示例#1
0
def draw_qpf(prep,
             lon,
             lat,
             mslp=None,
             map_region=None,
             atime=24,
             title_kwargs={},
             outfile=None):
    """
    Draw precipitable water.

    Args:
        prep (np.array): precipitation, 2D array, [nlat, nlon]
        lon (np.array): longitude, 1D array, [nlon]
        lat (np.array): latitude, 1D array, [nlat]
        mslp (np.array, optional), mean sea level data, 2D array, [nlat, nlon]
        map_region (list or tuple): the map region limit, [lonmin, lonmax, latmin, latmax]
        title_kwargs (dictionaly, optional): keyword arguments for _get_title function.
    """

    # put data into fields
    prep_field = util.minput_2d(prep,
                                lon,
                                lat, {
                                    'long_name': 'precipitation',
                                    'units': 'mm'
                                },
                                map_region=map_region)
    mslp_field = util.minput_2d(mslp,
                                lon,
                                lat, {
                                    'long_name': 'height',
                                    'units': 'hPa'
                                },
                                map_region=map_region)

    #
    # set up visual parameters
    #
    plots = []

    # Setting the coordinates of the geographical area
    if map_region is None:
        china_map = map_set.get_mmap(name='CHINA_CYLINDRICAL',
                                     subpage_frame_thickness=5)
    else:
        china_map = map_set.get_mmap(name='CHINA_REGION_CYLINDRICAL',
                                     map_region=map_region,
                                     subpage_frame_thickness=5)
    plots.append(china_map)

    # Background Coaslines
    coastlines = map_set.get_mcoast(name='COAST_FILL')
    plots.append(coastlines)

    # Define the shading for precipitation water.
    if atime == 24:
        level_list = [0.1, 2.5, 5, 7.5] + [3*i+10 for i in range(5)] + [5*i+25 for i in range(5)] + \
                     [5*i+50 for i in range(10)] + [30*i+100 for i in range(5)] + [50*i+250 for i in range(5)] + \
                     [100*i+500 for i in range(6)]
    elif (atime == 12) or (atime == 6):
        level_list = [0.1, 0.5] + [i+1 for i in range(3)] + [1.5*i + 4 for i in range(6)] + \
                     [2*i+13 for i in range(6)] + [5*i+25 for i in range(14)] + [10*i+100 for i in range(9)]
    else:
        level_list = [0.01, 0.1] + [0.5*i+0.5 for i in range(3)] + [i + 2 for i in range(6)] + \
                     [2*i+8 for i in range(8)] + [4*i+24 for i in range(12)] + [8*i+76 for i in range(9)]
    prep_contour = magics.mcont(
        legend='on',
        contour_shade="on",
        contour_hilo="off",
        contour="off",
        contour_label="off",
        #contour_shade_method= "area_fill",
        contour_shade_technique="grid_shading",
        contour_level_selection_type="level_list",
        contour_level_list=level_list,
        contour_shade_colour_method="list",
        contour_shade_colour_list=[
            '#BABABA', '#A6A1A1', '#7E7E7E', '#6C6C6C', '#B2F8B0', '#94F397',
            '#56EE6C', '#2EB045', '#249C3B', '#2562C6', '#347EE4', '#54A1EB',
            '#94CEF4', '#B2EEF6', '#FDF8B2', '#FDE688', '#FDBC5C', '#FD9E42',
            '#FB6234', '#FB3D2D', '#DD2826', '#BA1B21', '#9F1A1D', '#821519',
            '#624038', '#88645C', '#B08880', '#C49C94', '#F0DAD1', '#CBC4D9',
            '#A99CC1', '#9687B6', '#715C99', '#65538B', '#73146F', '#881682',
            '#AA19A4', '#BB1BB5', '#C61CC0', '#D71ECF'
        ])
    plots.extend([prep_field, prep_contour])

    # Define the simple contouring for gh
    if mslp_field is not None:
        mslp_contour = common._get_mslp_contour()
        plots.extend([mslp_field, mslp_contour])

    # Add a legend
    legend = common._get_legend(china_map,
                                title="Precipitation [mm]",
                                frequency=1)
    plots.append(legend)

    # Add the title
    title_kwargs = check_kwargs(title_kwargs, 'head', "Precipitation | MSLP")
    title = common._get_title(**title_kwargs)
    plots.append(title)

    # Add china province
    china_coastlines = map_set.get_mcoast(name='PROVINCE')
    plots.append(china_coastlines)

    # final plot
    return util.magics_plot(plots, outfile)
示例#2
0
def draw_pqpf(pqpf,
              lon,
              lat,
              mslp=None,
              map_region=None,
              title_kwargs={},
              outfile=None):
    """
    Draw precipitation probability .

    Args:
        pqpf (np.array): precipitation probability forecasts, 2D array, [nlat, nlon]
        lon (np.array): longitude, 1D array, [nlon]
        lat (np.array): latitude, 1D array, [nlat]
        mslp (np.array, optional), mean sea level data, 2D array, [nlat, nlon]
        map_region (list or tuple): the map region limit, [lonmin, lonmax, latmin, latmax]
        title_kwargs (dictionaly, optional): keyword arguments for _get_title function.
    """

    # put data into fields
    pqpf_field = util.minput_2d(
        pqpf,
        lon,
        lat, {
            'long_name': 'Probability quantitative precipitation forecast',
            'units': '%'
        },
        map_region=map_region)
    mslp_field = util.minput_2d(mslp,
                                lon,
                                lat, {
                                    'long_name': 'height',
                                    'units': 'hPa'
                                },
                                map_region=map_region)

    #
    # set up visual parameters
    #

    plots = []

    # Setting the coordinates of the geographical area
    if map_region is None:
        china_map = map_set.get_mmap(name='CHINA_CYLINDRICAL',
                                     subpage_frame_thickness=5)
    else:
        china_map = map_set.get_mmap(name='CHINA_REGION_CYLINDRICAL',
                                     map_region=map_region,
                                     subpage_frame_thickness=5)
    plots.append(china_map)

    # Background Coaslines
    coastlines = map_set.get_mcoast(name='COAST_FILL')
    plots.append(coastlines)

    # Define the shading for precipitation water.
    level_list = [0, 1.0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 100.0]
    pqpf_contour = magics.mcont(
        legend='on',
        contour_shade="on",
        contour_hilo="off",
        contour="off",
        contour_label="off",
        #contour_shade_method= "area_fill",
        contour_shade_technique="grid_shading",
        contour_level_selection_type="level_list",
        contour_level_list=level_list,
        contour_shade_colour_method="list",
        contour_shade_colour_list=[
            '#ffffff', '#ff9226', '#ffc02c', '#ffc02c', '#fae931', '#c6fd74',
            '#74ff48', '#79bc21', '#36a318', '#32bbff', '#83b9ff', '#a996ff',
            '#7957f4', '#f192c2'
        ])
    plots.extend([pqpf_field, pqpf_contour])

    # Define the simple contouring for gh
    if mslp_field is not None:
        mslp_contour = common._get_mslp_contour()
        plots.extend([mslp_field, mslp_contour])

    # Add a legend
    legend = common._get_legend(china_map,
                                title="Probability [%]",
                                frequency=1)
    plots.append(legend)

    # Add the title
    title_kwargs = check_kwargs(title_kwargs, 'head', "Precipitation | MSLP")
    title = common._get_title(**title_kwargs)
    plots.append(title)

    # Add china province
    china_coastlines = map_set.get_mcoast(name='PROVINCE')
    plots.append(china_coastlines)

    # final plot
    return util.magics_plot(plots, outfile)
示例#3
0
def draw_rain1h(rain,
                lon,
                lat,
                mslp=None,
                map_region=None,
                title_kwargs={},
                outfile=None):
    """
    Draw 1-hour accumulation rainfall.

    Args:
        rain (np.array): rainfall data, 2D array, [nlat, nlon]
        lon (np.array): longitude, 1D array, [nlon]
        lat (np.array): latitude, 1D array, [nlat]
        mslp (np.array, optional), mean sea level data, 2D array, [nlat, nlon]
        map_region (list or tuple): the map region limit, [lonmin, lonmax, latmin, latmax]
        title_kwargs (dictionaly, optional): keyword arguments for _get_title function.
    """

    # put data into fields
    rain_field = util.minput_2d(rain,
                                lon,
                                lat, {
                                    'long_name': 'rainfall',
                                    'units': 'mm'
                                },
                                map_region=map_region)
    mslp_field = util.minput_2d(mslp,
                                lon,
                                lat, {
                                    'long_name': 'height',
                                    'units': 'hPa'
                                },
                                map_region=map_region)

    #
    # set up visual parameters
    #

    plots = []

    # Setting the coordinates of the geographical area
    if map_region is None:
        china_map = map_set.get_mmap(name='CHINA_CYLINDRICAL',
                                     subpage_frame_thickness=5)
    else:
        china_map = map_set.get_mmap(name='CHINA_REGION_CYLINDRICAL',
                                     map_region=map_region,
                                     subpage_frame_thickness=5)
    plots.append(china_map)

    # Background Coaslines
    coastlines = map_set.get_mcoast(name='COAST_FILL')
    plots.append(coastlines)

    # Define the shading for precipitation water.
    level_list = [0.1, 2, 5, 10, 20, 40, 60, 100, 250]
    rain_contour = magics.mcont(
        legend='on',
        contour_shade="on",
        contour_hilo="off",
        contour="off",
        contour_label="off",
        #contour_shade_method= "area_fill",
        contour_shade_technique="grid_shading",
        contour_level_selection_type="level_list",
        contour_level_list=level_list,
        contour_shade_colour_method="list",
        contour_shade_colour_list=[
            '#a6f28e', '#39a803', '#5db8ff', '#0400f9', '#f804fc', '#ff0000',
            '#ca2f00', '#6f0200'
        ])
    plots.extend([rain_field, rain_contour])

    # Define the simple contouring for gh
    if mslp_field is not None:
        mslp_contour = common._get_mslp_contour()
        plots.extend([mslp_field, mslp_contour])

    # Add a legend
    legend = common._get_legend(china_map, title="Rainfall [mm]", frequency=1)
    plots.append(legend)

    # Add the title
    title_kwargs = check_kwargs(title_kwargs, 'head', "Precipitation | MSLP")
    title = common._get_title(**title_kwargs)
    plots.append(title)

    # Add china province
    china_coastlines = map_set.get_mcoast(name='PROVINCE')
    plots.append(china_coastlines)

    # final plot
    return util.magics_plot(plots, outfile)
示例#4
0
def draw_ivt(iqu,
             iqv,
             lon,
             lat,
             mslp=None,
             skip_vector=None,
             map_region=None,
             title_kwargs={},
             outfile=None):
    """
    Draw integrated Water Vapor Transport (IVT) .

    Args:
        iqu (np.array): u * q transport, 2D array, [nlat, nlon]
        iqv (np.array): v * q transport, 2D array, [nlat, nlon]
        lon (np.array): longitude, 1D array, [nlon]
        lat (np.array): latitude, 1D array, [nlat]
        mslp (np.array): mean sea level pressure, 2D array, [nlat, nlon]
        skip_vector (integer): skip grid number for vector plot
        map_region (list or tuple): the map region limit, [lonmin, lonmax, latmin, latmax]
        title_kwargs (dictionaly, optional): keyword arguments for _get_title function.
    """

    # check default parameters
    if skip_vector is None:
        skip_vector = util.get_skip_vector(lon, lat, map_region)

    # put data into fields
    ivt_field = util.minput_2d_vector(iqu, iqv, lon, lat, skip=skip_vector)
    ivt_mag_field = util.minput_2d(np.sqrt(iqu * iqu + iqv * iqv), lon, lat, {
        'long_name': 'Integrated Water Vapor Transport',
        'units': 'kg/m/s'
    })
    mslp_field = util.minput_2d(mslp, lon, lat, {
        'long_name': 'mean sea level pressure',
        'units': 'mb'
    })

    #
    # set up visual parameters
    #

    plots = []

    # Setting the coordinates of the geographical area
    if map_region is None:
        china_map = map_set.get_mmap(name='CHINA_CYLINDRICAL',
                                     subpage_frame_thickness=5)
    else:
        china_map = map_set.get_mmap(name='CHINA_REGION_CYLINDRICAL',
                                     map_region=map_region,
                                     subpage_frame_thickness=5)
    plots.append(china_map)

    # Background Coaslines
    coastlines = map_set.get_mcoast(name='COAST_FILL')
    plots.append(coastlines)

    # Define the shading for the wind speed
    ivt_mag_contour = magics.mcont(
        legend='on',
        contour="off",
        contour_level_selection_type="level_list",
        contour_level_list=[i * 50.0 + 150 for i in range(3)] +
        [i * 100.0 + 300 for i in range(17)],
        contour_shade='on',
        contour_shade_method='area_fill',
        contour_shade_colour_method="list",
        contour_shade_colour_list=[
            '#fdd6c4', '#fcae92', '#fc8363', '#f6573e', '#de2b25', '#b81419',
            '#840711', '#fbb1ba', '#f98cae', '#f25e9f', '#dc3296', '#b40781',
            '#890179', '#600070', '#787878', '#8c8c8c', '#a0a0a0', '#b4b4b4',
            '#c8c8c8', '#dcdcdc'
        ],
        contour_highlight='off',
        contour_hilo='off',
        contour_label='off')
    plots.extend([ivt_mag_field, ivt_mag_contour])

    # Define the wind vector
    if ivt_field is not None:
        ivt_vector = magics.mwind(legend='off',
                                  wind_field_type='arrows',
                                  wind_arrow_head_shape=1,
                                  wind_arrow_head_ratio=0.5,
                                  wind_arrow_thickness=2,
                                  wind_arrow_unit_velocity=1000.0,
                                  wind_arrow_min_speed=150.0,
                                  wind_arrow_calm_below=150,
                                  wind_arrow_colour='#31043a')
        plots.extend([ivt_field, ivt_vector])

    # Define the simple contouring for gh
    if mslp_field is not None:
        interval = check_region_to_contour(map_region, 4, 2, thred=600)
        mslp_contour = common._get_mslp_contour(interval=interval)
        plots.extend([mslp_field, mslp_contour])

    # Add a legend
    legend = common._get_legend(
        china_map, title="Integrated Water Vapor Transport [kg/m/s]")
    plots.append(legend)

    # Add the title
    title_kwargs = check_kwargs(title_kwargs, 'head',
                                "Integrated Water Vapor Transport | MSLP")
    title = common._get_title(**title_kwargs)
    plots.append(title)

    # Add china province
    china_province_coastlines = map_set.get_mcoast(
        name='PROVINCE',
        map_user_layer_thickness=2,
        map_user_layer_colour='black')
    plots.append(china_province_coastlines)
    china_river_coastlines = map_set.get_mcoast(
        name='RIVER',
        map_user_layer_thickness=2,
        map_user_layer_colour='#71b2fd')
    plots.append(china_river_coastlines)

    # final plot
    return util.magics_plot(plots, outfile)