def pennTreeBank(self, text):
        """
        Tokenization using the Penn Tree Bank Tokenizer

        Parameters
        ----------
        arg1 : list
                A list of strings where each string is a single sentence

        Returns
        -------
        list
                A list of lists where each sub-list is a sequence of tokens
        """
        tokenizedText = []
        if isinstance(text, list):
            for sentence in text:
                if isinstance(sentence, str):
                    tokenizedText_ = TreebankWordTokenizer().tokenize(sentence)
                    for word in tokenizedText_:
                        if word in punctuations:
                            # remove any unwanted punctuation symbols which have been calssified as tokens
                            # was not getting unwanted spaces with punkt so that part has been ignored
                            tokenizedText_.remove(word)
                    tokenizedText.append(tokenizedText_)
                else:
                    print("Warning")
                    print("Sentences are not in the form of strings")
                    return 0
        else:
            print("Warning")
            print("Argument not in the form of a list.")
            return 0
        return tokenizedText
示例#2
0
    def pennTreeBank(self, text):
        """
		Tokenization using the Penn Tree Bank Tokenizer

		Parameters
		----------
		arg1 : list
			A list of strings where each string is a single sentence

		Returns
		-------
		list
			A list of lists where each sub-list is a sequence of tokens
		"""

        tokenizedText = []
        for sent in text:
            # tokenize sentence using tree bank algorithm
            tokens = TreebankWordTokenizer().tokenize(sent)
            for W in tokens:
                # in this case there won't be any empty words or spaces so just remove punctuations if any
                if W in ['?', ':', '!', '.', ',', ';']:
                    tokens.remove(W)
                    tokenizedText.append(tokens)

        return tokenizedText