示例#1
0
def relvort(u, v, lats, lons):
    """
    Compute the relative vertical vorticity of the wind
    
    Args:
        u ([type]): 2D arrays of u wind components, in meters per second
        v ([type]): 2D arrays of v wind components, in meters per second
    
    Returns:
        Returns in units of per second
    """

    #Check if input is an xarray dataarray
    use_xarray = arr.check_xarray(u)

    #Compute the gradient of the wind
    dudy = calculate.compute_gradient(u, lats, lons)[1]
    dvdx = calculate.compute_gradient(v, lats, lons)[0]

    #Compute relative vorticity (dv/dx - du/dy)
    vort = np.subtract(dvdx, dudy)

    #Account for southern hemisphere
    tlons, tlats = np.meshgrid(lons, lats)
    vort[tlats < 0] = vort[tlats < 0] * -1

    #Convert back to xarray dataset, if initially passed as one
    if use_xarray == True:
        vort = xr.DataArray(vort, coords=[lats, lons], dims=['lat', 'lon'])

    return vort
示例#2
0
def divergence(u, v, lats, lons):
    """
    Compute the horizontal divergence of a vector
    
    Args:
        var ([type]): 2D scalar field (e.g. temperature)
        u ([type]): 2D arrays of u & v wind components, in meters per second
        v ([type]): 2D arrays of u & v wind components, in meters per second
    
    Returns:
        Returns in units of per second
    """

    #Check if input is an xarray dataarray
    use_xarray = arr.check_xarray(u)

    #Compute the gradient of the wind
    dudx = calculate.compute_gradient(u, lats, lons)[0]
    dvdy = calculate.compute_gradient(v, lats, lons)[1]

    #div = dudx + dvdy #dv/dx - du/dy
    div = np.add(dudx, dvdy)

    #Convert back to xarray dataset, if initially passed as one
    if use_xarray == True:
        div = xr.DataArray(div, coords=[lats, lons], dims=['lat', 'lon'])

    return div
示例#3
0
def qvect(temp, hght, lev, lats, lons, smooth, static_stability=1):
    """
    Compute the u and v components of the Q-vector
    
    Args:
        temp ([type]): 2D scalar temperature field (K)
        hght ([type]):  2D scalar geopotential height field (m)
        lev ([type]): Pressure level (hPa)
        lats ([type]): 1D arrays of lat
        lons ([type]): 1D arrays of lon
        smooth ([type]): integer representing sigma level of smoothing
        static_stability (int, optional): assumed to be 1, unless provided. Defaults to 1.
    
    Returns:
        Returns in units of meters per second
    """

    #Check if input is an xarray dataarray
    use_xarray = arr.check_xarray(temp)

    #Smooth data
    hght = ndimage.gaussian_filter(hght, sigma=smooth, order=0)
    temp = ndimage.gaussian_filter(temp, sigma=smooth, order=0)

    #Convert pressure to Pa
    levPa = lev * 100.0

    #Compute the geostrophic wind
    ug, vg = geo(hght, lats, lons)

    #Compute the constant out front
    const = (-1.0 * Rd) / (levPa * static_stability)

    #Compute gradient quantities
    dtdx, dtdy = calculate.compute_gradient(temp, lats, lons)
    dudx, dudy = calculate.compute_gradient(ug, lats, lons)
    dvdx, dvdy = calculate.compute_gradient(vg, lats, lons)

    #Compute u,v components of Q-vector
    Qu = const * ((dudx * dtdx) + (dvdx * dtdy))
    Qv = const * ((dudy * dtdx) + (dvdy * dtdy))

    #Convert back to xarray dataset, if initially passed as one
    if use_xarray == True:
        Qu = xr.DataArray(Qu, coords=[lats, lons], dims=['lat', 'lon'])
        Qv = xr.DataArray(Qv, coords=[lats, lons], dims=['lat', 'lon'])

    return Qu, Qv
示例#4
0
def advection(var, u, v, lats, lons):
    """
    Compute the magnitude of horizontal advection of a scalar quantity by the wind
    
    Args:
        var ([type]): 2D scalar field (e.g. temperature)
        u ([type]): 2D arrays of u & v wind components, in meters per second
        v ([type]): 2D arrays of u & v wind components, in meters per second
    
    Returns:
        Returns in units of (scalar unit) per second
    """

    #Check if input is an xarray dataarray
    use_xarray = arr.check_xarray(var)

    #Compute the gradient of the variable
    ddx, ddy = calculate.compute_gradient(var, lats, lons)

    #Compute advection (-v dot grad var)
    #adv = -1 * ((ddx*u) + (ddy*v))
    adv = np.add(np.multiply(ddx, u), np.multiply(ddy, v))
    adv = np.multiply(-1.0, adv)

    #Convert back to xarray dataset, if initially passed as one
    if use_xarray == True:
        adv = xr.DataArray(adv, coords=[lats, lons], dims=['lat', 'lon'])

    return adv
示例#5
0
def geo(hght, lats, lons):
    """
    Compute the u and v components of the geostrophic wind
    
    Args:
        hght ([type]): 2D scalar geopotential height field (m)
    
    Returns:
        Returns in units of meters per second
    """

    #Check if input is an xarray dataarray
    use_xarray = arr.check_xarray(hght)

    #Compute geopotential height gradient on pressure surface
    dzdx, dzdy = calculate.compute_gradient(hght, lats, lons)

    #2D array of Coriolis parameter for each lat/lon
    cor = coriolis(lats, lons)

    #Compute the geostrophic wind
    ug = (-1.0 * dzdy * g) / cor
    vg = (dzdx * g) / cor

    #Convert back to xarray dataset, if initially passed as one
    if use_xarray == True:
        ug = xr.DataArray(ug, coords=[lats, lons], dims=['lat', 'lon'])
        vg = xr.DataArray(vg, coords=[lats, lons], dims=['lat', 'lon'])

    return ug, vg