def emotion(): if request.method == "POST": if "option" not in request.form: return jsonify(error="must select an option for the NLP function!") raw, twit = request.form["raw"], False if request.form["option"] == "twitter": twit = True if len(raw) != 0: ret = nlp.emotion_analysis(raw, twit) if ret is None: return jsonift(error="Can't do emotion analysis!") return jsonify(results=ret) else: return render_template("emotion.html")
def emotion(): if request.method == 'POST': if 'option' not in request.form: return jsonify(error="must select an option for the NLP function!") raw, twit = request.form['raw'], False if request.form['option'] == 'twitter': twit=True if len(raw) !=0: ret = nlp.emotion_analysis(raw,twit) if ret is None: return jsonift(error="Can't do emotion analysis!") return jsonify(results=ret) else: return render_template('emotion.html')
def analyze_emotion(filename): with open(filename, 'rU') as f: return {filename:dict(nlp.emotion_analysis(f.read()))}
data = pd.read_csv(uploaded_file) st.write(data) if st.button('开始挖掘热点'): '聚类中请稍后...' df = getHot(data, 0.6, 10) # Add a placeholder st.write('聚类完成!') st.write(df) if option == '情感倾向分析': st.title('情感分析系统') st.markdown('Affective tendency analysis system') text = st.text_area('请输入要分析的文本') if st.button('开始分析'): st.write('分析结果为') #展示一个感情置信度 a, b, c, d = emotion_analysis(text) chart_data = pd.DataFrame([[c, d]], columns=['positive_prob', 'negative_prob']) st.bar_chart(chart_data) if a == 2: st.write('正向感情') st.write('分类置信度为:', b) elif a == 1: st.write('中性感情') st.write('分类置信度为:', b) else: st.write('负向感情') st.write('分类置信度为:', b) if option == '评论观点抽取': st.title('观点抽取系统')