    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(
        niu.IdentityInterface(
            fields=['subjects_dir', 'subject_id', 'use_T2']),
        name='inputnode')

    outputnode = pe.Node(
        niu.IdentityInterface(
            fields=['subjects_dir', 'subject_id', 'out_report']),
        name='outputnode')

    autorecon2_vol = pe.Node(
        fs.ReconAll(directive='autorecon2-volonly', openmp=omp_nthreads),
        n_procs=omp_nthreads,
        name='autorecon2_vol')

    autorecon_surfs = pe.MapNode(
        fs.ReconAll(
            directive='autorecon-hemi',
            flags=['-noparcstats', '-nocortparc2', '-noparcstats2',
                   '-nocortparc3', '-noparcstats3', '-nopctsurfcon',
                   '-nohyporelabel', '-noaparc2aseg', '-noapas2aseg',
                   '-nosegstats', '-nowmparc', '-nobalabels'],
            openmp=omp_nthreads),
        iterfield='hemi', n_procs=omp_nthreads,
        name='autorecon_surfs')
    autorecon_surfs.inputs.hemi = ['lh', 'rh']

    autorecon3 = pe.MapNode(
        fs.ReconAll(directive='autorecon3', openmp=omp_nthreads),
        iterfield='hemi', n_procs=omp_nthreads,
        name='autorecon3')
    autorecon3.inputs.hemi = ['lh', 'rh']

    # Only generate the report once; should be nothing to do
    recon_report = pe.Node(
        ReconAllRPT(directive='autorecon3', generate_report=True),
        name='recon_report')

    def _dedup(in_list):
        vals = set(in_list)
        if len(vals) > 1:
            raise ValueError(
                "Non-identical values can't be deduplicated:\n{!r}".format(in_list))
        return vals.pop()

    workflow.connect([
        (inputnode, autorecon3, [('use_T2', 'use_T2')]),
        (inputnode, autorecon2_vol, [('subjects_dir', 'subjects_dir'),
                                     ('subject_id', 'subject_id')]),
        (autorecon2_vol, autorecon_surfs, [('subjects_dir', 'subjects_dir'),
                                           ('subject_id', 'subject_id')]),
        (autorecon_surfs, autorecon3, [(('subjects_dir', _dedup), 'subjects_dir'),
                                       (('subject_id', _dedup), 'subject_id')]),
        (autorecon3, outputnode, [(('subjects_dir', _dedup), 'subjects_dir'),
                                  (('subject_id', _dedup), 'subject_id')]),
        (autorecon3, recon_report, [(('subjects_dir', _dedup), 'subjects_dir'),
                                    (('subject_id', _dedup), 'subject_id')]),
        (recon_report, outputnode, [('out_report', 'out_report')]),
    ])

    return workflow
示例#15
0
def headmsk_wf(name='HeadMaskWorkflow', use_bet=True):
    """
    Computes a head mask as in [Mortamet2009]_.

    .. workflow::

        from mriqc.workflows.anatomical import headmsk_wf
        wf = headmsk_wf()

    """

    has_dipy = False
    try:
        from dipy.denoise import nlmeans  # noqa
        has_dipy = True
    except ImportError:
        pass

    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(fields=['in_file', 'in_segm']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=['out_file']),
                         name='outputnode')

    if use_bet or not has_dipy:
        # Alternative for when dipy is not installed
        bet = pe.Node(fsl.BET(surfaces=True), name='fsl_bet')
        workflow.connect([(inputnode, bet, [('in_file', 'in_file')]),
                          (bet, outputnode, [('outskin_mask_file', 'out_file')
                                             ])])

    else:
        from niworkflows.nipype.interfaces.dipy import Denoise
        enhance = pe.Node(niu.Function(input_names=['in_file'],
                                       output_names=['out_file'],
                                       function=_enhance),
                          name='Enhance')
        estsnr = pe.Node(niu.Function(input_names=['in_file', 'seg_file'],
                                      output_names=['out_snr'],
                                      function=_estimate_snr),
                         name='EstimateSNR')
        denoise = pe.Node(Denoise(), name='Denoise')
        gradient = pe.Node(niu.Function(input_names=['in_file', 'snr'],
                                        output_names=['out_file'],
                                        function=image_gradient),
                           name='Grad')
        thresh = pe.Node(niu.Function(input_names=['in_file', 'in_segm'],
                                      output_names=['out_file'],
                                      function=gradient_threshold),
                         name='GradientThreshold')

        workflow.connect([(inputnode, estsnr, [('in_file', 'in_file'),
                                               ('in_segm', 'seg_file')]),
                          (estsnr, denoise, [('out_snr', 'snr')]),
                          (inputnode, enhance, [('in_file', 'in_file')]),
                          (enhance, denoise, [('out_file', 'in_file')]),
                          (estsnr, gradient, [('out_snr', 'snr')]),
                          (denoise, gradient, [('out_file', 'in_file')]),
                          (inputnode, thresh, [('in_segm', 'in_segm')]),
                          (gradient, thresh, [('out_file', 'in_file')]),
                          (thresh, outputnode, [('out_file', 'out_file')])])

    return workflow
示例#16
0
def init_bold_reference_wf(omp_nthreads,
                           bold_file=None,
                           name='bold_reference_wf',
                           gen_report=False,
                           enhance_t2=False):
    """
    This workflow generates reference BOLD images for a series

    The raw reference image is the target of :abbr:`HMC (head motion correction)`, and a
    contrast-enhanced reference is the subject of distortion correction, as well as
    boundary-based registration to T1w and template spaces.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold import init_bold_reference_wf
        wf = init_bold_reference_wf(omp_nthreads=1)

    **Parameters**

        bold_file : str
            BOLD series NIfTI file
        omp_nthreads : int
            Maximum number of threads an individual process may use
        name : str
            Name of workflow (default: ``bold_reference_wf``)
        gen_report : bool
            Whether a mask report node should be appended in the end
        enhance_t2 : bool
            Perform logarithmic transform of input BOLD image to improve contrast
            before calculating the preliminary mask

    **Inputs**

        bold_file
            BOLD series NIfTI file

    **Outputs**

        bold_file
            Validated BOLD series NIfTI file
        raw_ref_image
            Reference image to which BOLD series is motion corrected
        skip_vols
            Number of non-steady-state volumes detected at beginning of ``bold_file``
        ref_image
            Contrast-enhanced reference image
        ref_image_brain
            Skull-stripped reference image
        bold_mask
            Skull-stripping mask of reference image
        validation_report
            HTML reportlet indicating whether ``bold_file`` had a valid affine


    **Subworkflows**

        * :py:func:`~fmriprep.workflows.bold.util.init_enhance_and_skullstrip_wf`

    """
    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(fields=['bold_file']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'bold_file', 'raw_ref_image', 'skip_vols', 'ref_image',
        'ref_image_brain', 'bold_mask', 'validation_report', 'mask_report'
    ]),
                         name='outputnode')

    # Simplify manually setting input image
    if bold_file is not None:
        inputnode.inputs.bold_file = bold_file

    validate = pe.Node(ValidateImage(),
                       name='validate',
                       mem_gb=DEFAULT_MEMORY_MIN_GB)

    gen_ref = pe.Node(EstimateReferenceImage(), name="gen_ref",
                      mem_gb=1)  # OE: 128x128x128x50 * 64 / 8 ~ 900MB.
    enhance_and_skullstrip_bold_wf = init_enhance_and_skullstrip_bold_wf(
        omp_nthreads=omp_nthreads)

    workflow.connect([
        (inputnode, validate, [('bold_file', 'in_file')]),
        (validate, gen_ref, [('out_file', 'in_file')]),
        (gen_ref, enhance_and_skullstrip_bold_wf, [('ref_image',
                                                    'inputnode.in_file')]),
        (validate, outputnode, [('out_file', 'bold_file'),
                                ('out_report', 'validation_report')]),
        (gen_ref, outputnode, [('ref_image', 'raw_ref_image'),
                               ('n_volumes_to_discard', 'skip_vols')]),
        (enhance_and_skullstrip_bold_wf, outputnode,
         [('outputnode.bias_corrected_file', 'ref_image'),
          ('outputnode.mask_file', 'bold_mask'),
          ('outputnode.skull_stripped_file', 'ref_image_brain')]),
    ])

    if gen_report:
        mask_reportlet = pe.Node(SimpleShowMaskRPT(), name='mask_reportlet')
        workflow.connect([
            (enhance_and_skullstrip_bold_wf, mask_reportlet, [
                ('outputnode.bias_corrected_file', 'background_file'),
                ('outputnode.mask_file', 'mask_file'),
            ]),
        ])

    return workflow
示例#17
0
def anat_qc_workflow(dataset, settings, mod='T1w', name='anatMRIQC'):
    """
    One-subject-one-session-one-run pipeline to extract the NR-IQMs from
    anatomical images

    .. workflow::

        import os.path as op
        from mriqc.workflows.anatomical import anat_qc_workflow
        datadir = op.abspath('data')
        wf = anat_qc_workflow([op.join(datadir, 'sub-001/anat/sub-001_T1w.nii.gz')],
                              settings={'bids_dir': datadir,
                                        'output_dir': op.abspath('out'),
                                        'ants_nthreads': 1,
                                        'no_sub': True})

    """

    workflow = pe.Workflow(name="%s%s" % (name, mod))
    WFLOGGER.info(
        'Building anatomical MRI QC workflow, datasets list: %s',
        sorted([d.replace(settings['bids_dir'] + '/', '') for d in dataset]))

    # Define workflow, inputs and outputs
    # 0. Get data
    inputnode = pe.Node(niu.IdentityInterface(fields=['in_file']),
                        name='inputnode')
    inputnode.iterables = [('in_file', dataset)]

    outputnode = pe.Node(niu.IdentityInterface(fields=['out_json']),
                         name='outputnode')

    # 1. Reorient anatomical image
    to_ras = pe.Node(ConformImage(check_dtype=False), name='conform')
    # 2. Skull-stripping (afni)
    asw = skullstrip_wf(n4_nthreads=settings.get('ants_nthreads', 1),
                        unifize=False)
    # 3. Head mask
    hmsk = headmsk_wf()
    # 4. Spatial Normalization, using ANTs
    norm = spatial_normalization(settings)
    # 5. Air mask (with and without artifacts)
    amw = airmsk_wf()
    # 6. Brain tissue segmentation
    segment = pe.Node(fsl.FAST(segments=True,
                               out_basename='segment',
                               img_type=int(mod[1])),
                      name='segmentation',
                      mem_gb=5)
    # 7. Compute IQMs
    iqmswf = compute_iqms(settings, modality=mod)
    # Reports
    repwf = individual_reports(settings)

    # Connect all nodes
    workflow.connect([
        (inputnode, to_ras, [('in_file', 'in_file')]),
        (inputnode, iqmswf, [('in_file', 'inputnode.in_file')]),
        (to_ras, asw, [('out_file', 'inputnode.in_file')]),
        (asw, segment, [('outputnode.out_file', 'in_files')]),
        (asw, hmsk, [('outputnode.bias_corrected', 'inputnode.in_file')]),
        (segment, hmsk, [('tissue_class_map', 'inputnode.in_segm')]),
        (asw, norm, [('outputnode.bias_corrected', 'inputnode.moving_image'),
                     ('outputnode.out_mask', 'inputnode.moving_mask')]),
        (norm, amw, [('outputnode.inverse_composite_transform',
                      'inputnode.inverse_composite_transform')]),
        (norm, iqmswf, [('outputnode.inverse_composite_transform',
                         'inputnode.inverse_composite_transform')]),
        (norm, repwf, ([('outputnode.out_report', 'inputnode.mni_report')])),
        (to_ras, amw, [('out_file', 'inputnode.in_file')]),
        (asw, amw, [('outputnode.out_mask', 'inputnode.in_mask')]),
        (hmsk, amw, [('outputnode.out_file', 'inputnode.head_mask')]),
        (to_ras, iqmswf, [('out_file', 'inputnode.in_ras')]),
        (asw, iqmswf, [('outputnode.bias_corrected',
                        'inputnode.inu_corrected'),
                       ('outputnode.bias_image', 'inputnode.in_inu'),
                       ('outputnode.out_mask', 'inputnode.brainmask')]),
        (amw, iqmswf, [('outputnode.out_file', 'inputnode.airmask'),
                       ('outputnode.artifact_msk', 'inputnode.artmask'),
                       ('outputnode.rot_mask', 'inputnode.rotmask')]),
        (segment, iqmswf, [('tissue_class_map', 'inputnode.segmentation'),
                           ('partial_volume_files', 'inputnode.pvms')]),
        (hmsk, iqmswf, [('outputnode.out_file', 'inputnode.headmask')]),
        (to_ras, repwf, [('out_file', 'inputnode.in_ras')]),
        (asw, repwf, [('outputnode.bias_corrected', 'inputnode.inu_corrected'),
                      ('outputnode.out_mask', 'inputnode.brainmask')]),
        (hmsk, repwf, [('outputnode.out_file', 'inputnode.headmask')]),
        (amw, repwf, [('outputnode.out_file', 'inputnode.airmask'),
                      ('outputnode.artifact_msk', 'inputnode.artmask'),
                      ('outputnode.rot_mask', 'inputnode.rotmask')]),
        (segment, repwf, [('tissue_class_map', 'inputnode.segmentation')]),
        (iqmswf, repwf, [('outputnode.out_noisefit', 'inputnode.noisefit')]),
        (iqmswf, repwf, [('outputnode.out_file', 'inputnode.in_iqms')]),
        (iqmswf, outputnode, [('outputnode.out_file', 'out_json')])
    ])

    # Upload metrics
    if not settings.get('no_sub', False):
        from ..interfaces.webapi import UploadIQMs
        upldwf = pe.Node(UploadIQMs(), name='UploadMetrics')
        upldwf.inputs.email = settings.get('email', '')
        upldwf.inputs.url = settings.get('webapi_url')
        if settings.get('webapi_port'):
            upldwf.inputs.port = settings.get('webapi_port')

        upldwf.inputs.strict = settings.get('upload_strict', False)

        workflow.connect([
            (iqmswf, upldwf, [('outputnode.out_file', 'in_iqms')]),
        ])

    return workflow
示例#18
0
def init_skullstrip_bold_wf(name='skullstrip_bold_wf'):
    """
    This workflow applies skull-stripping to a BOLD image.

    It is intended to be used on an image that has previously been
    bias-corrected with
    :py:func:`~fmriprep.workflows.bold.util.init_enhance_and_skullstrip_bold_wf`

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.util import init_skullstrip_bold_wf
        wf = init_skullstrip_bold_wf()


    Inputs

        in_file
            BOLD image (single volume)


    Outputs

        skull_stripped_file
            the ``in_file`` after skull-stripping
        mask_file
            mask of the skull-stripped input file
        out_report
            reportlet for the skull-stripping

    """
    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(fields=['in_file']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(
        fields=['mask_file', 'skull_stripped_file', 'out_report']),
                         name='outputnode')
    skullstrip_first_pass = pe.Node(fsl.BET(frac=0.2, mask=True),
                                    name='skullstrip_first_pass')
    skullstrip_second_pass = pe.Node(afni.Automask(dilate=1,
                                                   outputtype='NIFTI_GZ'),
                                     name='skullstrip_second_pass')
    combine_masks = pe.Node(fsl.BinaryMaths(operation='mul'),
                            name='combine_masks')
    apply_mask = pe.Node(fsl.ApplyMask(), name='apply_mask')
    mask_reportlet = pe.Node(SimpleShowMaskRPT(), name='mask_reportlet')

    workflow.connect([
        (inputnode, skullstrip_first_pass, [('in_file', 'in_file')]),
        (skullstrip_first_pass, skullstrip_second_pass, [('out_file',
                                                          'in_file')]),
        (skullstrip_first_pass, combine_masks, [('mask_file', 'in_file')]),
        (skullstrip_second_pass, combine_masks, [('out_file', 'operand_file')
                                                 ]),
        (combine_masks, outputnode, [('out_file', 'mask_file')]),
        # Masked file
        (inputnode, apply_mask, [('in_file', 'in_file')]),
        (combine_masks, apply_mask, [('out_file', 'mask_file')]),
        (apply_mask, outputnode, [('out_file', 'skull_stripped_file')]),
        # Reportlet
        (inputnode, mask_reportlet, [('in_file', 'background_file')]),
        (combine_masks, mask_reportlet, [('out_file', 'mask_file')]),
        (mask_reportlet, outputnode, [('out_report', 'out_report')]),
    ])

    return workflow
示例#19
0
文件: base.py 项目: ValHayot/fmriprep
def init_func_reports_wf(reportlets_dir,
                         freesurfer,
                         use_aroma,
                         use_syn,
                         t2s_coreg,
                         name='func_reports_wf'):
    """
    Set up a battery of datasinks to store reports in the right location
    """
    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'source_file', 'summary_report', 'validation_report',
        'bold_reg_report', 'bold_reg_fallback', 'bold_rois_report',
        'syn_sdc_report', 'ica_aroma_report', 'first_echo'
    ]),
                        name='inputnode')

    ds_summary_report = pe.Node(DerivativesDataSink(
        base_directory=reportlets_dir, suffix='summary'),
                                name='ds_summary_report',
                                run_without_submitting=True,
                                mem_gb=DEFAULT_MEMORY_MIN_GB)

    ds_validation_report = pe.Node(DerivativesDataSink(
        base_directory=reportlets_dir, suffix='validation'),
                                   name='ds_validation_report',
                                   run_without_submitting=True,
                                   mem_gb=DEFAULT_MEMORY_MIN_GB)

    ds_bold_rois_report = pe.Node(DerivativesDataSink(
        base_directory=reportlets_dir, suffix='rois'),
                                  name='ds_bold_rois_report',
                                  run_without_submitting=True,
                                  mem_gb=DEFAULT_MEMORY_MIN_GB)

    def _bold_reg_suffix(fallback, freesurfer):
        if fallback:
            return 'coreg' if freesurfer else 'flirt'
        return 'bbr' if freesurfer else 'flt_bbr'

    ds_bold_reg_report = pe.Node(
        DerivativesDataSink(base_directory=reportlets_dir),
        name='ds_bold_reg_report',
        run_without_submitting=True,
        mem_gb=DEFAULT_MEMORY_MIN_GB)

    ds_ica_aroma_report = pe.Node(DerivativesDataSink(
        base_directory=reportlets_dir, suffix='ica_aroma'),
                                  name='ds_ica_aroma_report',
                                  run_without_submitting=True,
                                  mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, ds_bold_reg_report,
         [('first_echo' if t2s_coreg else 'source_file', 'source_file')]),
        (inputnode, ds_summary_report, [('source_file', 'source_file'),
                                        ('summary_report', 'in_file')]),
        (inputnode, ds_validation_report, [('source_file', 'source_file'),
                                           ('validation_report', 'in_file')]),
        (inputnode, ds_bold_rois_report, [('source_file', 'source_file'),
                                          ('bold_rois_report', 'in_file')]),
        (inputnode, ds_bold_reg_report,
         [('bold_reg_report', 'in_file'),
          (('bold_reg_fallback', _bold_reg_suffix, freesurfer), 'suffix')]),
    ])

    if use_aroma:
        workflow.connect([
            (inputnode, ds_ica_aroma_report, [('source_file', 'source_file'),
                                              ('ica_aroma_report', 'in_file')
                                              ]),
        ])

    return workflow
示例#20
0
文件: base.py 项目: waringjd/fmriprep
def init_fmriprep_wf(subject_list, task_id, run_uuid, ignore, debug, low_mem,
                     anat_only, longitudinal, t2s_coreg, omp_nthreads,
                     skull_strip_template, work_dir, output_dir, bids_dir,
                     freesurfer, output_spaces, template, medial_surface_nan,
                     cifti_output, hires, use_bbr, bold2t1w_dof, fmap_bspline,
                     fmap_demean, use_syn, force_syn, use_aroma,
                     ignore_aroma_err, aroma_melodic_dim, template_out_grid):
    """
    This workflow organizes the execution of FMRIPREP, with a sub-workflow for
    each subject.

    If FreeSurfer's recon-all is to be run, a FreeSurfer derivatives folder is
    created and populated with any needed template subjects.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        import os
        os.environ['FREESURFER_HOME'] = os.getcwd()
        from fmriprep.workflows.base import init_fmriprep_wf
        wf = init_fmriprep_wf(subject_list=['fmripreptest'],
                              task_id='',
                              run_uuid='X',
                              ignore=[],
                              debug=False,
                              low_mem=False,
                              anat_only=False,
                              longitudinal=False,
                              t2s_coreg=False,
                              omp_nthreads=1,
                              skull_strip_template='OASIS',
                              work_dir='.',
                              output_dir='.',
                              bids_dir='.',
                              freesurfer=True,
                              output_spaces=['T1w', 'fsnative',
                                            'template', 'fsaverage5'],
                              template='MNI152NLin2009cAsym',
                              medial_surface_nan=False,
                              cifti_output=False,
                              hires=True,
                              use_bbr=True,
                              bold2t1w_dof=9,
                              fmap_bspline=False,
                              fmap_demean=True,
                              use_syn=True,
                              force_syn=True,
                              use_aroma=False,
                              ignore_aroma_err=False,
                              aroma_melodic_dim=None,
                              template_out_grid='native')


    Parameters

        subject_list : list
            List of subject labels
        task_id : str or None
            Task ID of BOLD series to preprocess, or ``None`` to preprocess all
        run_uuid : str
            Unique identifier for execution instance
        ignore : list
            Preprocessing steps to skip (may include "slicetiming", "fieldmaps")
        debug : bool
            Enable debugging outputs
        low_mem : bool
            Write uncompressed .nii files in some cases to reduce memory usage
        anat_only : bool
            Disable functional workflows
        longitudinal : bool
            Treat multiple sessions as longitudinal (may increase runtime)
            See sub-workflows for specific differences
        t2s_coreg : bool
            Use multiple BOLD echos to create T2*-map for T2*-driven coregistration
        omp_nthreads : int
            Maximum number of threads an individual process may use
        skull_strip_template : str
            Name of ANTs skull-stripping template ('OASIS' or 'NKI')
        work_dir : str
            Directory in which to store workflow execution state and temporary files
        output_dir : str
            Directory in which to save derivatives
        bids_dir : str
            Root directory of BIDS dataset
        freesurfer : bool
            Enable FreeSurfer surface reconstruction (may increase runtime)
        output_spaces : list
            List of output spaces functional images are to be resampled to.
            Some parts of pipeline will only be instantiated for some output spaces.

            Valid spaces:

             - T1w
             - template
             - fsnative
             - fsaverage (or other pre-existing FreeSurfer templates)
        template : str
            Name of template targeted by ``template`` output space
        medial_surface_nan : bool
            Replace medial wall values with NaNs on functional GIFTI files
        cifti_output : bool
            Generate bold CIFTI file in output spaces
        hires : bool
            Enable sub-millimeter preprocessing in FreeSurfer
        use_bbr : bool or None
            Enable/disable boundary-based registration refinement.
            If ``None``, test BBR result for distortion before accepting.
        bold2t1w_dof : 6, 9 or 12
            Degrees-of-freedom for BOLD-T1w registration
        fmap_bspline : bool
            **Experimental**: Fit B-Spline field using least-squares
        fmap_demean : bool
            Demean voxel-shift map during unwarp
        use_syn : bool
            **Experimental**: Enable ANTs SyN-based susceptibility distortion correction (SDC).
            If fieldmaps are present and enabled, this is not run, by default.
        force_syn : bool
            **Temporary**: Always run SyN-based SDC
        use_aroma : bool
            Perform ICA-AROMA on MNI-resampled functional series
        ignore_aroma_err : bool
            Do not fail on ICA-AROMA errors
        template_out_grid : str
            Keyword ('native', '1mm' or '2mm') or path of custom reference
            image for normalization

    """
    fmriprep_wf = pe.Workflow(name='fmriprep_wf')
    fmriprep_wf.base_dir = work_dir

    if freesurfer:
        fsdir = pe.Node(BIDSFreeSurferDir(
            derivatives=output_dir,
            freesurfer_home=os.getenv('FREESURFER_HOME'),
            spaces=output_spaces),
                        name='fsdir',
                        run_without_submitting=True)

    reportlets_dir = os.path.join(work_dir, 'reportlets')
    for subject_id in subject_list:
        single_subject_wf = init_single_subject_wf(
            subject_id=subject_id,
            task_id=task_id,
            name="single_subject_" + subject_id + "_wf",
            ignore=ignore,
            debug=debug,
            low_mem=low_mem,
            anat_only=anat_only,
            longitudinal=longitudinal,
            t2s_coreg=t2s_coreg,
            omp_nthreads=omp_nthreads,
            skull_strip_template=skull_strip_template,
            reportlets_dir=reportlets_dir,
            output_dir=output_dir,
            bids_dir=bids_dir,
            freesurfer=freesurfer,
            output_spaces=output_spaces,
            template=template,
            medial_surface_nan=medial_surface_nan,
            cifti_output=cifti_output,
            hires=hires,
            use_bbr=use_bbr,
            bold2t1w_dof=bold2t1w_dof,
            fmap_bspline=fmap_bspline,
            fmap_demean=fmap_demean,
            use_syn=use_syn,
            force_syn=force_syn,
            template_out_grid=template_out_grid,
            use_aroma=use_aroma,
            aroma_melodic_dim=aroma_melodic_dim,
            ignore_aroma_err=ignore_aroma_err)

        single_subject_wf.config['execution']['crashdump_dir'] = (os.path.join(
            output_dir, "fmriprep", "sub-" + subject_id, 'log', run_uuid))
        for node in single_subject_wf._get_all_nodes():
            node.config = deepcopy(single_subject_wf.config)
        if freesurfer:
            fmriprep_wf.connect(fsdir, 'subjects_dir', single_subject_wf,
                                'inputnode.subjects_dir')
        else:
            fmriprep_wf.add_nodes([single_subject_wf])

    return fmriprep_wf
示例#21
0
def init_bbreg_wf(use_bbr, bold2t1w_dof, omp_nthreads, name='bbreg_wf'):
    """
    This workflow uses FreeSurfer's ``bbregister`` to register a BOLD image to
    a T1-weighted structural image.

    It is a counterpart to :py:func:`~fmriprep.workflows.util.init_fsl_bbr_wf`,
    which performs the same task using FSL's FLIRT with a BBR cost function.

    The ``use_bbr`` option permits a high degree of control over registration.
    If ``False``, standard, affine coregistration will be performed using
    FreeSurfer's ``mri_coreg`` tool.
    If ``True``, ``bbregister`` will be seeded with the initial transform found
    by ``mri_coreg`` (equivalent to running ``bbregister --init-coreg``).
    If ``None``, after ``bbregister`` is run, the resulting affine transform
    will be compared to the initial transform found by ``mri_coreg``.
    Excessive deviation will result in rejecting the BBR refinement and
    accepting the original, affine registration.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.registration import init_bbreg_wf
        wf = init_bbreg_wf(use_bbr=True, bold2t1w_dof=9, omp_nthreads=1)


    Parameters

        use_bbr : bool or None
            Enable/disable boundary-based registration refinement.
            If ``None``, test BBR result for distortion before accepting.
        bold2t1w_dof : 6, 9 or 12
            Degrees-of-freedom for BOLD-T1w registration
        name : str, optional
            Workflow name (default: bbreg_wf)


    Inputs

        in_file
            Reference BOLD image to be registered
        t1_2_fsnative_reverse_transform
            FSL-style affine matrix translating from FreeSurfer T1.mgz to T1w
        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID (must have folder in SUBJECTS_DIR)
        t1_brain
            Unused (see :py:func:`~fmriprep.workflows.util.init_fsl_bbr_wf`)
        t1_seg
            Unused (see :py:func:`~fmriprep.workflows.util.init_fsl_bbr_wf`)


    Outputs

        itk_bold_to_t1
            Affine transform from ``ref_bold_brain`` to T1 space (ITK format)
        itk_t1_to_bold
            Affine transform from T1 space to BOLD space (ITK format)
        out_report
            Reportlet for assessing registration quality
        fallback
            Boolean indicating whether BBR was rejected (mri_coreg registration returned)

    """
    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(
        niu.IdentityInterface([
            'in_file',
            't1_2_fsnative_reverse_transform', 'subjects_dir', 'subject_id',  # BBRegister
            't1_seg', 't1_brain']),  # FLIRT BBR
        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(['itk_bold_to_t1', 'itk_t1_to_bold', 'out_report', 'fallback']),
        name='outputnode')

    mri_coreg = pe.Node(
        MRICoregRPT(dof=bold2t1w_dof, sep=[4], ftol=0.0001, linmintol=0.01,
                    generate_report=not use_bbr),
        name='mri_coreg', n_procs=omp_nthreads, mem_gb=5)

    lta_concat = pe.Node(ConcatenateLTA(out_file='out.lta'), name='lta_concat')
    # XXX LTA-FSL-ITK may ultimately be able to be replaced with a straightforward
    # LTA-ITK transform, but right now the translation parameters are off.
    lta2fsl_fwd = pe.Node(fs.utils.LTAConvert(out_fsl=True), name='lta2fsl_fwd')
    lta2fsl_inv = pe.Node(fs.utils.LTAConvert(out_fsl=True, invert=True), name='lta2fsl_inv')
    fsl2itk_fwd = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_fwd', mem_gb=DEFAULT_MEMORY_MIN_GB)
    fsl2itk_inv = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_inv', mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, mri_coreg, [('subjects_dir', 'subjects_dir'),
                                ('subject_id', 'subject_id'),
                                ('in_file', 'source_file')]),
        # Output ITK transforms
        (inputnode, lta_concat, [('t1_2_fsnative_reverse_transform', 'in_lta2')]),
        (lta_concat, lta2fsl_fwd, [('out_file', 'in_lta')]),
        (lta_concat, lta2fsl_inv, [('out_file', 'in_lta')]),
        (inputnode, fsl2itk_fwd, [('t1_brain', 'reference_file'),
                                  ('in_file', 'source_file')]),
        (inputnode, fsl2itk_inv, [('in_file', 'reference_file'),
                                  ('t1_brain', 'source_file')]),
        (lta2fsl_fwd, fsl2itk_fwd, [('out_fsl', 'transform_file')]),
        (lta2fsl_inv, fsl2itk_inv, [('out_fsl', 'transform_file')]),
        (fsl2itk_fwd, outputnode, [('itk_transform', 'itk_bold_to_t1')]),
        (fsl2itk_inv, outputnode, [('itk_transform', 'itk_t1_to_bold')]),
    ])

    # Short-circuit workflow building, use initial registration
    if use_bbr is False:
        workflow.connect([
            (mri_coreg, outputnode, [('out_report', 'out_report')]),
            (mri_coreg, lta_concat, [('out_lta_file', 'in_lta1')])])
        outputnode.inputs.fallback = True

        return workflow

    bbregister = pe.Node(
        BBRegisterRPT(dof=bold2t1w_dof, contrast_type='t2', registered_file=True,
                      out_lta_file=True, generate_report=True),
        name='bbregister', mem_gb=12)

    workflow.connect([
        (inputnode, bbregister, [('subjects_dir', 'subjects_dir'),
                                 ('subject_id', 'subject_id'),
                                 ('in_file', 'source_file')]),
        (mri_coreg, bbregister, [('out_lta_file', 'init_reg_file')]),
    ])

    # Short-circuit workflow building, use boundary-based registration
    if use_bbr is True:
        workflow.connect([
            (bbregister, outputnode, [('out_report', 'out_report')]),
            (bbregister, lta_concat, [('out_lta_file', 'in_lta1')])])
        outputnode.inputs.fallback = False

        return workflow

    transforms = pe.Node(niu.Merge(2), run_without_submitting=True, name='transforms')
    reports = pe.Node(niu.Merge(2), run_without_submitting=True, name='reports')

    lta_ras2ras = pe.MapNode(fs.utils.LTAConvert(out_lta=True), iterfield=['in_lta'],
                             name='lta_ras2ras', mem_gb=2)
    compare_transforms = pe.Node(niu.Function(function=compare_xforms), name='compare_transforms')

    select_transform = pe.Node(niu.Select(), run_without_submitting=True, name='select_transform')
    select_report = pe.Node(niu.Select(), run_without_submitting=True, name='select_report')

    workflow.connect([
        (bbregister, transforms, [('out_lta_file', 'in1')]),
        (mri_coreg, transforms, [('out_lta_file', 'in2')]),
        # Normalize LTA transforms to RAS2RAS (inputs are VOX2VOX) and compare
        (transforms, lta_ras2ras, [('out', 'in_lta')]),
        (lta_ras2ras, compare_transforms, [('out_lta', 'lta_list')]),
        (compare_transforms, outputnode, [('out', 'fallback')]),
        # Select output transform
        (transforms, select_transform, [('out', 'inlist')]),
        (compare_transforms, select_transform, [('out', 'index')]),
        (select_transform, lta_concat, [('out', 'in_lta1')]),
        # Select output report
        (bbregister, reports, [('out_report', 'in1')]),
        (mri_coreg, reports, [('out_report', 'in2')]),
        (reports, select_report, [('out', 'inlist')]),
        (compare_transforms, select_report, [('out', 'index')]),
        (select_report, outputnode, [('out', 'out_report')]),
    ])

    return workflow
示例#22
0
def init_nonlinear_sdc_wf(bold_file,
                          freesurfer,
                          bold2t1w_dof,
                          template,
                          omp_nthreads,
                          bold_pe='j',
                          atlas_threshold=3,
                          name='nonlinear_sdc_wf'):
    """
    This workflow takes a skull-stripped T1w image and reference BOLD image and
    estimates a susceptibility distortion correction warp, using ANTs symmetric
    normalization (SyN) and the average fieldmap atlas described in
    [Treiber2016]_.

    SyN deformation is restricted to the phase-encoding (PE) direction.
    If no PE direction is specified, anterior-posterior PE is assumed.

    SyN deformation is also restricted to regions that are expected to have a
    >3mm (approximately 1 voxel) warp, based on the fieldmap atlas.

    This technique is a variation on those developed in [Huntenburg2014]_ and
    [Wang2017]_.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.fieldmap.syn import init_nonlinear_sdc_wf
        wf = init_nonlinear_sdc_wf(
            bold_file='/dataset/sub-01/func/sub-01_task-rest_bold.nii.gz',
            bold_pe='j',
            freesurfer=True,
            bold2t1w_dof=9,
            template='MNI152NLin2009cAsym',
            omp_nthreads=8)

    **Inputs**

        t1_brain
            skull-stripped, bias-corrected structural image
        bold_ref
            skull-stripped reference image
        t1_seg
            FAST segmentation white and gray matter, in native T1w space
        t1_2_mni_reverse_transform
            inverse registration transform of T1w image to MNI template

    **Outputs**

        out_reference_brain
            the ``bold_ref`` image after unwarping
        out_warp
            the corresponding :abbr:`DFM (displacements field map)` compatible with
            ANTs
        out_mask
            mask of the unwarped input file
        out_mask_report
            reportlet for the skullstripping

    .. [Huntenburg2014] Huntenburg, J. M. (2014) Evaluating Nonlinear
                        Coregistration of BOLD EPI and T1w Images. Berlin: Master
                        Thesis, Freie Universität. `PDF
                        <http://pubman.mpdl.mpg.de/pubman/item/escidoc:2327525:5/component/escidoc:2327523/master_thesis_huntenburg_4686947.pdf>`_.
    .. [Treiber2016] Treiber, J. M. et al. (2016) Characterization and Correction
                     of Geometric Distortions in 814 Diffusion Weighted Images,
                     PLoS ONE 11(3): e0152472. doi:`10.1371/journal.pone.0152472
                     <https://doi.org/10.1371/journal.pone.0152472>`_.
    .. [Wang2017] Wang S, et al. (2017) Evaluation of Field Map and Nonlinear
                  Registration Methods for Correction of Susceptibility Artifacts
                  in Diffusion MRI. Front. Neuroinform. 11:17.
                  doi:`10.3389/fninf.2017.00017
                  <https://doi.org/10.3389/fninf.2017.00017>`_.
    """
    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(
        ['t1_brain', 'bold_ref', 't1_2_mni_reverse_transform', 't1_seg']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface([
        'out_reference_brain', 'out_mask', 'out_warp', 'out_warp_report',
        'out_mask_report'
    ]),
                         name='outputnode')

    if bold_pe is None or bold_pe[0] not in ['i', 'j']:
        LOGGER.warning(
            'Incorrect phase-encoding direction, assuming PA (posterior-to-anterior'
        )
        bold_pe = 'j'

    # Collect predefined data
    # Atlas image and registration affine
    atlas_img = pkgr.resource_filename('fmriprep', 'data/fmap_atlas.nii.gz')
    atlas_2_template_affine = pkgr.resource_filename(
        'fmriprep', 'data/fmap_atlas_2_{}_affine.mat'.format(template))
    # Registration specifications
    affine_transform = pkgr.resource_filename('fmriprep', 'data/affine.json')
    syn_transform = pkgr.resource_filename('fmriprep',
                                           'data/susceptibility_syn.json')

    invert_t1w = pe.Node(InvertT1w(), name='invert_t1w', mem_gb=0.3)

    ref_2_t1 = pe.Node(Registration(from_file=affine_transform),
                       name='ref_2_t1',
                       n_procs=omp_nthreads)
    t1_2_ref = pe.Node(ApplyTransforms(invert_transform_flags=[True]),
                       name='t1_2_ref',
                       n_procs=omp_nthreads)

    # 1) BOLD -> T1; 2) MNI -> T1; 3) ATLAS -> MNI
    transform_list = pe.Node(niu.Merge(3),
                             name='transform_list',
                             mem_gb=DEFAULT_MEMORY_MIN_GB)
    transform_list.inputs.in3 = atlas_2_template_affine

    # Inverting (1), then applying in reverse order:
    #
    # ATLAS -> MNI -> T1 -> BOLD
    atlas_2_ref = pe.Node(
        ApplyTransforms(invert_transform_flags=[True, False, False]),
        name='atlas_2_ref',
        n_procs=omp_nthreads,
        mem_gb=0.3)
    atlas_2_ref.inputs.input_image = atlas_img

    threshold_atlas = pe.Node(fsl.maths.MathsCommand(
        args='-thr {:.8g} -bin'.format(atlas_threshold),
        output_datatype='char'),
                              name='threshold_atlas',
                              mem_gb=0.3)

    fixed_image_masks = pe.Node(niu.Merge(2),
                                name='fixed_image_masks',
                                mem_gb=DEFAULT_MEMORY_MIN_GB)
    fixed_image_masks.inputs.in1 = 'NULL'

    restrict = [[int(bold_pe[0] == 'i'), int(bold_pe[0] == 'j'), 0]] * 2
    syn = pe.Node(Registration(from_file=syn_transform,
                               restrict_deformation=restrict),
                  name='syn',
                  n_procs=omp_nthreads)

    seg_2_ref = pe.Node(ApplyTransforms(interpolation='NearestNeighbor',
                                        float=True,
                                        invert_transform_flags=[True]),
                        name='seg_2_ref',
                        n_procs=omp_nthreads,
                        mem_gb=0.3)
    sel_wm = pe.Node(niu.Function(function=extract_wm),
                     name='sel_wm',
                     mem_gb=DEFAULT_MEMORY_MIN_GB)
    syn_rpt = pe.Node(SimpleBeforeAfter(), name='syn_rpt', mem_gb=0.1)

    skullstrip_bold_wf = init_skullstrip_bold_wf()

    workflow.connect([
        (inputnode, invert_t1w, [('t1_brain', 'in_file'),
                                 ('bold_ref', 'ref_file')]),
        (inputnode, ref_2_t1, [('bold_ref', 'moving_image')]),
        (invert_t1w, ref_2_t1, [('out_file', 'fixed_image')]),
        (inputnode, t1_2_ref, [('bold_ref', 'reference_image')]),
        (invert_t1w, t1_2_ref, [('out_file', 'input_image')]),
        (ref_2_t1, t1_2_ref, [('forward_transforms', 'transforms')]),
        (ref_2_t1, transform_list, [('forward_transforms', 'in1')]),
        (inputnode, transform_list, [('t1_2_mni_reverse_transform', 'in2')]),
        (inputnode, atlas_2_ref, [('bold_ref', 'reference_image')]),
        (transform_list, atlas_2_ref, [('out', 'transforms')]),
        (atlas_2_ref, threshold_atlas, [('output_image', 'in_file')]),
        (threshold_atlas, fixed_image_masks, [('out_file', 'in2')]),
        (inputnode, syn, [('bold_ref', 'moving_image')]),
        (t1_2_ref, syn, [('output_image', 'fixed_image')]),
        (fixed_image_masks, syn, [('out', 'fixed_image_masks')]),
        (inputnode, seg_2_ref, [('t1_seg', 'input_image')]),
        (ref_2_t1, seg_2_ref, [('forward_transforms', 'transforms')]),
        (syn, seg_2_ref, [('warped_image', 'reference_image')]),
        (seg_2_ref, sel_wm, [('output_image', 'in_seg')]),
        (inputnode, syn_rpt, [('bold_ref', 'before')]),
        (syn, syn_rpt, [('warped_image', 'after')]),
        (sel_wm, syn_rpt, [('out', 'wm_seg')]),
        (syn, skullstrip_bold_wf, [('warped_image', 'inputnode.in_file')]),
        (syn, outputnode, [('forward_transforms', 'out_warp')]),
        (skullstrip_bold_wf, outputnode,
         [('outputnode.skull_stripped_file', 'out_reference_brain'),
          ('outputnode.mask_file', 'out_mask'),
          ('outputnode.out_report', 'out_mask_report')]),
        (syn_rpt, outputnode, [('out_report', 'out_warp_report')])
    ])

    return workflow
示例#23
0
def init_fsl_bbr_wf(use_bbr, bold2t1w_dof, name='fsl_bbr_wf'):
    """
    This workflow uses FSL FLIRT to register a BOLD image to a T1-weighted
    structural image, using a boundary-based registration (BBR) cost function.

    It is a counterpart to :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`,
    which performs the same task using FreeSurfer's ``bbregister``.

    The ``use_bbr`` option permits a high degree of control over registration.
    If ``False``, standard, rigid coregistration will be performed by FLIRT.
    If ``True``, FLIRT-BBR will be seeded with the initial transform found by
    the rigid coregistration.
    If ``None``, after FLIRT-BBR is run, the resulting affine transform
    will be compared to the initial transform found by FLIRT.
    Excessive deviation will result in rejecting the BBR refinement and
    accepting the original, affine registration.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.registration import init_fsl_bbr_wf
        wf = init_fsl_bbr_wf(use_bbr=True, bold2t1w_dof=9)


    Parameters

        use_bbr : bool or None
            Enable/disable boundary-based registration refinement.
            If ``None``, test BBR result for distortion before accepting.
        bold2t1w_dof : 6, 9 or 12
            Degrees-of-freedom for BOLD-T1w registration
        name : str, optional
            Workflow name (default: fsl_bbr_wf)


    Inputs

        in_file
            Reference BOLD image to be registered
        t1_brain
            Skull-stripped T1-weighted structural image
        t1_seg
            FAST segmentation of ``t1_brain``
        t1_2_fsnative_reverse_transform
            Unused (see :py:func:`~fmriprep.workflows.util.init_bbreg_wf`)
        subjects_dir
            Unused (see :py:func:`~fmriprep.workflows.util.init_bbreg_wf`)
        subject_id
            Unused (see :py:func:`~fmriprep.workflows.util.init_bbreg_wf`)


    Outputs

        itk_bold_to_t1
            Affine transform from ``ref_bold_brain`` to T1 space (ITK format)
        itk_t1_to_bold
            Affine transform from T1 space to BOLD space (ITK format)
        out_report
            Reportlet for assessing registration quality
        fallback
            Boolean indicating whether BBR was rejected (rigid FLIRT registration returned)

    """
    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(
        niu.IdentityInterface([
            'in_file',
            't1_2_fsnative_reverse_transform', 'subjects_dir', 'subject_id',  # BBRegister
            't1_seg', 't1_brain']),  # FLIRT BBR
        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(['itk_bold_to_t1', 'itk_t1_to_bold', 'out_report', 'fallback']),
        name='outputnode')

    wm_mask = pe.Node(niu.Function(function=extract_wm), name='wm_mask')
    flt_bbr_init = pe.Node(FLIRTRPT(dof=6, generate_report=not use_bbr), name='flt_bbr_init')

    invt_bbr = pe.Node(fsl.ConvertXFM(invert_xfm=True), name='invt_bbr',
                       mem_gb=DEFAULT_MEMORY_MIN_GB)

    #  BOLD to T1 transform matrix is from fsl, using c3 tools to convert to
    #  something ANTs will like.
    fsl2itk_fwd = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_fwd', mem_gb=DEFAULT_MEMORY_MIN_GB)
    fsl2itk_inv = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_inv', mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, flt_bbr_init, [('in_file', 'in_file'),
                                   ('t1_brain', 'reference')]),
        (inputnode, fsl2itk_fwd, [('t1_brain', 'reference_file'),
                                  ('in_file', 'source_file')]),
        (inputnode, fsl2itk_inv, [('in_file', 'reference_file'),
                                  ('t1_brain', 'source_file')]),
        (invt_bbr, fsl2itk_inv, [('out_file', 'transform_file')]),
        (fsl2itk_fwd, outputnode, [('itk_transform', 'itk_bold_to_t1')]),
        (fsl2itk_inv, outputnode, [('itk_transform', 'itk_t1_to_bold')]),
    ])

    # Short-circuit workflow building, use rigid registration
    if use_bbr is False:
        workflow.connect([
            (flt_bbr_init, invt_bbr, [('out_matrix_file', 'in_file')]),
            (flt_bbr_init, fsl2itk_fwd, [('out_matrix_file', 'transform_file')]),
            (flt_bbr_init, outputnode, [('out_report', 'out_report')]),
        ])
        outputnode.inputs.fallback = True

        return workflow

    flt_bbr = pe.Node(
        FLIRTRPT(cost_func='bbr', dof=bold2t1w_dof, generate_report=True,
                 schedule=op.join(os.getenv('FSLDIR'), 'etc/flirtsch/bbr.sch')),
        name='flt_bbr')

    workflow.connect([
        (inputnode, wm_mask, [('t1_seg', 'in_seg')]),
        (inputnode, flt_bbr, [('in_file', 'in_file'),
                              ('t1_brain', 'reference')]),
        (flt_bbr_init, flt_bbr, [('out_matrix_file', 'in_matrix_file')]),
        (wm_mask, flt_bbr, [('out', 'wm_seg')]),
    ])

    # Short-circuit workflow building, use boundary-based registration
    if use_bbr is True:
        workflow.connect([
            (flt_bbr, invt_bbr, [('out_matrix_file', 'in_file')]),
            (flt_bbr, fsl2itk_fwd, [('out_matrix_file', 'transform_file')]),
            (flt_bbr, outputnode, [('out_report', 'out_report')]),
        ])
        outputnode.inputs.fallback = False

        return workflow

    transforms = pe.Node(niu.Merge(2), run_without_submitting=True, name='transforms')
    reports = pe.Node(niu.Merge(2), run_without_submitting=True, name='reports')

    compare_transforms = pe.Node(niu.Function(function=compare_xforms), name='compare_transforms')

    select_transform = pe.Node(niu.Select(), run_without_submitting=True, name='select_transform')
    select_report = pe.Node(niu.Select(), run_without_submitting=True, name='select_report')

    fsl_to_lta = pe.MapNode(fs.utils.LTAConvert(out_lta=True), iterfield=['in_fsl'],
                            name='fsl_to_lta')

    workflow.connect([
        (flt_bbr, transforms, [('out_matrix_file', 'in1')]),
        (flt_bbr_init, transforms, [('out_matrix_file', 'in2')]),
        # Convert FSL transforms to LTA (RAS2RAS) transforms and compare
        (inputnode, fsl_to_lta, [('in_file', 'source_file'),
                                 ('t1_brain', 'target_file')]),
        (transforms, fsl_to_lta, [('out', 'in_fsl')]),
        (fsl_to_lta, compare_transforms, [('out_lta', 'lta_list')]),
        (compare_transforms, outputnode, [('out', 'fallback')]),
        # Select output transform
        (transforms, select_transform, [('out', 'inlist')]),
        (compare_transforms, select_transform, [('out', 'index')]),
        (select_transform, invt_bbr, [('out', 'in_file')]),
        (select_transform, fsl2itk_fwd, [('out', 'transform_file')]),
        (flt_bbr, reports, [('out_report', 'in1')]),
        (flt_bbr_init, reports, [('out_report', 'in2')]),
        (reports, select_report, [('out', 'inlist')]),
        (compare_transforms, select_report, [('out', 'index')]),
        (select_report, outputnode, [('out', 'out_report')]),
    ])

    return workflow
示例#24
0
def init_phdiff_wf(reportlets_dir, omp_nthreads, name='phdiff_wf'):
    """
    Estimates the fieldmap using a phase-difference image and one or more
    magnitude images corresponding to two or more :abbr:`GRE (Gradient Echo sequence)`
    acquisitions. The `original code was taken from nipype
    <https://github.com/nipy/nipype/blob/master/nipype/workflows/dmri/fsl/artifacts.py#L514>`_.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.fieldmap.phdiff import init_phdiff_wf
        wf = init_phdiff_wf(reportlets_dir='.', omp_nthreads=1)


    Outputs::

      outputnode.fmap_ref - The average magnitude image, skull-stripped
      outputnode.fmap_mask - The brain mask applied to the fieldmap
      outputnode.fmap - The estimated fieldmap in Hz


    """

    inputnode = pe.Node(
        niu.IdentityInterface(fields=['magnitude', 'phasediff']),
        name='inputnode')

    outputnode = pe.Node(
        niu.IdentityInterface(fields=['fmap', 'fmap_ref', 'fmap_mask']),
        name='outputnode')

    def _pick1st(inlist):
        return inlist[0]

    # Read phasediff echo times
    meta = pe.Node(ReadSidecarJSON(),
                   name='meta',
                   mem_gb=0.01,
                   run_without_submitting=True)
    dte = pe.Node(niu.Function(function=_delta_te), name='dte', mem_gb=0.01)

    # Merge input magnitude images
    magmrg = pe.Node(IntraModalMerge(), name='magmrg')

    # de-gradient the fields ("bias/illumination artifact")
    n4 = pe.Node(ants.N4BiasFieldCorrection(dimension=3,
                                            copy_header=True,
                                            num_threads=omp_nthreads),
                 name='n4',
                 n_procs=omp_nthreads)
    bet = pe.Node(BETRPT(generate_report=True, frac=0.6, mask=True),
                  name='bet')
    ds_fmap_mask = pe.Node(DerivativesDataSink(base_directory=reportlets_dir,
                                               suffix='fmap_mask'),
                           name='ds_fmap_mask',
                           mem_gb=0.01,
                           run_without_submitting=True)
    # uses mask from bet; outputs a mask
    # dilate = pe.Node(fsl.maths.MathsCommand(
    #     nan2zeros=True, args='-kernel sphere 5 -dilM'), name='MskDilate')

    # phase diff -> radians
    pha2rads = pe.Node(niu.Function(function=siemens2rads), name='pha2rads')

    # FSL PRELUDE will perform phase-unwrapping
    prelude = pe.Node(fsl.PRELUDE(), name='prelude')

    denoise = pe.Node(fsl.SpatialFilter(operation='median',
                                        kernel_shape='sphere',
                                        kernel_size=3),
                      name='denoise')

    demean = pe.Node(niu.Function(function=demean_image), name='demean')

    cleanup_wf = cleanup_edge_pipeline(name="cleanup_wf")

    compfmap = pe.Node(niu.Function(function=phdiff2fmap), name='compfmap')

    # The phdiff2fmap interface is equivalent to:
    # rad2rsec (using rads2radsec from nipype.workflows.dmri.fsl.utils)
    # pre_fugue = pe.Node(fsl.FUGUE(save_fmap=True), name='ComputeFieldmapFUGUE')
    # rsec2hz (divide by 2pi)

    workflow = pe.Workflow(name=name)
    workflow.connect([
        (inputnode, meta, [('phasediff', 'in_file')]),
        (inputnode, magmrg, [('magnitude', 'in_files')]),
        (magmrg, n4, [('out_avg', 'input_image')]),
        (n4, prelude, [('output_image', 'magnitude_file')]),
        (n4, bet, [('output_image', 'in_file')]),
        (bet, prelude, [('mask_file', 'mask_file')]),
        (inputnode, pha2rads, [('phasediff', 'in_file')]),
        (pha2rads, prelude, [('out', 'phase_file')]),
        (meta, dte, [('out_dict', 'in_values')]),
        (dte, compfmap, [('out', 'delta_te')]),
        (prelude, denoise, [('unwrapped_phase_file', 'in_file')]),
        (denoise, demean, [('out_file', 'in_file')]),
        (demean, cleanup_wf, [('out', 'inputnode.in_file')]),
        (bet, cleanup_wf, [('mask_file', 'inputnode.in_mask')]),
        (cleanup_wf, compfmap, [('outputnode.out_file', 'in_file')]),
        (compfmap, outputnode, [('out', 'fmap')]),
        (bet, outputnode, [('mask_file', 'fmap_mask'),
                           ('out_file', 'fmap_ref')]),
        (inputnode, ds_fmap_mask, [('phasediff', 'source_file')]),
        (bet, ds_fmap_mask, [('out_report', 'in_file')]),
    ])

    return workflow
示例#25
0
def init_ica_aroma_wf(name='ica_aroma_wf', ignore_aroma_err=False):
    '''
    This workflow wraps `ICA-AROMA`_ to identify and remove motion-related
    independent components from a BOLD time series.

    The following steps are performed:

    #. Smooth data using SUSAN
    #. Run MELODIC outside of ICA-AROMA to generate the report
    #. Run ICA-AROMA
    #. Aggregate identified motion components (aggressive) to TSV
    #. Return classified_motion_ICs and melodic_mix for user to complete
        non-aggressive denoising in T1w space

    Additionally, non-aggressive denoising is performed on the BOLD series
    resampled into MNI space.

    .. workflow::
        :graph2use: orig
        :simpleform: yes

        from fmriprep.workflows.confounds import init_ica_aroma_wf
        wf = init_ica_aroma_wf()

    Parameters

        ignore_aroma_err : bool
            Do not fail on ICA-AROMA errors

    Inputs

        bold_mni
            BOLD series, resampled to template space
        movpar_file
            SPM-formatted motion parameters file
        bold_mask_mni
            BOLD series mask in template space

    Outputs

        aroma_confounds
            TSV of confounds identified as noise by ICA-AROMA
        aroma_noise_ics
            CSV of noise components identified by ICA-AROMA
        melodic_mix
            FSL MELODIC mixing matrix
        nonaggr_denoised_file
            BOLD series with non-aggressive ICA-AROMA denoising applied
        out_report
            Reportlet visualizing MELODIC ICs, with ICA-AROMA signal/noise labels

    .. _ICA-AROMA: https://github.com/rhr-pruim/ICA-AROMA
    '''
    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(
        fields=['bold_mni', 'movpar_file', 'bold_mask_mni']),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=[
        'aroma_confounds', 'out_report', 'aroma_noise_ics', 'melodic_mix',
        'nonaggr_denoised_file'
    ]),
                         name='outputnode')

    calc_median_val = pe.Node(fsl.ImageStats(op_string='-k %s -p 50'),
                              name='calc_median_val')
    calc_bold_mean = pe.Node(fsl.MeanImage(), name='calc_bold_mean')

    def getusans_func(image, thresh):
        return [tuple([image, thresh])]

    getusans = pe.Node(niu.Function(function=getusans_func,
                                    output_names=['usans']),
                       name='getusans',
                       mem_gb=0.01)

    smooth = pe.Node(fsl.SUSAN(fwhm=6.0), name='smooth')

    # melodic node
    melodic = pe.Node(fsl.MELODIC(no_bet=True, no_mm=True), name="melodic")

    # ica_aroma node
    ica_aroma = pe.Node(nws.ICA_AROMARPT(denoise_type='nonaggr',
                                         generate_report=True),
                        name='ica_aroma')

    # extract the confound ICs from the results
    ica_aroma_confound_extraction = pe.Node(
        ICAConfounds(ignore_aroma_err=ignore_aroma_err),
        name='ica_aroma_confound_extraction')

    def _getbtthresh(medianval):
        return 0.75 * medianval

    # connect the nodes
    workflow.connect([
        # Connect input nodes to complete smoothing
        (inputnode, calc_median_val, [('bold_mni', 'in_file'),
                                      ('bold_mask_mni', 'mask_file')]),
        (inputnode, calc_bold_mean, [('bold_mni', 'in_file')]),
        (calc_bold_mean, getusans, [('out_file', 'image')]),
        (calc_median_val, getusans, [('out_stat', 'thresh')]),
        (inputnode, smooth, [('bold_mni', 'in_file')]),
        (getusans, smooth, [('usans', 'usans')]),
        (calc_median_val, smooth, [(('out_stat', _getbtthresh),
                                    'brightness_threshold')]),
        # connect smooth to melodic
        (smooth, melodic, [('smoothed_file', 'in_files')]),
        (inputnode, melodic, [('bold_mask_mni', 'mask')]),
        # connect nodes to ICA-AROMA
        (smooth, ica_aroma, [('smoothed_file', 'in_file')]),
        (inputnode, ica_aroma, [('bold_mask_mni', 'report_mask'),
                                ('movpar_file', 'motion_parameters')]),
        (melodic, ica_aroma, [('out_dir', 'melodic_dir')]),
        # generate tsvs from ICA-AROMA
        (ica_aroma, ica_aroma_confound_extraction, [('out_dir', 'in_directory')
                                                    ]),
        # output for processing and reporting
        (ica_aroma_confound_extraction,
         outputnode, [('aroma_confounds', 'aroma_confounds'),
                      ('aroma_noise_ics', 'aroma_noise_ics'),
                      ('melodic_mix', 'melodic_mix')]),
        # TODO change melodic report to reflect noise and non-noise components
        (ica_aroma, outputnode, [('out_report', 'out_report'),
                                 ('nonaggr_denoised_file',
                                  'nonaggr_denoised_file')]),
    ])

    return workflow
示例#26
0
def compute_iqms(settings, modality='T1w', name='ComputeIQMs'):
    """
    Workflow that actually computes the IQMs

    .. workflow::

        from mriqc.workflows.anatomical import compute_iqms
        wf = compute_iqms(settings={'output_dir': 'out'})

    """
    from .utils import _tofloat
    from ..interfaces.anatomical import Harmonize

    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'in_file', 'in_ras', 'brainmask', 'airmask', 'artmask', 'headmask',
        'rotmask', 'segmentation', 'inu_corrected', 'in_inu', 'pvms',
        'metadata', 'inverse_composite_transform'
    ]),
                        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(fields=['out_file', 'out_noisefit']),
        name='outputnode')

    deriv_dir = check_folder(
        op.abspath(op.join(settings['output_dir'], 'derivatives')))

    # Extract metadata
    meta = pe.Node(ReadSidecarJSON(), name='metadata')

    # Add provenance
    addprov = pe.Node(niu.Function(function=_add_provenance),
                      name='provenance')
    addprov.inputs.settings = {'testing': settings.get('testing', False)}

    # AFNI check smoothing
    fwhm_interface = get_fwhmx()

    fwhm = pe.Node(fwhm_interface, name='smoothness')

    # Harmonize
    homog = pe.Node(Harmonize(), name='harmonize')

    # Mortamet's QI2
    getqi2 = pe.Node(ComputeQI2(erodemsk=settings.get('testing', False)),
                     name='ComputeQI2')

    # Compute python-coded measures
    measures = pe.Node(StructuralQC(), 'measures')

    # Project MNI segmentation to T1 space
    invt = pe.MapNode(ants.ApplyTransforms(dimension=3,
                                           default_value=0,
                                           interpolation='Linear',
                                           float=True),
                      iterfield=['input_image'],
                      name='MNItpms2t1')
    invt.inputs.input_image = [
        op.join(get_mni_icbm152_nlin_asym_09c(), fname + '.nii.gz')
        for fname in ['1mm_tpm_csf', '1mm_tpm_gm', '1mm_tpm_wm']
    ]

    datasink = pe.Node(IQMFileSink(modality=modality, out_dir=deriv_dir),
                       name='datasink')
    datasink.inputs.modality = modality

    def _getwm(inlist):
        return inlist[-1]

    workflow.connect([
        (inputnode, meta, [('in_file', 'in_file')]),
        (meta, datasink, [('subject_id', 'subject_id'),
                          ('session_id', 'session_id'), ('acq_id', 'acq_id'),
                          ('rec_id', 'rec_id'), ('run_id', 'run_id'),
                          ('out_dict', 'metadata')]),
        (inputnode, addprov, [('in_file', 'in_file'), ('airmask', 'air_msk'),
                              ('rotmask', 'rot_msk')]),
        (inputnode, getqi2, [('in_ras', 'in_file'), ('airmask', 'air_msk')]),
        (inputnode, homog, [('inu_corrected', 'in_file'),
                            (('pvms', _getwm), 'wm_mask')]),
        (inputnode, measures, [('in_inu', 'in_bias'), ('in_ras', 'in_file'),
                               ('airmask', 'air_msk'),
                               ('headmask', 'head_msk'),
                               ('artmask', 'artifact_msk'),
                               ('rotmask', 'rot_msk'),
                               ('segmentation', 'in_segm'),
                               ('pvms', 'in_pvms')]),
        (inputnode, fwhm, [('in_ras', 'in_file'), ('brainmask', 'mask')]),
        (inputnode, invt, [('in_ras', 'reference_image'),
                           ('inverse_composite_transform', 'transforms')]),
        (homog, measures, [('out_file', 'in_noinu')]),
        (invt, measures, [('output_image', 'mni_tpms')]),
        (fwhm, measures, [(('fwhm', _tofloat), 'in_fwhm')]),
        (measures, datasink, [('out_qc', 'root')]),
        (addprov, datasink, [('out', 'provenance')]),
        (getqi2, datasink, [('qi2', 'qi_2')]),
        (getqi2, outputnode, [('out_file', 'out_noisefit')]),
        (datasink, outputnode, [('out_file', 'out_file')]),
    ])
    return workflow
示例#27
0
def init_fmriprep_wf(
    subject_list,
    task_id,
    run_uuid,
    ignore,
    debug,
    anat_only,
    omp_nthreads,
    skull_strip_ants,
    reportlets_dir,
    output_dir,
    bids_dir,
    freesurfer,
    output_spaces,
    template,
    hires,
    bold2t1w_dof,
    fmap_bspline,
    fmap_demean,
    use_syn,
    force_syn,
    use_aroma,
    ignore_aroma_err,
    output_grid_ref,
):
    fmriprep_wf = pe.Workflow(name='fmriprep_wf')

    if freesurfer:
        fsdir = pe.Node(BIDSFreeSurferDir(
            derivatives=output_dir,
            freesurfer_home=os.getenv('FREESURFER_HOME'),
            spaces=output_spaces),
                        name='fsdir')

    for subject_id in subject_list:
        single_subject_wf = init_single_subject_wf(
            subject_id=subject_id,
            task_id=task_id,
            name="single_subject_" + subject_id + "_wf",
            ignore=ignore,
            debug=debug,
            anat_only=anat_only,
            omp_nthreads=omp_nthreads,
            skull_strip_ants=skull_strip_ants,
            reportlets_dir=reportlets_dir,
            output_dir=output_dir,
            bids_dir=bids_dir,
            freesurfer=freesurfer,
            output_spaces=output_spaces,
            template=template,
            hires=hires,
            bold2t1w_dof=bold2t1w_dof,
            fmap_bspline=fmap_bspline,
            fmap_demean=fmap_demean,
            use_syn=use_syn,
            force_syn=force_syn,
            output_grid_ref=output_grid_ref,
            use_aroma=use_aroma,
            ignore_aroma_err=ignore_aroma_err)

        single_subject_wf.config['execution']['crashdump_dir'] = (os.path.join(
            output_dir, "fmriprep", "sub-" + subject_id, 'log', run_uuid))
        for node in single_subject_wf._get_all_nodes():
            node.config = deepcopy(single_subject_wf.config)
        if freesurfer:
            fmriprep_wf.connect(fsdir, 'subjects_dir', single_subject_wf,
                                'inputnode.subjects_dir')
        else:
            fmriprep_wf.add_nodes([single_subject_wf])

    return fmriprep_wf
示例#28
0
def individual_reports(settings, name='ReportsWorkflow'):
    """
    Encapsulates nodes writing plots

    .. workflow::

        from mriqc.workflows.anatomical import individual_reports
        wf = individual_reports(settings={'output_dir': 'out'})

    """
    from ..interfaces import PlotMosaic
    from ..reports import individual_html

    verbose = settings.get('verbose_reports', False)
    pages = 2
    extra_pages = 0
    if verbose:
        extra_pages = 7

    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'in_ras', 'brainmask', 'headmask', 'airmask', 'artmask', 'rotmask',
        'segmentation', 'inu_corrected', 'noisefit', 'in_iqms', 'mni_report'
    ]),
                        name='inputnode')

    mosaic_zoom = pe.Node(PlotMosaic(out_file='plot_anat_mosaic1_zoomed.svg',
                                     cmap='Greys_r'),
                          name='PlotMosaicZoomed')

    mosaic_noise = pe.Node(PlotMosaic(out_file='plot_anat_mosaic2_noise.svg',
                                      only_noise=True,
                                      cmap='viridis_r'),
                           name='PlotMosaicNoise')

    mplots = pe.Node(niu.Merge(pages + extra_pages), name='MergePlots')
    rnode = pe.Node(niu.Function(input_names=['in_iqms', 'in_plots'],
                                 output_names=['out_file'],
                                 function=individual_html),
                    name='GenerateReport')

    # Link images that should be reported
    dsplots = pe.Node(nio.DataSink(base_directory=settings['output_dir'],
                                   parameterization=False),
                      name='dsplots')
    dsplots.inputs.container = 'reports'

    workflow.connect([
        (inputnode, rnode, [('in_iqms', 'in_iqms')]),
        (inputnode, mosaic_zoom, [('in_ras', 'in_file'),
                                  ('brainmask', 'bbox_mask_file')]),
        (inputnode, mosaic_noise, [('in_ras', 'in_file')]),
        (mosaic_zoom, mplots, [('out_file', "in1")]),
        (mosaic_noise, mplots, [('out_file', "in2")]),
        (mplots, rnode, [('out', 'in_plots')]),
        (rnode, dsplots, [('out_file', "@html_report")]),
    ])

    if not verbose:
        return workflow

    from ..interfaces.viz import PlotContours
    from ..viz.utils import plot_bg_dist
    plot_bgdist = pe.Node(niu.Function(input_names=['in_file'],
                                       output_names=['out_file'],
                                       function=plot_bg_dist),
                          name='PlotBackground')

    plot_segm = pe.Node(PlotContours(display_mode='z',
                                     levels=[.5, 1.5, 2.5],
                                     cut_coords=10,
                                     colors=['r', 'g', 'b']),
                        name='PlotSegmentation')

    plot_bmask = pe.Node(PlotContours(display_mode='z',
                                      levels=[.5],
                                      colors=['r'],
                                      cut_coords=10,
                                      out_file='bmask'),
                         name='PlotBrainmask')
    plot_airmask = pe.Node(PlotContours(display_mode='x',
                                        levels=[.5],
                                        colors=['r'],
                                        cut_coords=6,
                                        out_file='airmask'),
                           name='PlotAirmask')
    plot_headmask = pe.Node(PlotContours(display_mode='x',
                                         levels=[.5],
                                         colors=['r'],
                                         cut_coords=6,
                                         out_file='headmask'),
                            name='PlotHeadmask')
    plot_artmask = pe.Node(PlotContours(display_mode='z',
                                        levels=[.5],
                                        colors=['r'],
                                        cut_coords=10,
                                        out_file='artmask',
                                        saturate=True),
                           name='PlotArtmask')

    workflow.connect([
        (inputnode, plot_segm, [('in_ras', 'in_file'),
                                ('segmentation', 'in_contours')]),
        (inputnode, plot_bmask, [('in_ras', 'in_file'),
                                 ('brainmask', 'in_contours')]),
        (inputnode, plot_headmask, [('in_ras', 'in_file'),
                                    ('headmask', 'in_contours')]),
        (inputnode, plot_airmask, [('in_ras', 'in_file'),
                                   ('airmask', 'in_contours')]),
        (inputnode, plot_artmask, [('in_ras', 'in_file'),
                                   ('artmask', 'in_contours')]),
        (inputnode, plot_bgdist, [('noisefit', 'in_file')]),
        (inputnode, mplots, [('mni_report', "in%d" % (pages + 1))]),
        (plot_bmask, mplots, [('out_file', 'in%d' % (pages + 2))]),
        (plot_segm, mplots, [('out_file', 'in%d' % (pages + 3))]),
        (plot_artmask, mplots, [('out_file', 'in%d' % (pages + 4))]),
        (plot_headmask, mplots, [('out_file', 'in%d' % (pages + 5))]),
        (plot_airmask, mplots, [('out_file', 'in%d' % (pages + 6))]),
        (plot_bgdist, mplots, [('out_file', 'in%d' % (pages + 7))])
    ])
    return workflow
示例#29
0
def init_single_subject_wf(subject_id, task_id, name, ignore, debug, low_mem,
                           anat_only, longitudinal, omp_nthreads,
                           skull_strip_ants, reportlets_dir, output_dir,
                           bids_dir, freesurfer, output_spaces, template,
                           medial_surface_nan, hires, bold2t1w_dof,
                           fmap_bspline, fmap_demean, use_syn, force_syn,
                           output_grid_ref, use_aroma, ignore_aroma_err):
    """
    This workflow organizes the preprocessing pipeline for a single subject.
    It collects and reports information about the subject, and prepares
    sub-workflows to perform anatomical and functional preprocessing.

    Anatomical preprocessing is performed in a single workflow, regardless of
    the number of sessions.
    Functional preprocessing is performed using a separate workflow for each
    individual BOLD series.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.base import init_single_subject_wf
        wf = init_single_subject_wf(subject_id='test',
                                    name='single_subject_wf',
                                    task_id='',
                                    longitudinal=False,
                                    omp_nthreads=1,
                                    freesurfer=True,
                                    reportlets_dir='.',
                                    output_dir='.',
                                    bids_dir='.',
                                    skull_strip_ants=True,
                                    template='MNI152NLin2009cAsym',
                                    output_spaces=['T1w', 'fsnative',
                                                  'template', 'fsaverage5'],
                                    medial_surface_nan=False,
                                    ignore=[],
                                    debug=False,
                                    low_mem=False,
                                    anat_only=False,
                                    hires=True,
                                    bold2t1w_dof=9,
                                    fmap_bspline=False,
                                    fmap_demean=True,
                                    use_syn=True,
                                    force_syn=True,
                                    output_grid_ref=None,
                                    use_aroma=False,
                                    ignore_aroma_err=False)

    Parameters

        subject_id : str
            List of subject labels
        task_id : str or None
            Task ID of BOLD series to preprocess, or ``None`` to preprocess all
        name : str
            Name of workflow
        ignore : list
            Preprocessing steps to skip (may include "slicetiming", "fieldmaps")
        debug : bool
            Enable debugging outputs
        low_mem : bool
            Write uncompressed .nii files in some cases to reduce memory usage
        anat_only : bool
            Disable functional workflows
        longitudinal : bool
            Treat multiple sessions as longitudinal (may increase runtime)
            See sub-workflows for specific differences
        omp_nthreads : int
            Maximum number of threads an individual process may use
        skull_strip_ants : bool
            Use ANTs BrainExtraction.sh-based skull-stripping workflow
            If ``False``, uses a faster AFNI-based workflow
        reportlets_dir : str
            Directory in which to save reportlets
        output_dir : str
            Directory in which to save derivatives
        bids_dir : str
            Root directory of BIDS dataset
        freesurfer : bool
            Enable FreeSurfer surface reconstruction (may increase runtime)
        output_spaces : list
            List of output spaces functional images are to be resampled to.
            Some parts of pipeline will only be instantiated for some output spaces.

            Valid spaces:

             - T1w
             - template
             - fsnative
             - fsaverage (or other pre-existing FreeSurfer templates)
        template : str
            Name of template targeted by `'template'` output space
        medial_surface_nan : bool
            Replace medial wall values with NaNs on functional GIFTI files
        hires : bool
            Enable sub-millimeter preprocessing in FreeSurfer
        bold2t1w_dof : 6, 9 or 12
            Degrees-of-freedom for BOLD-T1w registration
        fmap_bspline : bool
            **Experimental**: Fit B-Spline field using least-squares
        fmap_demean : bool
            Demean voxel-shift map during unwarp
        use_syn : bool
            **Experimental**: Enable ANTs SyN-based susceptibility distortion correction (SDC).
            If fieldmaps are present and enabled, this is not run, by default.
        force_syn : bool
            **Temporary**: Always run SyN-based SDC
        output_grid_ref : str or None
            Path of custom reference image for normalization
        use_aroma : bool
            Perform ICA-AROMA on MNI-resampled functional series
        ignore_aroma_err : bool
            Do not fail on ICA-AROMA errors

    Inputs

        subjects_dir
            FreeSurfer SUBJECTS_DIR

    """
    if name in ('single_subject_wf', 'single_subject_fmripreptest_wf'):
        # for documentation purposes
        subject_data = {
            't1w': ['/completely/made/up/path/sub-01_T1w.nii.gz'],
            'bold': ['/completely/made/up/path/sub-01_task-nback_bold.nii.gz']
        }
        layout = None
    else:
        subject_data, layout = collect_data(bids_dir, subject_id, task_id)

    # Make sure we always go through these two checks
    if not anat_only and subject_data['bold'] == []:
        raise Exception("No BOLD images found for participant {} and task {}. "
                        "All workflows require BOLD images.".format(
                            subject_id, task_id if task_id else '<all>'))

    if not subject_data['t1w']:
        raise Exception("No T1w images found for participant {}. "
                        "All workflows require T1w images.".format(subject_id))

    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(fields=['subjects_dir']),
                        name='inputnode')

    bidssrc = pe.Node(BIDSDataGrabber(subject_data=subject_data,
                                      anat_only=anat_only),
                      name='bidssrc')

    bids_info = pe.Node(BIDSInfo(),
                        name='bids_info',
                        run_without_submitting=True)

    summary = pe.Node(SubjectSummary(output_spaces=output_spaces,
                                     template=template),
                      name='summary',
                      run_without_submitting=True)

    about = pe.Node(AboutSummary(version=__version__,
                                 command=' '.join(sys.argv)),
                    name='about',
                    run_without_submitting=True)

    ds_summary_report = pe.Node(DerivativesDataSink(
        base_directory=reportlets_dir, suffix='summary'),
                                name='ds_summary_report',
                                run_without_submitting=True)

    ds_about_report = pe.Node(DerivativesDataSink(
        base_directory=reportlets_dir, suffix='about'),
                              name='ds_about_report',
                              run_without_submitting=True)

    # Preprocessing of T1w (includes registration to MNI)
    anat_preproc_wf = init_anat_preproc_wf(name="anat_preproc_wf",
                                           skull_strip_ants=skull_strip_ants,
                                           output_spaces=output_spaces,
                                           template=template,
                                           debug=debug,
                                           longitudinal=longitudinal,
                                           omp_nthreads=omp_nthreads,
                                           freesurfer=freesurfer,
                                           hires=hires,
                                           reportlets_dir=reportlets_dir,
                                           output_dir=output_dir)

    workflow.connect([
        (inputnode, anat_preproc_wf, [('subjects_dir',
                                       'inputnode.subjects_dir')]),
        (bidssrc, bids_info, [(('t1w', fix_multi_T1w_source_name), 'in_file')
                              ]),
        (inputnode, summary, [('subjects_dir', 'subjects_dir')]),
        (bidssrc, summary, [('t1w', 't1w'), ('t2w', 't2w'), ('bold', 'bold')]),
        (bids_info, summary, [('subject_id', 'subject_id')]),
        (bidssrc, anat_preproc_wf, [('t1w', 'inputnode.t1w'),
                                    ('t2w', 'inputnode.t2w')]),
        (summary, anat_preproc_wf, [('subject_id', 'inputnode.subject_id')]),
        (bidssrc, ds_summary_report, [(('t1w', fix_multi_T1w_source_name),
                                       'source_file')]),
        (summary, ds_summary_report, [('out_report', 'in_file')]),
        (bidssrc, ds_about_report, [(('t1w', fix_multi_T1w_source_name),
                                     'source_file')]),
        (about, ds_about_report, [('out_report', 'in_file')]),
    ])

    if anat_only:
        return workflow

    for bold_file in subject_data['bold']:
        func_preproc_wf = init_func_preproc_wf(
            bold_file=bold_file,
            layout=layout,
            ignore=ignore,
            freesurfer=freesurfer,
            bold2t1w_dof=bold2t1w_dof,
            reportlets_dir=reportlets_dir,
            output_spaces=output_spaces,
            template=template,
            medial_surface_nan=medial_surface_nan,
            output_dir=output_dir,
            omp_nthreads=omp_nthreads,
            low_mem=low_mem,
            fmap_bspline=fmap_bspline,
            fmap_demean=fmap_demean,
            use_syn=use_syn,
            force_syn=force_syn,
            debug=debug,
            output_grid_ref=output_grid_ref,
            use_aroma=use_aroma,
            ignore_aroma_err=ignore_aroma_err)

        workflow.connect([(anat_preproc_wf, func_preproc_wf,
                           [('outputnode.t1_preproc', 'inputnode.t1_preproc'),
                            ('outputnode.t1_brain', 'inputnode.t1_brain'),
                            ('outputnode.t1_mask', 'inputnode.t1_mask'),
                            ('outputnode.t1_seg', 'inputnode.t1_seg'),
                            ('outputnode.t1_tpms', 'inputnode.t1_tpms'),
                            ('outputnode.t1_2_mni_forward_transform',
                             'inputnode.t1_2_mni_forward_transform'),
                            ('outputnode.t1_2_mni_reverse_transform',
                             'inputnode.t1_2_mni_reverse_transform')])])

        if freesurfer:
            workflow.connect([
                (anat_preproc_wf, func_preproc_wf,
                 [('outputnode.subjects_dir', 'inputnode.subjects_dir'),
                  ('outputnode.subject_id', 'inputnode.subject_id'),
                  ('outputnode.fs_2_t1_transform',
                   'inputnode.fs_2_t1_transform')]),
            ])

    return workflow
示例#30
0
def init_surface_recon_wf(omp_nthreads, hires, name='surface_recon_wf'):

    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(
        niu.IdentityInterface(
            fields=['t1w', 't2w', 'skullstripped_t1', 'subjects_dir', 'subject_id']),
        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(
            fields=['subjects_dir', 'subject_id', 'fs_2_t1_transform', 'surfaces', 'out_report']),
        name='outputnode')

    recon_config = pe.Node(FSDetectInputs(hires_enabled=hires), name='recon_config',
                           run_without_submitting=True)

    autorecon1 = pe.Node(
        fs.ReconAll(
            directive='autorecon1',
            flags='-noskullstrip',
            openmp=omp_nthreads),
        name='autorecon1',
        n_procs=omp_nthreads)
    autorecon1.interface._can_resume = False

    skull_strip_extern = pe.Node(FSInjectBrainExtracted(), name='skull_strip_extern',
                                 run_without_submitting=True)

    fs_transform = pe.Node(
        fs.Tkregister2(fsl_out='freesurfer2subT1.mat', reg_header=True),
        name='fs_transform')

    autorecon_resume_wf = init_autorecon_resume_wf(omp_nthreads=omp_nthreads)
    gifti_surface_wf = init_gifti_surface_wf()

    workflow.connect([
        # Configuration
        (inputnode, recon_config, [('t1w', 't1w_list'),
                                   ('t2w', 't2w_list')]),
        # Passing subjects_dir / subject_id enforces serial order
        (inputnode, autorecon1, [('subjects_dir', 'subjects_dir'),
                                 ('subject_id', 'subject_id')]),
        (autorecon1, skull_strip_extern, [('subjects_dir', 'subjects_dir'),
                                          ('subject_id', 'subject_id')]),
        (skull_strip_extern, autorecon_resume_wf, [('subjects_dir', 'inputnode.subjects_dir'),
                                                   ('subject_id', 'inputnode.subject_id')]),
        (autorecon_resume_wf, gifti_surface_wf, [
            ('outputnode.subjects_dir', 'inputnode.subjects_dir'),
            ('outputnode.subject_id', 'inputnode.subject_id')]),
        # Reconstruction phases
        (inputnode, autorecon1, [('t1w', 'T1_files')]),
        (recon_config, autorecon1, [('t2w', 'T2_file'),
                                    ('hires', 'hires'),
                                    # First run only (recon-all saves expert options)
                                    ('mris_inflate', 'mris_inflate')]),
        (inputnode, skull_strip_extern, [('skullstripped_t1', 'in_brain')]),
        (recon_config, autorecon_resume_wf, [('use_t2w', 'inputnode.use_T2')]),
        # Construct transform from FreeSurfer conformed image to FMRIPREP
        # reoriented image
        (inputnode, fs_transform, [('t1w', 'target_image')]),
        (autorecon1, fs_transform, [('T1', 'moving_image')]),
        # Output
        (autorecon_resume_wf, outputnode, [('outputnode.subjects_dir', 'subjects_dir'),
                                           ('outputnode.subject_id', 'subject_id'),
                                           ('outputnode.out_report', 'out_report')]),
        (gifti_surface_wf, outputnode, [('outputnode.surfaces', 'surfaces')]),
        (fs_transform, outputnode, [('fsl_file', 'fs_2_t1_transform')]),
    ])

    return workflow